Preliminary Regulatory Impact Analysis: CAFE DATA BOOK (Appendix I) Corporate Average Fuel Economy Standards for Passenger Cars and Light Trucks for Model Years 2027 and Beyond and Fuel Efficiency Standards for Heavy-Duty Pickup Trucks and Vans for Model Years 2030 and Beyond **July 2023** #### **Contents** | Estimated Required CAFE Levels | 43 | |--|-----| | Estimated Achieved CAFE Levels | 107 | | CAFE Costs per Vehicle | 166 | | Various Impacts of Alternatives | 169 | | Required and Achieved CAFE Levels, Baseline vs Preferred Alternative | 174 | | Incremental Benefits and Costs | 209 | | Technology Costs and Civil Penalties per Vehicle, by Model Year | 221 | | Regulatory Costs and Civil Penalties per Vehicle, by Model Year | 281 | | Incremental Societal Impacts | 341 | | Labor Impacts | 359 | | Compliance Impacts | 386 | | Powertrain Technology Penetration Rate, by Model Year | 445 | | Mass Reduction Penetration Rate, by Model Year | 565 | | Powertrain Technology Penetration Rate, by Alternative | 609 | | Mass Reduction Penetration Rate, by Alternative | 633 | | Electrification Rates | 657 | | Required and Achieved CAFE Levels, Comparison | 681 | | Regulatory Cost, Comparison | 708 | | Vehicle Price Increase | 726 | | Technology Costs, Price Increases, Sales, and Labor Utilization | 749 | | CAFE Compliance Credits | 772 | | Consumer Impacts | 777 | | Environmental Impacts | 807 | | Electrification Costs | 825 | | Fleet Characteristics | 828 | | Liquid Fuel and Electricity Consumption | 834 | | Sales Impacts | 840 | | Regulatory Costs per Vehicle, by Vehicle Type | | | Vehicle-Mass-Related Fatality Impacts | 887 | | Change in Safety Parameters | 907 | #### **Summary Tables** Table 1 - Incremental Benefits and Costs Over the Lifetimes of Total Fleet Produced Through 2032 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, All SCC Levels | Incremental Benefits and Costs Over the Lifetimes of Total Fleet Produced Through 2032 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, All SCC Levels | | | | | | |--|--------|--------|--------|--------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Total Incremental Social Benefits, 7% SCC Discount Rate | 51.2 | 65.0 | 75.5 | 103.4 | | | Total Incremental Social Benefits, 3% SCC Discount Rate | 59.5 | 75.5 | 87.5 | 120.1 | | | Total Incremental Social Benefits, No SCC Valuation | 65.3 | 82.9 | 96.1 | 132.0 | | | | | | | | | | Net Incremental Social Benefits, 7% SCC Discount Rate | 4.4 | 6.3 | -3.2 | -1.2 | | | Net Incremental Social Benefits, 3% SCC Discount Rate | 12.7 | 16.8 | 8.8 | 15.6 | | | Net Incremental Social Benefits, No SCC Valuation | 18.5 | 24.3 | 17.4 | 27.5 | | Table 2 - Incremental Benefits and Costs Over the Lifetimes of Total Fleet Produced Through 2032 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, All SCC Levels | Incremental Benefits and Costs Over the Lifetimes of Total Fleet Produced Through 2032 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, All SCC Levels | | | | | | | |---|--------|--------|--------|--------|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | Total Incremental Social Benefits, 7% SCC Discount Rate | 29.2 | 37.0 | 42.8 | 58.1 | | | | Total Incremental Social Benefits, 3% SCC Discount Rate | 37.5 | 47.5 | 54.9 | 74.8 | | | | Total Incremental Social Benefits, No SCC Valuation | 43.3 | 54.9 | 63.5 | 86.7 | | | | | | | | | | | | Net Incremental Social Benefits, 7% SCC Discount Rate | -2.0 | -2.1 | -9.4 | -12.2 | | | | Net Incremental Social Benefits, 3% SCC Discount Rate 6.3 8.4 2.7 4.5 | | | | | | | | Net Incremental Social Benefits, No SCC Valuation | 12.1 | 15.8 | 11.3 | 16.4 | | | Table 3 - Incremental Benefits and Costs Over the Lifetimes of Total Fleet for Calendar Years 2022-2050 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, All SCC Levels | Incremental Benefits and Costs Over the Lifetimes of Total Fleet for Calendar Years 2022-2050 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, All SCC Levels | | | | | | | |---|--------|--------|--------|--------|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | Total Incremental Social Benefits, 7% SCC Discount Rate | 128.2 | 173.2 | 221.6 | 369.0 | | | | Total Incremental Social Benefits, 3% SCC Discount Rate | 150.5 | 203.3 | 260.8 | 436.9 | | | | Total Incremental Social Benefits, No SCC Valuation | 166.4 | 224.8 | 288.8 | 485.5 | | | | | | | | | | | | Net Incremental Social Benefits, 7% SCC Discount | 11.9 | 16.3 | -18.2 | -16.9 | | | | Net Incremental Social Benefits, 3% SCC Discount Rate 34.2 46.5 21.0 51.0 | | | | | | | | Net Incremental Social Benefits, No SCC Valuation | 50.1 | 68.0 | 49.0 | 99.7 | | | Table 4 - Incremental Benefits and Costs Over the Lifetimes of Total Fleet for Calendar Years 2022-2050 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, All SCC Levels | Incremental Benefits and Costs Over the Lifetimes of Total Fleet for Calendar Years 2022-2050 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, All SCC Levels | | | | | | | |---|--------|--------|--------|--------|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | Total Incremental Social Benefits, 7% SCC Discount Rate | 66.0 | 88.6 | 112.5 | 184.4 | | | | Total Incremental Social Benefits, 3% SCC Discount Rate | 88.3 | 118.8 | 151.6 | 252.3 | | | | Total Incremental Social Benefits, No SCC Valuation | 104.2 | 140.3 | 179.6 | 301.0 | | | | | | | | | | | | Net Incremental Social Benefits, 7% SCC Discount | 1.2 | 1.9 | -17.8 | -21.6 | | | | Net Incremental Social Benefits, 3% SCC Discount Rate 23.4 32.1 21.4 46.4 | | | | | | | | Net Incremental Social Benefits, No SCC Valuation | 39.3 | 53.6 | 49.4 | 95.0 | | | Table 5 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Total Fleet for No Action Alternative (Baseline), Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Total Fleet for No Action Alternative (Baseline), Average SCC | | | | | | |---|------------------|------------------|------------------------------|-----|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate 7% Discount | | | | Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | Benefits | 0.0 | 0.0 | 0.0 | 0.0 | | | Net Benefits | 0.0 | 0.0 | 0.0 | 0.0 | | Table 6 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Passenger Car Fleet for No Action Alternative (Baseline), Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Passenger Car Fleet for No Action Alternative (Baseline), Average SCC | | | | | | |---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | Benefits | 0.0 | 0.0 | 0.0 | 0.0 | | | Net Benefits | 0.0 | 0.0 | 0.0 | 0.0 | | Table 7 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Light Truck Fleet for No Action Alternative (Baseline), Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Light Truck Fleet for No Action Alternative (Baseline), Average SCC | | | | | | |---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | Benefits | 0.0 | 0.0 | 0.0 | 0.0 | | | Net Benefits | 0.0 | 0.0 | 0.0 | 0.0 | | Table 8 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Total Fleet for Alternative PC1LT3, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Total Fleet for Alternative PC1LT3, Average SCC | | | | | | |---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 46.8 | 31.2 | 1.8 | 2.3 | | | Benefits | 59.5 | 37.5 | 2.3 | 2.7 | | | Net Benefits | 12.7 | 6.3 | 0.5 | 0.5 | | Table 9 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Passenger Car Fleet for Alternative PC1LT3, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Passenger Car Fleet for Alternative PC1LT3, Average SCC | | | | | |
---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 8.4 | 6.3 | 0.3 | 0.5 | | | Benefits | 3.6 | 2.2 | 0.1 | 0.2 | | | Net Benefits | -4.7 | -4.1 | -0.2 | -0.3 | | Table 10 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Light Truck Fleet for Alternative PC1LT3, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Light Truck Fleet for Alternative PC1LT3, Average SCC | | | | | | |---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 38.5 | 24.9 | 1.5 | 1.8 | | | Benefits | 55.8 | 35.3 | 2.2 | 2.6 | | | Net Benefits | 17.4 | 10.4 | 0.7 | 0.7 | | Table 11 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Total Fleet for Alternative PC2LT4, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Total Fleet for Alternative PC2LT4, Average SCC | | | | | | |---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 58.6 | 39.1 | 2.3 | 2.8 | | | Benefits | 75.5 | 47.5 | 2.9 | 3.4 | | | Net Benefits | 16.8 | 8.4 | 0.7 | 0.6 | | # Table 12 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Passenger Car Fleet for Alternative PC2LT4, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Passenger Car Fleet for Alternative PC2LT4, Average SCC | | | | | | |---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 12.1 | 8.9 | 0.5 | 0.6 | | | Benefits | 7.1 | 4.3 | 0.3 | 0.3 | | | Net Benefits | -5.1 | -4.5 | -0.2 | -0.3 | | Table 13 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Light Truck Fleet for Alternative PC2LT4, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Light Truck Fleet for Alternative PC2LT4, Average SCC | | | | | | |---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 46.5 | 30.2 | 1.8 | 2.2 | | | Benefits | 68.4 | 43.1 | 2.7 | 3.1 | | | Net Benefits | 21.9 | 12.9 | 0.9 | 0.9 | | Table 14 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Total Fleet for Alternative PC3LT5, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Total Fleet for Alternative PC3LT5, Average SCC | | | | | | |---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 78.7 | 52.2 | 3.1 | 3.8 | | | Benefits | 87.5 | 54.9 | 3.4 | 4.0 | | | Net Benefits | 8.8 | 2.7 | 0.3 | 0.2 | | # Table 15 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Passenger Car Fleet for Alternative PC3LT5, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Passenger Car Fleet for Alternative PC3LT5, Average SCC | | | | | | |---|-------------------|------------------|------------------|------------------|--| | | Totals Annualized | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 21.6 | 14.9 | 0.8 | 1.1 | | | Benefits | 9.8 | 6.0 | 0.4 | 0.4 | | | Net Benefits | -11.7 | -8.9 | -0.5 | -0.6 | | Table 16 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Light Truck Fleet for Alternative PC3LT5, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Light Truck Fleet for Alternative PC3LT5, Average SCC | | | | | | |---|-------------------|------------------|------------------|------------------|--| | | Totals Annualized | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 57.1 | 37.3 | 2.2 | 2.7 | | | Benefits | 77.7 | 48.9 | 3.0 | 3.5 | | | Net Benefits | 20.6 | 11.6 | 0.8 | 0.8 | | Table 17 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Total Fleet for Alternative PC6LT8, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Total Fleet for Alternative PC6LT8, Average SCC | | | | | | |---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 104.5 | 70.3 | 4.1 | 5.1 | | | Benefits | 120.1 | 74.8 | 4.7 | 5.4 | | | Net Benefits | 15.6 | 4.5 | 0.6 | 0.3 | | # Table 18 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Passenger Car Fleet for Alternative PC6LT8, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Passenger Car Fleet for Alternative PC6LT8, Average SCC | | | | | | |---|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 34.5 | 24.0 | 1.3 | 1.7 | | | Benefits | 23.5 | 14.3 | 0.9 | 1.0 | | | Net Benefits | -10.9 | -9.7 | -0.4 | -0.7 | | Table 19 - Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Light Truck Fleet for Alternative PC6LT8, Average SCC | Estimated Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars), Light Truck Fleet for Alternative PC6LT8, Average SCC | | | | | | |---|-------------------|------------------|------------------|------------------|--| | | Totals Annualized | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 70.1 | 46.3 | 2.7 | 3.4 | | | Benefits | 96.6 | 60.5 | 3.8 | 4.4 | | | Net Benefits | 26.5 | 14.2 | 1.0 | 1.0 | | # Table 20 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Total Fleet for No Action Alternative (Baseline), Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Total Fleet for No Action Alternative (Baseline), Average SCC | | | | | |--|-------------------|------------------|------------------|------------------| | | Totals Annualized | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | Costs | 0.0 | 0.0 | 0.0 | 0.0 | | Benefits | 0.0 | 0.0 | 0.0 | 0.0 | | Net Benefits | 0.0 | 0.0 | 0.0 | 0.0 | Table 21 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Passenger Car Fleet for No Action Alternative (Baseline), Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Passenger Car Fleet for No Action Alternative (Baseline), Average SCC | | | | | | |--|-------------------|------------------|------------------|------------------|--| | | Totals Annualized | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | Benefits | 0.0 | 0.0 | 0.0 | 0.0 | | | Net Benefits | 0.0 | 0.0 | 0.0 | 0.0 | | # Table 22 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Light Truck Fleet for No Action Alternative (Baseline), Average SCC |
Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Light Truck Fleet for No Action Alternative (Baseline), Average SCC | | | | | |--|-------------------|------------------|------------------|------------------| | | Totals Annualized | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | Costs | 0.0 | 0.0 | 0.0 | 0.0 | | Benefits | 0.0 | 0.0 | 0.0 | 0.0 | | Net Benefits | 0.0 | 0.0 | 0.0 | 0.0 | Table 23 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Total Fleet for Alternative PC1LT3, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Total Fleet for Alternative PC1LT3, Average SCC | | | | | | |--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 116.3 | 64.9 | 6.1 | 5.3 | | | Benefits | 150.5 | 88.3 | 7.8 | 7.2 | | | Net Benefits | 34.2 | 23.4 | 1.8 | 1.9 | | ## Table 24 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Passenger Car Fleet for Alternative PC1LT3, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Passenger Car Fleet for Alternative PC1LT3, Average SCC | | | | | | |--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 17.2 | 10.9 | 0.9 | 0.9 | | | Benefits | 3.9 | 2.0 | 0.2 | 0.2 | | | Net Benefits | -13.3 | -8.9 | -0.7 | -0.7 | | ## Table 25 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Light Truck Fleet for Alternative PC1LT3, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Light Truck Fleet for Alternative PC1LT3, Average SCC | | | | | | |--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 99.1 | 53.9 | 5.2 | 4.4 | | | Benefits | 146.6 | 86.2 | 7.6 | 7.0 | | | Net Benefits | 47.4 | 32.3 | 2.5 | 2.6 | | ## Table 26 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Total Fleet for Alternative PC2LT4, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Total Fleet for Alternative PC2LT4, Average SCC | | | | | | |--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 156.8 | 86.7 | 8.2 | 7.1 | | | Benefits | 203.3 | 118.8 | 10.6 | 9.7 | | | Net Benefits | 46.5 | 32.1 | 2.4 | 2.6 | | ## Table 27 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Passenger Car Fleet for Alternative PC2LT4, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Passenger Car Fleet for Alternative PC2LT4, Average SCC | | | | | | |--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 25.2 | 15.7 | 1.3 | 1.3 | | | Benefits | 11.5 | 5.9 | 0.6 | 0.5 | | | Net Benefits | -13.7 | -9.8 | -0.7 | -0.8 | | ## Table 28 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Light Truck Fleet for Alternative PC2LT4, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Light Truck Fleet for Alternative PC2LT4, Average SCC | | | | | | |--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 131.6 | 71.0 | 6.9 | 5.8 | | | Benefits | 191.8 | 112.8 | 10.0 | 9.2 | | | Net Benefits | 60.2 | 41.9 | 3.1 | 3.4 | | ## Table 29 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Total Fleet for Alternative PC3LT5, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Total Fleet for Alternative PC3LT5, Average SCC | | | | | | |--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 239.9 | 130.2 | 12.5 | 10.6 | | | Benefits | 260.8 | 151.6 | 13.6 | 12.4 | | | Net Benefits | 21.0 | 21.4 | 1.1 | 1.7 | | ## Table 30 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Passenger Car Fleet for Alternative PC3LT5, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Passenger Car Fleet for Alternative PC3LT5, Average SCC | | | | | | |--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 55.4 | 32.0 | 2.9 | 2.6 | | | Benefits | 28.1 | 15.5 | 1.5 | 1.3 | | | Net Benefits | -27.3 | -16.5 | -1.4 | -1.3 | | ## Table 31 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Light Truck Fleet for Alternative PC3LT5, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Light Truck Fleet for Alternative PC3LT5, Average SCC | | | | | | |--|-------------------|------------------|------------------|------------------|--| | | Totals Annualized | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 184.4 | 98.3 | 9.6 | 8.0 | | | Benefits | 232.8 | 136.2 | 12.1 | 11.1 | | | Net Benefits | 48.3 | 37.9 | 2.5 | 3.1 | | ## Table 32 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Total Fleet for Alternative PC6LT8, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Total Fleet for Alternative PC6LT8, Average SCC | | | | | | |--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 385.9 | 206.0 | 20.1 | 16.8 | | | Benefits | 436.9 | 252.3 | 22.8 | 20.6 | | | Net Benefits | 51.0 | 46.4 | 2.7 | 3.8 | | ## Table 33 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Passenger Car Fleet for Alternative PC6LT8, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Passenger Car Fleet for Alternative PC6LT8, Average SCC | | | | | | |--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 111.7 | 61.9 | 5.8 | 5.0 | | | Benefits | 97.8 | 55.5 | 5.1 | 4.5 | | | Net Benefits | -14.0 | -6.4 | -0.7 | -0.5 | | ## Table 34 - Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Light Truck Fleet for Alternative PC6LT8, Average SCC | Estimated Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars), Light Truck Fleet for Alternative PC6LT8, Average SCC | | | | | |
--|------------------|------------------|------------------|------------------|--| | Totals Annualized | | | | | | | | 3% Discount Rate | 7% Discount Rate | 3% Discount Rate | 7% Discount Rate | | | Costs | 274.2 | 144.1 | 14.3 | 11.7 | | | Benefits | 339.1 | 196.9 | 17.7 | 16.0 | | | Net Benefits | 65.0 | 52.8 | 3.4 | 4.3 | | Table 35 - Estimated Total Fleet Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars) Total Fleet, by Alternative, Average SCC | Estimated Total Fleet Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars) Total Fleet, by Alternative, Average SCC | | | | | | | | | | | |---|------------------|----------|--------------|-------|------------------|--------------|--|--|--|--| | Alternative | 3% Discount Rate | | | | 7% Discount Rate | | | | | | | | Costs | Benefits | Net Benefits | Costs | Benefits | Net Benefits | | | | | | 1.00%/Y Pc And 3.00%/Y Lt During 2027-2032 | 46.8 | 59.5 | 12.7 | 31.2 | 37.5 | 6.3 | | | | | | 2.00%/Y Pc And 4.00%/Y Lt During 2027-2032 | 58.6 | 75.5 | 16.8 | 39.1 | 47.5 | 8.4 | | | | | | 3.00%/Y Pc And 5.00%/Y Lt During 2027-2032 | 78.7 | 87.5 | 8.8 | 52.2 | 54.9 | 2.7 | | | | | | 6.00%/Y Pc And 8.00%/Y Lt During 2027-2032 | 104.5 | 120.1 | 15.6 | 70.3 | 74.8 | 4.5 | | | | | Table 36 - Estimated Passenger Car Fleet Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars) Passenger Car Fleet, by Alternative, Average SCC | Estimated Passenger Car Fleet Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars) Passenger Car Fleet, by Alternative, Average SCC | | | | | | | | | | |--|---------|------------|--------------|---------|------------|--------------|--|--|--| | Alternative | 3% Disc | count Rate | | 7% Disc | count Rate | | | | | | | Costs | Benefits | Net Benefits | Costs | Benefits | Net Benefits | | | | | 1.00%/Y Pc And 3.00%/Y Lt During 2027-2032 | 8.4 | 3.6 | -4.7 | 6.3 | 2.2 | -4.1 | | | | | 2.00%/Y Pc And 4.00%/Y Lt During 2027-2032 | 12.1 | 7.1 | -5.1 | 8.9 | 4.3 | -4.5 | | | | | 3.00%/Y Pc And 5.00%/Y Lt During 2027-2032 | 21.6 | 9.8 | -11.7 | 14.9 | 6.0 | -8.9 | | | | | 6.00%/Y Pc And 8.00%/Y Lt During 2027-2032 | 34.5 | 23.5 | -10.9 | 24.0 | 14.3 | -9.7 | | | | Table 37 - Estimated Light Truck Fleet Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars) Light Truck Fleet, by Alternative, Average SCC | Estimated Light Truck Fleet Costs, Benefits, and Net Benefits Across MYs 1983-2032 (billions of dollars) Light Truck Fleet, by Alternative, Average SCC | | | | | | | | | | | |---|---------|------------|--------------|--------|------------------|--------------|--|--|--|--| | Alternative | 3% Disc | count Rate | | 7% Dis | 7% Discount Rate | | | | | | | | Costs | Benefits | Net Benefits | Costs | Benefits | Net Benefits | | | | | | 1.00%/Y Pc And 3.00%/Y Lt During 2027-2032 | 38.5 | 55.8 | 17.4 | 24.9 | 35.3 | 10.4 | | | | | | 2.00%/Y Pc And 4.00%/Y Lt During 2027-2032 | 46.5 | 68.4 | 21.9 | 30.2 | 43.1 | 12.9 | | | | | | 3.00%/Y Pc And 5.00%/Y Lt During 2027-2032 | 57.1 | 77.7 | 20.6 | 37.3 | 48.9 | 11.6 | | | | | | 6.00%/Y Pc And 8.00%/Y Lt During 2027-2032 | 70.1 | 96.6 | 26.5 | 46.3 | 60.5 | 14.2 | | | | | Table 38 - Estimated Total Fleet Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars) Total Fleet, by Alternative, Average SCC | Estimated Total Fleet Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars) Total Fleet, by Alternative, Average SCC | | | | | | | | | | | |---|---------|------------|--------------|---------|------------------|--------------|--|--|--|--| | Alternative | 3% Disc | count Rate | | 7% Disc | 7% Discount Rate | | | | | | | | Costs | Benefits | Net Benefits | Costs | Benefits | Net Benefits | | | | | | 1.00%/Y Pc And 3.00%/Y Lt During 2027-2032 | 116.3 | 150.5 | 34.2 | 64.9 | 88.3 | 23.4 | | | | | | 2.00%/Y Pc And 4.00%/Y Lt During 2027-2032 | 156.8 | 203.3 | 46.5 | 86.7 | 118.8 | 32.1 | | | | | | 3.00%/Y Pc And 5.00%/Y Lt During 2027-2032 | 239.9 | 260.8 | 21.0 | 130.2 | 151.6 | 21.4 | | | | | | 6.00%/Y Pc And 8.00%/Y Lt During 2027-2032 | 385.9 | 436.9 | 51.0 | 206.0 | 252.3 | 46.4 | | | | | Table 39 - Estimated Passenger Car Fleet Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars) Passenger Car Fleet, by Alternative, Average SCC | Estimated Passenger Car Fleet Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars) Passenger Car Fleet, by Alternative, Average SCC | | | | | | | | | | |--|------------------|-----------------------------|-------|------|------------------|--------------|--|--|--| | Alternative | 3% Discount Rate | | | | 7% Discount Rate | | | | | | | Costs | Costs Benefits Net Benefits | | | Benefits | Net Benefits | | | | | 1.00%/Y Pc And 3.00%/Y Lt During 2027-2032 | 17.2 | 3.9 | -13.3 | 10.9 | 2.0 | -8.9 | | | | | 2.00%/Y Pc And 4.00%/Y Lt During 2027-2032 | 25.2 | 11.5 | -13.7 | 15.7 | 5.9 | -9.8 | | | | | 3.00%/Y Pc And 5.00%/Y Lt During 2027-2032 | 55.4 | 28.1 | -27.3 | 32.0 | 15.5 | -16.5 | | | | | 6.00%/Y Pc And 8.00%/Y Lt During 2027-2032 | 111.7 | 97.8 | -14.0 | 61.9 | 55.5 | -6.4 | | | | Table 40 - Estimated Light Truck Fleet Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars) Light Truck Fleet, by Alternative, Average SCC | Estimated Light Truck Fleet Costs, Benefits, and Net Benefits Across Calendar Years 2022-2050 (billions of dollars) Light Truck Fleet, by Alternative, Average SCC | | | | | | | | | | |--|---------|------------|--------------|---------|------------------|--------------|--|--|--| | Alternative | 3% Disc | count Rate | | 7% Disc | 7% Discount Rate | | | | | | | Costs | Benefits | Net Benefits | Costs | Benefits | Net Benefits | | | | | 1.00%/Y Pc And 3.00%/Y Lt During 2027-2032 | 99.1 | 146.6 | 47.4 | 53.9 | 86.2 | 32.3 | | | | | 2.00%/Y Pc And 4.00%/Y Lt During 2027-2032 | 131.6 | 191.8 | 60.2 | 71.0 | 112.8 | 41.9 | | | | | 3.00%/Y Pc And 5.00%/Y Lt During 2027-2032 | 184.4 | 232.8 | 48.3 | 98.3 | 136.2 | 37.9 | | | | | 6.00%/Y Pc And 8.00%/Y Lt During 2027-2032 | 274.2 | 339.1 | 65.0 | 144.1 | 196.9 | 52.8 | | | | # **Estimated Required CAFE Levels** Table 41 - Average CAFE Requirements for Passenger Cars, Light Trucks, and Combined (mpg), No Action Alternative (Baseline) | Average CAFE Re | Average CAFE Requirements for Passenger Cars, Light Trucks, and Combined (mpg), No Action Alternative (Baseline) | | | | | | | | | | |-----------------|--|-------------|----------|--|--|--|--|--|--|--| | Model Year | Passenger Car | Light Truck | Combined | | | | | | | | | 2022 | 44.1 | 32.1 | 35.8 | | | | | | | | | 2023 | 44.8 | 32.6 | 36.1 | | | | | | | | | 2024 | 48.7 | 35.3 | 39.0 | | | | | | | | | 2025 | 52.9 | 38.3 | 42.2 | | | | | | | | | 2026 | 58.8 | 42.6 | 46.8 | | | | | | | | | 2027 | 58.8 | 42.6 | 46.7 | | | | | | | | | 2028 | 58.8 | 42.6 | 46.7 | | | | | | | | | 2029 | 58.8 | 42.6 | 46.7 | | | | | | | | | 2030 | 58.8 | 42.6 | 46.7 | | | | | | | | | 2031 | 58.8 | 42.6 | 46.7 | | | | | | | | | 2032 | 58.8 | 42.6 | 46.7 | | | | | | | | Table 42 - Average CAFE Requirements for Passenger Cars, Light Trucks, and Combined (mpg), Alternative PC1LT3 | Average CAFE Re | Average CAFE Requirements for Passenger Cars, Light Trucks, and Combined (mpg), Alternative PC1LT3 | | | | | | | | | |-----------------|--|-------------|----------|--|--|--|--|--|--| | Model Year | Passenger Car | Light Truck | Combined | | | | | | | | 2022 | 44.1 | 32.1 | 35.8 | | | | | | | | 2023 | 44.8 | 32.6 | 36.1 | | | | | | | | 2024 | 48.7 | 35.3 | 39.0 | | | | | | | | 2025 | 52.9 | 38.3 | 42.2 | | | | | | | | 2026 | 58.8 | 42.6 | 46.8 | | | | | | | | 2027 | 59.4 | 43.9 | 47.9 | | | | | | | | 2028 | 60.0 | 45.3 | 49.1 | | | | | | | | 2029 | 60.6 | 46.7 | 50.3 | | | | | | | | 2030 | 61.2 | 48.1 | 51.6 | | | | | | | | 2031 | 61.8 | 49.6 | 53.0 | | | | | | | | 2032 | 62.4 | 51.2 | 54.3 | | | | | | | Table 43 - Average CAFE Requirements for Passenger Cars, Light Trucks, and Combined (mpg), Alternative PC2LT4 | Average CAFE Requirer | nents for Passenger Cars, Light T | rucks, and Combined (mp | g), Alternative PC2LT4 | |-----------------------|-----------------------------------|-------------------------|------------------------| | Model Year | Passenger Car | Light Truck | Combined | | 2022 | 44.1 | 32.1 | 35.8 | | 2023 | 44.8 | 32.6 | 36.1 | | 2024 | 48.7 | 35.3 | 39.0 | | 2025 | 52.9 | 38.3 | 42.2 | | 2026 | 58.8 | 42.6 | 46.8 | | 2027 | 60.0 | 44.4 | 48.4 | | 2028 | 61.2 | 46.2 | 50.1 | | 2029 | 62.5 | 48.2 | 51.9 | | 2030 | 63.7 | 50.2 | 53.8 | | 2031 | 65.1 | 52.2 | 55.7 | | 2032 |
66.4 | 54.4 | 57.8 | Table 44 - Average CAFE Requirements for Passenger Cars, Light Trucks, and Combined (mpg), Alternative PC3LT5 | Average CAFE Re | Average CAFE Requirements for Passenger Cars, Light Trucks, and Combined (mpg), Alternative PC3LT5 | | | | | | | | | |-----------------|--|-------------|----------|--|--|--|--|--|--| | Model Year | Passenger Car | Light Truck | Combined | | | | | | | | 2022 | 44.1 | 32.1 | 35.8 | | | | | | | | 2023 | 44.8 | 32.6 | 36.1 | | | | | | | | 2024 | 48.7 | 35.3 | 39.0 | | | | | | | | 2025 | 52.9 | 38.3 | 42.2 | | | | | | | | 2026 | 58.8 | 42.6 | 46.8 | | | | | | | | 2027 | 60.6 | 44.9 | 48.9 | | | | | | | | 2028 | 62.5 | 47.2 | 51.2 | | | | | | | | 2029 | 64.4 | 49.7 | 53.5 | | | | | | | | 2030 | 66.4 | 52.3 | 56.1 | | | | | | | | 2031 | 68.5 | 55.1 | 58.7 | | | | | | | | 2032 | 70.6 | 58.0 | 61.5 | | | | | | | Table 45 - Average CAFE Requirements for Passenger Cars, Light Trucks, and Combined (mpg), Alternative PC6LT8 | Average CAFE Requirem | ents for Passenger Cars, Light T | rucks, and Combined (mp | g), Alternative PC6LT8 | |-----------------------|----------------------------------|-------------------------|------------------------| | Model Year | Passenger Car | Light Truck | Combined | | 2022 | 44.1 | 32.1 | 35.8 | | 2023 | 44.8 | 32.6 | 36.1 | | 2024 | 48.7 | 35.3 | 39.0 | | 2025 | 52.9 | 38.3 | 42.2 | | 2026 | 58.8 | 42.6 | 46.8 | | 2027 | 62.5 | 46.3 | 50.5 | | 2028 | 66.5 | 50.3 | 54.5 | | 2029 | 70.8 | 54.7 | 58.9 | | 2030 | 75.3 | 59.5 | 63.7 | | 2031 | 80.1 | 64.6 | 68.9 | | 2032 | 85.2 | 70.3 | 74.5 | Table 46 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Total) | Estimated Required | Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Total) | | | | | | | | | | | | |----------------------------------|---|------|------|------|------|------|------|------|------|------|------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | No Action Alternative (Baseline) | 35.8 | 36.1 | 39.0 | 42.2 | 46.8 | 46.7 | 46.7 | 46.7 | 46.7 | 46.7 | 46.7 | | | Alternative PC1LT3 | 35.8 | 36.1 | 39.0 | 42.2 | 46.8 | 47.9 | 49.1 | 50.3 | 51.6 | 53.0 | 54.3 | | | Alternative PC2LT4 | 35.8 | 36.1 | 39.0 | 42.2 | 46.8 | 48.4 | 50.1 | 51.9 | 53.8 | 55.7 | 57.8 | | | Alternative PC3LT5 | 35.8 | 36.1 | 39.0 | 42.2 | 46.8 | 48.9 | 51.2 | 53.5 | 56.1 | 58.7 | 61.5 | | | Alternative PC6LT8 | 35.8 | 36.1 | 39.0 | 42.2 | 46.8 | 50.5 | 54.5 | 58.9 | 63.7 | 68.9 | 74.5 | | ## Table 47 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Total) | Estimated Required Avera | age Fue | el Econ | omy (m | pg), Pa | ssenge | er Car F | leet fo | r Manu | facture | r (Total |) | |----------------------------------|---------|---------|--------|---------|--------|----------|---------|--------|---------|----------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 44.1 | 44.8 | 48.7 | 52.9 | 58.8 | 58.8 | 58.8 | 58.8 | 58.8 | 58.8 | 58.8 | | Alternative PC1LT3 | 44.1 | 44.8 | 48.7 | 52.9 | 58.8 | 59.4 | 60.0 | 60.6 | 61.2 | 61.8 | 62.4 | | Alternative PC2LT4 | 44.1 | 44.8 | 48.7 | 52.9 | 58.8 | 60.0 | 61.2 | 62.5 | 63.7 | 65.1 | 66.4 | | Alternative PC3LT5 | 44.1 | 44.8 | 48.7 | 52.9 | 58.8 | 60.6 | 62.5 | 64.4 | 66.4 | 68.5 | 70.6 | | Alternative PC6LT8 | 44.1 | 44.8 | 48.7 | 52.9 | 58.8 | 62.5 | 66.5 | 70.8 | 75.3 | 80.1 | 85.2 | Table 48 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Total) | Estimated Required Ave | rage F | uel Eco | nomy (| mpg), l | Light Tı | ruck Fle | et for I | Manufa | cturer (| (Total) | | |----------------------------------|--------|---------|--------|---------|----------|----------|----------|--------|----------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.1 | 32.6 | 35.3 | 38.3 | 42.6 | 42.6 | 42.6 | 42.6 | 42.6 | 42.6 | 42.6 | | Alternative PC1LT3 | 32.1 | 32.6 | 35.3 | 38.3 | 42.6 | 43.9 | 45.3 | 46.7 | 48.1 | 49.6 | 51.2 | | Alternative PC2LT4 | 32.1 | 32.6 | 35.3 | 38.3 | 42.6 | 44.4 | 46.2 | 48.2 | 50.2 | 52.2 | 54.4 | | Alternative PC3LT5 | 32.1 | 32.6 | 35.3 | 38.3 | 42.6 | 44.9 | 47.2 | 49.7 | 52.3 | 55.1 | 58.0 | | Alternative PC6LT8 | 32.1 | 32.6 | 35.3 | 38.3 | 42.6 | 46.3 | 50.3 | 54.7 | 59.5 | 64.6 | 70.3 | Table 49 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (BMW) | Estimated Required | Averag | e Fuel I | Econon | ny (mp | g), Tota | I Fleet | for Mar | ufactu | rer (BM | IW) | | |----------------------------------|--------|----------|--------|--------|----------|---------|---------|--------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 37.6 | 37.9 | 41.0 | 44.4 | 49.3 | 49.2 | 49.2 | 49.1 | 49.2 | 49.2 | 49.2 | | Alternative PC1LT3 | 37.6 | 37.9 | 41.0 | 44.4 | 49.3 | 50.3 | 51.4 | 52.5 | 53.7 | 54.9 | 56.1 | | Alternative PC2LT4 | 37.6 | 37.9 | 41.0 | 44.4 | 49.3 | 50.8 | 52.4 | 54.1 | 55.9 | 57.8 | 59.7 | | Alternative PC3LT5 | 37.6 | 37.9 | 41.0 | 44.4 | 49.3 | 51.3 | 53.5 | 55.8 | 58.3 | 60.8 | 63.5 | | Alternative PC6LT8 | 37.6 | 37.9 | 41.0 | 44.4 | 49.3 | 52.9 | 57.0 | 61.4 | 66.1 | 71.3 | 76.9 | Table 50 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Ford) | Estimated Required | Averag | e Fuel | Econor | ny (mp | g), Tota | I Fleet | for Mar | nufactu | rer (Fo | rd) | | |----------------------------------|--------|--------|--------|--------|----------|---------|---------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 31.4 | 31.8 | 34.3 | 37.2 | 41.4 | 41.4 | 41.3 | 41.3 | 41.3 | 41.4 | 41.4 | | Alternative PC1LT3 | 31.4 | 31.8 | 34.3 | 37.2 | 41.4 | 42.5 | 43.8 | 45.1 | 46.4 | 47.8 | 49.2 | | Alternative PC2LT4 | 31.4 | 31.8 | 34.3 | 37.2 | 41.4 | 42.9 | 44.7 | 46.5 | 48.4 | 50.3 | 52.3 | | Alternative PC3LT5 | 31.4 | 31.8 | 34.3 | 37.2 | 41.4 | 43.4 | 45.6 | 47.9 | 50.4 | 53.0 | 55.7 | | Alternative PC6LT8 | 31.4 | 31.8 | 34.3 | 37.2 | 41.4 | 44.8 | 48.6 | 52.8 | 57.3 | 62.2 | 67.5 | Table 51 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (GM) | Estimated Required | Averag | ge Fuel | Econo | my (mp | g), Tot | al Fleet | for Ma | nufacti | urer (GI | M) | | |----------------------------------|--------|---------|-------|--------|---------|----------|--------|---------|----------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.5 | 32.9 | 35.2 | 38.2 | 42.3 | 42.2 | 42.2 | 42.2 | 42.2 | 42.3 | 42.3 | | Alternative PC1LT3 | 32.5 | 32.9 | 35.2 | 38.2 | 42.3 | 43.4 | 44.6 | 45.9 | 47.1 | 48.5 | 49.8 | | Alternative PC2LT4 | 32.5 | 32.9 | 35.2 | 38.2 | 42.3 | 43.8 | 45.6 | 47.2 | 49.1 | 51.0 | 53.0 | | Alternative PC3LT5 | 32.5 | 32.9 | 35.2 | 38.2 | 42.3 | 44.4 | 46.5 | 48.7 | 51.2 | 53.8 | 56.5 | | Alternative PC6LT8 | 32.5 | 32.9 | 35.2 | 38.2 | 42.3 | 45.7 | 49.5 | 53.7 | 58.2 | 63.0 | 68.4 | ## Table 52 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Honda) | Estimated Required A | verage | Fuel E | conom | y (mpg |), Total | Fleet f | or Man | ufactur | er (Hor | ıda) | | |----------------------------------|--------|--------|-------|--------|----------|---------|--------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 39.1 | 39.4 | 42.7 | 46.2 | 51.2 | 51.1 | 51.1 | 51.0 | 51.1 | 51.1 | 51.1 | | Alternative PC1LT3 | 39.1 | 39.4 | 42.7 | 46.2 | 51.2 | 52.2 | 53.4 | 54.6 | 55.8 | 57.1 | 58.3 | | Alternative PC2LT4 | 39.1 | 39.4 | 42.7 | 46.2 | 51.2 | 52.8 | 54.5 | 56.2 | 58.1 | 60.1 | 62.0 | | Alternative PC3LT5 | 39.1 | 39.4 | 42.7 | 46.2 | 51.2 | 53.3 | 55.6 | 58.0 | 60.5 | 63.3 | 66.1 | | Alternative PC6LT8 | 39.1 | 39.4 | 42.7 | 46.2 | 51.2 | 55.1 | 59.3 | 63.8 | 68.8 | 74.1 | 79.9 | Table 53 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Hyundai KiH) | Estimated Required Ave | rage Fu | iel Eco | nomy (ı | mpg), T | otal Fle | eet for I | Manufa | cturer (| (Hyund | ai KiH) | | |----------------------------------|---------|---------|---------|---------|----------|-----------|--------|----------|--------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 39.6 | 40.0 | 43.3 | 46.8 | 51.9 | 51.9 | 51.8 | 51.8 | 51.8 | 51.9 | 51.9 | | Alternative PC1LT3 | 39.6 | 40.0 | 43.3 | 46.8 | 51.9 | 52.9 | 54.0 | 55.1 | 56.2 | 57.4 | 58.6 | | Alternative PC2LT4 | 39.6 | 40.0 | 43.3 | 46.8 | 51.9 | 53.5 | 55.1 | 56.8 | 58.6 | 60.5 | 62.3 | | Alternative PC3LT5 | 39.6 | 40.0 | 43.3 | 46.8 | 51.9 | 54.0 | 56.3 | 58.6 | 61.1 | 63.7 | 66.4 | | Alternative PC6LT8 | 39.6 | 40.0 | 43.3 | 46.8 | 51.9 | 55.8 | 60.0 | 64.4 | 69.3 | 74.6 | 80.3 | Table 54 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Hyundai KiK) | Estimated Required Ave | rage Fu | iel Eco | nomy (ı | mpg), T | otal Fle | et for I | Manufa | cturer (| (Hyund | ai KiK) | | |----------------------------------|---------|---------|---------|---------|----------|----------|--------|----------|--------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative
(Baseline) | 39.5 | 39.8 | 43.1 | 46.7 | 51.7 | 51.7 | 51.6 | 51.6 | 51.6 | 51.7 | 51.7 | | Alternative PC1LT3 | 39.5 | 39.8 | 43.1 | 46.7 | 51.7 | 52.7 | 53.9 | 55.0 | 56.2 | 57.4 | 58.6 | | Alternative PC2LT4 | 39.5 | 39.8 | 43.1 | 46.7 | 51.7 | 53.3 | 55.0 | 56.7 | 58.5 | 60.5 | 62.4 | | Alternative PC3LT5 | 39.5 | 39.8 | 43.1 | 46.7 | 51.7 | 53.9 | 56.1 | 58.5 | 61.0 | 63.7 | 66.4 | | Alternative PC6LT8 | 39.5 | 39.8 | 43.1 | 46.7 | 51.7 | 55.6 | 59.8 | 64.3 | 69.2 | 74.6 | 80.3 | Table 55 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (JLR) | Estimated Required | Averag | je Fuel | Econo | my (mp | g), Tota | al Fleet | for Ma | nufactu | ırer (JL | R) | | |----------------------------------|--------|---------|-------|--------|----------|----------|--------|---------|----------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.9 | 33.4 | 36.2 | 39.4 | 43.7 | 43.7 | 43.7 | 43.7 | 43.7 | 43.7 | 43.7 | | Alternative PC1LT3 | 32.9 | 33.4 | 36.2 | 39.4 | 43.7 | 45.1 | 46.4 | 47.9 | 49.4 | 50.9 | 52.4 | | Alternative PC2LT4 | 32.9 | 33.4 | 36.2 | 39.4 | 43.7 | 45.5 | 47.4 | 49.4 | 51.4 | 53.6 | 55.8 | | Alternative PC3LT5 | 32.9 | 33.4 | 36.2 | 39.4 | 43.7 | 46.0 | 48.4 | 51.0 | 53.6 | 56.4 | 59.4 | | Alternative PC6LT8 | 32.9 | 33.4 | 36.2 | 39.4 | 43.7 | 47.5 | 51.6 | 56.1 | 60.9 | 66.2 | 72.0 | Table 56 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Karma) | Estimated Required A | verage | Fuel E | conom | y (mpg |), Total | Fleet f | or Man | ufactur | er (Kar | ma) | | |----------------------------------|--------|--------|-------|--------|----------|---------|--------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | | Alternative PC1LT3 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 54.6 | 55.2 | 55.7 | 56.3 | 56.9 | 57.4 | | Alternative PC2LT4 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 55.2 | 56.3 | 57.5 | 58.6 | 59.8 | 61.1 | | Alternative PC3LT5 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 55.8 | 57.5 | 59.3 | 61.1 | 63.0 | 64.9 | | Alternative PC6LT8 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 57.5 | 61.2 | 65.1 | 69.3 | 73.7 | 78.4 | Table 57 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Lucid) | Estimated Required | Average | e Fuel E | Econon | ny (mpg | g), Tota | I Fleet f | or Man | ufactu | rer (Luc | cid) | | |----------------------------------|---------|----------|--------|---------|----------|-----------|--------|--------|----------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | | Alternative PC1LT3 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 54.6 | 55.2 | 55.7 | 56.3 | 56.9 | 57.4 | | Alternative PC2LT4 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 55.2 | 56.3 | 57.5 | 58.6 | 59.8 | 61.1 | | Alternative PC3LT5 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 55.8 | 57.5 | 59.3 | 61.1 | 63.0 | 64.9 | | Alternative PC6LT8 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 57.5 | 61.2 | 65.1 | 69.3 | 73.7 | 78.4 | #### Table 58 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Mazda) | Estimated Required A | verage | Fuel E | conom | y (mpg |), Total | Fleet f | or Man | ufactur | er (Maz | da) | | |----------------------------------|--------|--------|-------|--------|----------|---------|--------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 37.3 | 37.8 | 41.0 | 44.4 | 49.4 | 49.3 | 49.3 | 49.3 | 49.3 | 49.3 | 49.3 | | Alternative PC1LT3 | 37.3 | 37.8 | 41.0 | 44.4 | 49.4 | 50.8 | 52.2 | 53.7 | 55.2 | 56.9 | 58.5 | | Alternative PC2LT4 | 37.3 | 37.8 | 41.0 | 44.4 | 49.4 | 51.3 | 53.3 | 55.4 | 57.6 | 59.9 | 62.3 | | Alternative PC3LT5 | 37.3 | 37.8 | 41.0 | 44.4 | 49.4 | 51.9 | 54.4 | 57.2 | 60.1 | 63.1 | 66.3 | | Alternative PC6LT8 | 37.3 | 37.8 | 41.0 | 44.4 | 49.4 | 53.5 | 58.0 | 62.9 | 68.2 | 74.1 | 80.3 | ## Table 59 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Mercedes-Benz) | Estimated Required Avera | ge Fue | l Econ | omy (m | pg), To | tal Flee | et for M | anufact | turer (N | lercede | es-Benz | 2) | |----------------------------------|--------|--------|--------|---------|----------|----------|---------|----------|---------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 36.8 | 37.2 | 40.2 | 43.6 | 48.4 | 48.3 | 48.3 | 48.3 | 48.3 | 48.3 | 48.3 | | Alternative PC1LT3 | 36.8 | 37.2 | 40.2 | 43.6 | 48.4 | 49.4 | 50.5 | 51.6 | 52.8 | 54.1 | 55.3 | | Alternative PC2LT4 | 36.8 | 37.2 | 40.2 | 43.6 | 48.4 | 49.9 | 51.5 | 53.3 | 55.0 | 56.9 | 58.8 | | Alternative PC3LT5 | 36.8 | 37.2 | 40.2 | 43.6 | 48.4 | 50.5 | 52.6 | 55.0 | 57.4 | 59.9 | 62.6 | | Alternative PC6LT8 | 36.8 | 37.2 | 40.2 | 43.6 | 48.4 | 52.1 | 56.1 | 60.4 | 65.1 | 70.3 | 75.7 | ## Table 60 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Mitsubishi) | Estimated Required Ave | erage F | uel Ec | onomy | (mpg), | Total F | leet for | Manuf | acturer | (Mitsu | bishi) | | |----------------------------------|---------|--------|-------|--------|---------|----------|-------|---------|--------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 42.0 | 42.5 | 45.9 | 49.8 | 55.2 | 55.1 | 55.1 | 55.1 | 55.1 | 55.1 | 55.1 | | Alternative PC1LT3 | 42.0 | 42.5 | 45.9 | 49.8 | 55.2 | 56.3 | 57.5 | 58.7 | 60.0 | 61.3 | 62.6 | | Alternative PC2LT4 | 42.0 | 42.5 | 45.9 | 49.8 | 55.2 | 56.9 | 58.7 | 60.5 | 62.5 | 64.6 | 66.6 | | Alternative PC3LT5 | 42.0 | 42.5 | 45.9 | 49.8 | 55.2 | 57.5 | 59.9 | 62.4 | 65.1 | 68.0 | 70.9 | | Alternative PC6LT8 | 42.0 | 42.5 | 45.9 | 49.8 | 55.2 | 59.3 | 63.9 | 68.7 | 73.9 | 79.7 | 85.8 | Table 61 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Nissan) | Estimated Required A | verage | Fuel E | conom | y (mpg |), Total | Fleet fo | or Man | ufactur | er (Niss | san) | | |----------------------------------|--------|--------|-------|--------|----------|----------|--------|---------|----------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 38.9 | 39.3 | 42.4 | 46.0 | 50.9 | 50.9 | 50.8 | 50.8 | 50.8 | 50.9 | 50.9 | | Alternative PC1LT3 | 38.9 | 39.3 | 42.4 | 46.0 | 50.9 | 51.9 | 53.0 | 54.1 | 55.3 | 56.5 | 57.7 | | Alternative PC2LT4 | 38.9 | 39.3 | 42.4 | 46.0 | 50.9 | 52.4 | 54.1 | 55.8 | 57.6 | 59.5 | 61.4 | | Alternative PC3LT5 | 38.9 | 39.3 | 42.4 | 46.0 | 50.9 | 53.0 | 55.2 | 57.6 | 60.1 | 62.7 | 65.4 | | Alternative PC6LT8 | 38.9 | 39.3 | 42.4 | 46.0 | 50.9 | 54.7 | 58.8 | 63.3 | 68.2 | 73.5 | 79.1 | Table 62 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Stellantis) | Estimated Required Av | erage l | Fuel Ec | onomy | (mpg), | Total F | leet fo | r Manu | facture | r (Stella | antis) | | |----------------------------------|---------|---------|-------|--------|---------|---------|--------|---------|-----------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 31.9 | 32.3 | 34.9 | 38.0 | 42.1 | 42.1 | 42.1 | 42.1 | 42.1 | 42.1 | 42.1 | | Alternative PC1LT3 | 31.9 | 32.3 | 34.9 | 38.0 | 42.1 | 43.3 | 44.5 | 45.9 | 47.2 | 48.6 | 50.0 | | Alternative PC2LT4 | 31.9 | 32.3 | 34.9 | 38.0 | 42.1 | 43.8 | 45.6 | 47.3 | 49.2 | 51.1 | 53.2 | | Alternative PC3LT5 | 31.9 | 32.3 | 34.9 | 38.0 | 42.1 | 44.2 | 46.5 | 48.8 | 51.3 | 53.9 | 56.7 | | Alternative PC6LT8 | 31.9 | 32.3 | 34.9 | 38.0 | 42.1 | 45.6 | 49.5 | 53.7 | 58.3 | 63.3 | 68.7 | Table 63 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Subaru) | Estimated Required A | verage | Fuel E | conom | y (mpg |), Total | Fleet fo | or Manı | ufactur | er (Sub | aru) | | |----------------------------------|--------|--------|-------|--------|----------|----------|---------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 37.8 | 38.2 | 41.4 | 44.9 | 50.0 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | | Alternative PC1LT3 | 37.8 | 38.2 | 41.4 | 44.9 | 50.0 | 51.4 | 52.9 | 54.4 | 55.9 | 57.5 | 59.2 | | Alternative PC2LT4 | 37.8 | 38.2 | 41.4 | 44.9 | 50.0 | 51.9 | 53.9 | 56.0 | 58.2 | 60.5 | 62.9 | | Alternative PC3LT5 | 37.8 | 38.2 | 41.4 | 44.9 | 50.0 | 52.5 | 55.1 | 57.8 | 60.8 | 63.8 | 67.0 | | Alternative PC6LT8 | 37.8 | 38.2 | 41.4 | 44.9 | 50.0 | 54.1 | 58.7 | 63.6 | 69.0 | 74.9 | 81.2 | Table 64 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Tesla) | Estimated Required | Averag | e Fuel I | Econon | ny (mpo | g), Tota | I Fleet | for Man | ufactu | rer (Tes | sla) | | |----------------------------------|--------|----------|--------|---------|----------|---------|---------|--------|----------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 40.7 | 41.2 | 44.8 | 48.6 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | | Alternative PC1LT3 | 40.7 | 41.2 | 44.8 | 48.6 | 54.1 | 54.6 | 55.3 | 55.9 | 56.6 | 57.2 | 57.8 | | Alternative PC2LT4 | 40.7 | 41.2 | 44.8 | 48.6 | 54.1 | 55.2 | 56.4 | 57.7 | 58.9 | 60.3 | 61.5 | | Alternative PC3LT5 | 40.7 | 41.2 | 44.8 | 48.6 |
54.1 | 55.8 | 57.6 | 59.5 | 61.4 | 63.4 | 65.5 | | Alternative PC6LT8 | 40.7 | 41.2 | 44.8 | 48.6 | 54.1 | 57.5 | 61.3 | 65.4 | 69.6 | 74.2 | 79.0 | #### Table 65 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Toyota) | Estimated Required A | verage | Fuel E | conom | y (mpg |), Total | Fleet fo | or Man | ufactur | er (Toy | ota) | | |----------------------------------|--------|--------|-------|--------|----------|----------|--------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 37.1 | 37.4 | 40.4 | 43.6 | 48.4 | 48.3 | 48.3 | 48.3 | 48.3 | 48.3 | 48.4 | | Alternative PC1LT3 | 37.1 | 37.4 | 40.4 | 43.6 | 48.4 | 49.5 | 50.7 | 52.0 | 53.3 | 54.6 | 56.0 | | Alternative PC2LT4 | 37.1 | 37.4 | 40.4 | 43.6 | 48.4 | 50.0 | 51.8 | 53.6 | 55.5 | 57.5 | 59.5 | | Alternative PC3LT5 | 37.1 | 37.4 | 40.4 | 43.6 | 48.4 | 50.6 | 52.8 | 55.3 | 57.9 | 60.5 | 63.4 | | Alternative PC6LT8 | 37.1 | 37.4 | 40.4 | 43.6 | 48.4 | 52.2 | 56.3 | 60.8 | 65.7 | 71.0 | 76.7 | Table 66 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (Volvo) | Estimated Required | Average | Fuel E | Econon | ny (mpg | j), Tota | l Fleet f | or Man | ufactu | rer (Vol | vo) | | |----------------------------------|---------|--------|--------|---------|----------|-----------|--------|--------|----------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 36.0 | 36.4 | 39.4 | 42.6 | 47.4 | 47.3 | 47.3 | 47.3 | 47.3 | 47.3 | 47.3 | | Alternative PC1LT3 | 36.0 | 36.4 | 39.4 | 42.6 | 47.4 | 48.6 | 49.8 | 51.0 | 52.4 | 53.8 | 55.2 | | Alternative PC2LT4 | 36.0 | 36.4 | 39.4 | 42.6 | 47.4 | 49.0 | 50.8 | 52.7 | 54.6 | 56.7 | 58.7 | | Alternative PC3LT5 | 36.0 | 36.4 | 39.4 | 42.6 | 47.4 | 49.5 | 51.9 | 54.3 | 56.9 | 59.7 | 62.5 | | Alternative PC6LT8 | 36.0 | 36.4 | 39.4 | 42.6 | 47.4 | 51.2 | 55.3 | 59.8 | 64.7 | 70.0 | 75.8 | Table 67 - Estimated Required Average Fuel Economy (mpg), Total Fleet for Manufacturer (VWA) | Estimated Required | Averag | e Fuel | Econor | ny (mp | g), Tota | l Fleet | for Mar | nufactu | rer (VV | /A) | | |----------------------------------|--------|--------|--------|--------|----------|---------|---------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 37.9 | 38.2 | 41.3 | 44.8 | 49.6 | 49.6 | 49.6 | 49.5 | 49.6 | 49.6 | 49.6 | | Alternative PC1LT3 | 37.9 | 38.2 | 41.3 | 44.8 | 49.6 | 50.8 | 52.1 | 53.4 | 54.6 | 56.0 | 57.4 | | Alternative PC2LT4 | 37.9 | 38.2 | 41.3 | 44.8 | 49.6 | 51.3 | 53.1 | 55.0 | 57.0 | 59.0 | 61.1 | | Alternative PC3LT5 | 37.9 | 38.2 | 41.3 | 44.8 | 49.6 | 51.9 | 54.2 | 56.7 | 59.4 | 62.2 | 65.0 | | Alternative PC6LT8 | 37.9 | 38.2 | 41.3 | 44.8 | 49.6 | 53.6 | 57.9 | 62.4 | 67.4 | 72.9 | 78.7 | ## Table 68 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (BMW) | Estimated Required Avera | age Fue | el Econ | omy (m | pg), Pa | ssenge | er Car F | leet fo | r Manu | facture | r (BMW | ') | |----------------------------------|---------|---------|--------|---------|--------|----------|---------|--------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 43.3 | 44.0 | 47.8 | 52.0 | 57.7 | 57.7 | 57.7 | 57.7 | 57.7 | 57.7 | 57.7 | | Alternative PC1LT3 | 43.3 | 44.0 | 47.8 | 52.0 | 57.7 | 58.3 | 58.9 | 59.5 | 60.1 | 60.7 | 61.3 | | Alternative PC2LT4 | 43.3 | 44.0 | 47.8 | 52.0 | 57.7 | 58.9 | 60.1 | 61.3 | 62.6 | 63.9 | 65.2 | | Alternative PC3LT5 | 43.3 | 44.0 | 47.8 | 52.0 | 57.7 | 59.5 | 61.4 | 63.3 | 65.2 | 67.2 | 69.3 | | Alternative PC6LT8 | 43.3 | 44.0 | 47.8 | 52.0 | 57.7 | 61.4 | 65.3 | 69.5 | 73.9 | 78.7 | 83.7 | ## Table 69 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Ford) | Estimated Required Average | age Fu | el Econ | omy (n | npg), Pa | asseng | er Car I | leet fo | r Manu | facture | r (Ford |) | |----------------------------------|--------|---------|--------|----------|--------|----------|---------|--------|---------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 43.4 | 44.1 | 47.9 | 52.1 | 57.9 | 57.9 | 57.9 | 57.9 | 57.9 | 57.9 | 57.9 | | Alternative PC1LT3 | 43.4 | 44.1 | 47.9 | 52.1 | 57.9 | 58.4 | 59.0 | 59.6 | 60.2 | 60.8 | 61.5 | | Alternative PC2LT4 | 43.4 | 44.1 | 47.9 | 52.1 | 57.9 | 59.0 | 60.2 | 61.5 | 62.7 | 64.0 | 65.3 | | Alternative PC3LT5 | 43.4 | 44.1 | 47.9 | 52.1 | 57.9 | 59.6 | 61.5 | 63.4 | 65.4 | 67.4 | 69.5 | | Alternative PC6LT8 | 43.4 | 44.1 | 47.9 | 52.1 | 57.9 | 61.6 | 65.5 | 69.7 | 74.1 | 78.8 | 83.9 | #### Table 70 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (GM) | Estimated Required Ave | age Fu | el Ecor | nomy (r | npg), P | asseng | jer Car | Fleet fo | or Manu | ıfacture | er (GM) | | |----------------------------------|--------|---------|---------|---------|--------|---------|----------|---------|----------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 45.1 | 45.8 | 49.7 | 54.1 | 60.1 | 60.1 | 60.1 | 60.1 | 60.1 | 60.1 | 60.1 | | Alternative PC1LT3 | 45.1 | 45.8 | 49.7 | 54.1 | 60.1 | 60.7 | 61.3 | 61.9 | 62.6 | 63.2 | 63.8 | | Alternative PC2LT4 | 45.1 | 45.8 | 49.7 | 54.1 | 60.1 | 61.3 | 62.6 | 63.9 | 65.1 | 66.5 | 67.8 | | Alternative PC3LT5 | 45.1 | 45.8 | 49.7 | 54.1 | 60.1 | 61.9 | 63.9 | 65.8 | 67.9 | 70.0 | 72.1 | | Alternative PC6LT8 | 45.1 | 45.8 | 49.7 | 54.1 | 60.1 | 63.9 | 68.0 | 72.3 | 77.0 | 81.9 | 87.1 | ## Table 71 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Honda) | Estimated Required Avera | ge Fue | l Econo | my (m | pg), Pa | ssenge | r Car F | leet for | Manufa | acturer | (Honda | a) | |----------------------------------|--------|---------|-------|---------|--------|---------|----------|--------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 44.7 | 45.4 | 49.4 | 53.7 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | | Alternative PC1LT3 | 44.7 | 45.4 | 49.4 | 53.7 | 59.6 | 60.2 | 60.8 | 61.4 | 62.1 | 62.7 | 63.3 | | Alternative PC2LT4 | 44.7 | 45.4 | 49.4 | 53.7 | 59.6 | 60.8 | 62.1 | 63.3 | 64.6 | 66.0 | 67.3 | | Alternative PC3LT5 | 44.7 | 45.4 | 49.4 | 53.7 | 59.6 | 61.5 | 63.4 | 65.3 | 67.3 | 69.4 | 71.6 | | Alternative PC6LT8 | 44.7 | 45.4 | 49.4 | 53.7 | 59.6 | 63.4 | 67.5 | 71.8 | 76.4 | 81.2 | 86.4 | Table 72 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Hyundai KiH) | Estimated Required Average | Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Hyundai KiH) | | | | | | | | | | | | | |----------------------------------|---|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 44.2 | 44.9 | 48.8 | 53.1 | 59.0 | 59.0 | 59.0 | 59.0 | 59.0 | 59.0 | 59.0 | | | | Alternative PC1LT3 | 44.2 | 44.9 | 48.8 | 53.1 | 59.0 | 59.6 | 60.2 | 60.8 | 61.4 | 62.0 | 62.7 | | | | Alternative PC2LT4 | 44.2 | 44.9 | 48.8 | 53.1 | 59.0 | 60.2 | 61.4 | 62.7 | 64.0 | 65.3 | 66.6 | | | | Alternative PC3LT5 | 44.2 | 44.9 | 48.8 | 53.1 | 59.0 | 60.8 | 62.7 | 64.6 | 66.6 | 68.7 | 70.8 | | | | Alternative PC6LT8 | 44.2 | 44.9 | 48.8 | 53.1 | 59.0 | 62.8 | 66.8 | 71.0 | 75.5 | 80.3 | 85.5 | | | Table 73 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Hyundai KiK) | Estimated Required Average | Fuel Ed | conomy | (mpg) | , Passe | nger C | ar Flee | t for Ma | nufact | urer (H | yundai | KiK) | |----------------------------------|---------|--------|-------|---------|--------|---------|----------|--------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 44.7 | 45.4 | 49.4 | 53.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | | Alternative PC1LT3 | 44.7 | 45.4 | 49.4 | 53.6 | 59.6 | 60.2 | 60.8 | 61.4 | 62.1 | 62.7 | 63.3 | | Alternative PC2LT4 | 44.7 | 45.4 | 49.4 | 53.6 | 59.6 | 60.8 | 62.1 | 63.3 | 64.6 | 65.9 | 67.2 | | Alternative PC3LT5 | 44.7 | 45.4 | 49.4 | 53.6 | 59.6 | 61.5 | 63.3 | 65.3 | 67.3 | 69.4 | 71.6 | | Alternative PC6LT8 | 44.7 | 45.4 | 49.4 | 53.6 | 59.6 | 63.4 | 67.4 | 71.8 | 76.3 | 81.2 | 86.4 | # Table 74 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (JLR) | Estimated Required Aver | age Fu | el Ecor | omy (n | npg), P | asseng | er Car | Fleet fo | r Manu | ıfacture | er (JLR) | | |----------------------------------|--------|---------|--------|---------|--------|--------|----------|--------|----------|----------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 43.2 | 43.8 | 47.6 | 51.8 | 57.5 | 57.5 | 57.5 | 57.5 | 57.5 | 57.5 | 57.5 | | Alternative PC1LT3 | 43.2 | 43.8 | 47.6 | 51.8 | 57.5 | 58.1 | 58.7 | 59.3 | 59.9 | 60.5 | 61.1 | | Alternative PC2LT4 | 43.2 | 43.8 | 47.6 | 51.8 | 57.5 | 58.7 | 59.9 | 61.1 | 62.4 | 63.6 | 64.9 | | Alternative PC3LT5 | 43.2 | 43.8 | 47.6 | 51.8 | 57.5 | 59.3 | 61.1 | 63.0 | 65.0 | 67.0 | 69.1 | | Alternative PC6LT8 | 43.2 | 43.8 | 47.6 | 51.8 | 57.5 | 61.2
 65.1 | 69.3 | 73.7 | 78.4 | 83.4 | # Table 75 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Karma) | Estimated Required Avera | ge Fue | l Econo | my (m | pg), Pa | ssenge | r Car F | leet for | Manufa | acturer | (Karma | a) | |----------------------------------|--------|---------|-------|---------|--------|---------|----------|--------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | | Alternative PC1LT3 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 54.6 | 55.2 | 55.7 | 56.3 | 56.9 | 57.4 | | Alternative PC2LT4 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 55.2 | 56.3 | 57.5 | 58.6 | 59.8 | 61.1 | | Alternative PC3LT5 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 55.8 | 57.5 | 59.3 | 61.1 | 63.0 | 64.9 | | Alternative PC6LT8 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 57.5 | 61.2 | 65.1 | 69.3 | 73.7 | 78.4 | # Table 76 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Lucid) | Estimated Required Avera | ge Fue | l Econ | omy (m | pg), Pa | ssenge | er Car F | leet for | Manuf | acture | (Lucid |) | |----------------------------------|--------|--------|--------|---------|--------|----------|----------|-------|--------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | 54.1 | | Alternative PC1LT3 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 54.6 | 55.2 | 55.7 | 56.3 | 56.9 | 57.4 | | Alternative PC2LT4 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 55.2 | 56.3 | 57.5 | 58.6 | 59.8 | 61.1 | | Alternative PC3LT5 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 55.8 | 57.5 | 59.3 | 61.1 | 63.0 | 64.9 | | Alternative PC6LT8 | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 57.5 | 61.2 | 65.1 | 69.3 | 73.7 | 78.4 | # Table 77 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Mazda) | Estimated Required Avera | ge Fue | l Econo | my (m | pg), Pa | ssenge | r Car F | leet for | Manuf | acturer | (Mazda | a) | |----------------------------------|--------|---------|-------|---------|--------|---------|----------|-------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 46.1 | 46.8 | 50.9 | 55.3 | 61.5 | 61.5 | 61.5 | 61.5 | 61.5 | 61.5 | 61.5 | | Alternative PC1LT3 | 46.1 | 46.8 | 50.9 | 55.3 | 61.5 | 62.1 | 62.7 | 63.4 | 64.0 | 64.7 | 65.3 | | Alternative PC2LT4 | 46.1 | 46.8 | 50.9 | 55.3 | 61.5 | 62.7 | 64.0 | 65.3 | 66.7 | 68.0 | 69.4 | | Alternative PC3LT5 | 46.1 | 46.8 | 50.9 | 55.3 | 61.5 | 63.4 | 65.3 | 67.4 | 69.5 | 71.6 | 73.8 | | Alternative PC6LT8 | 46.1 | 46.8 | 50.9 | 55.3 | 61.5 | 65.4 | 69.6 | 74.0 | 78.7 | 83.8 | 89.1 | Table 78 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Mercedes-Benz) | Estimated Required Average F | Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Mercedes-Benz) | | | | | | | | | | | | | |----------------------------------|---|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 41.8 | 42.4 | 46.1 | 50.1 | 55.6 | 55.6 | 55.6 | 55.6 | 55.6 | 55.6 | 55.6 | | | | Alternative PC1LT3 | 41.8 | 42.4 | 46.1 | 50.1 | 55.6 | 56.2 | 56.8 | 57.3 | 57.9 | 58.5 | 59.1 | | | | Alternative PC2LT4 | 41.8 | 42.4 | 46.1 | 50.1 | 55.6 | 56.8 | 57.9 | 59.1 | 60.3 | 61.6 | 62.8 | | | | Alternative PC3LT5 | 41.8 | 42.4 | 46.1 | 50.1 | 55.6 | 57.4 | 59.1 | 61.0 | 62.8 | 64.8 | 66.8 | | | | Alternative PC6LT8 | 41.8 | 42.4 | 46.1 | 50.1 | 55.6 | 59.2 | 63.0 | 67.0 | 71.3 | 75.8 | 80.7 | | | Table 79 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Mitsubishi) | Estimated Required Average | Fuel E | conom | y (mpg |), Pass | enger (| Car Flee | et for M | lanufac | turer (N | /litsubi | shi) | |----------------------------------|--------|-------|--------|---------|---------|----------|----------|---------|----------|----------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 47.0 | 47.7 | 51.9 | 56.4 | 62.7 | 62.7 | 62.7 | 62.7 | 62.7 | 62.7 | 62.7 | | Alternative PC1LT3 | 47.0 | 47.7 | 51.9 | 56.4 | 62.7 | 63.3 | 63.9 | 64.6 | 65.2 | 65.9 | 66.5 | | Alternative PC2LT4 | 47.0 | 47.7 | 51.9 | 56.4 | 62.7 | 63.9 | 65.2 | 66.6 | 67.9 | 69.3 | 70.7 | | Alternative PC3LT5 | 47.0 | 47.7 | 51.9 | 56.4 | 62.7 | 64.6 | 66.6 | 68.6 | 70.8 | 73.0 | 75.2 | | Alternative PC6LT8 | 47.0 | 47.7 | 51.9 | 56.4 | 62.7 | 66.7 | 70.9 | 75.4 | 80.2 | 85.4 | 90.8 | ## Table 80 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Nissan) | Estimated Required Avera | ge Fuel | Econo | my (m | og), Pas | ssenge | r Car Fl | eet for | Manufa | acturer | (Nissa | n) | |----------------------------------|---------|-------|-------|----------|--------|----------|---------|--------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 44.7 | 45.4 | 49.3 | 53.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | | Alternative PC1LT3 | 44.7 | 45.4 | 49.3 | 53.6 | 59.6 | 60.2 | 60.8 | 61.4 | 62.1 | 62.7 | 63.3 | | Alternative PC2LT4 | 44.7 | 45.4 | 49.3 | 53.6 | 59.6 | 60.8 | 62.1 | 63.3 | 64.6 | 65.9 | 67.3 | | Alternative PC3LT5 | 44.7 | 45.4 | 49.3 | 53.6 | 59.6 | 61.4 | 63.4 | 65.3 | 67.3 | 69.4 | 71.5 | | Alternative PC6LT8 | 44.7 | 45.4 | 49.3 | 53.6 | 59.6 | 63.4 | 67.5 | 71.7 | 76.3 | 81.2 | 86.4 | Table 81 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Stellantis) | Estimated Required Averag | e Fuel I | Econon | ny (mp | g), Pass | senger | Car Fle | et for N | /lanufa | cturer (| Stellan | tis) | |----------------------------------|----------|--------|--------|----------|--------|---------|----------|---------|----------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 41.8 | 42.4 | 46.1 | 50.0 | 55.6 | 55.6 | 55.6 | 55.6 | 55.6 | 55.6 | 55.6 | | Alternative PC1LT3 | 41.8 | 42.4 | 46.1 | 50.0 | 55.6 | 56.2 | 56.8 | 57.3 | 57.9 | 58.5 | 59.1 | | Alternative PC2LT4 | 41.8 | 42.4 | 46.1 | 50.0 | 55.6 | 56.8 | 57.9 | 59.1 | 60.3 | 61.5 | 62.8 | | Alternative PC3LT5 | 41.8 | 42.4 | 46.1 | 50.0 | 55.6 | 57.3 | 59.1 | 60.9 | 62.8 | 64.8 | 66.8 | | Alternative PC6LT8 | 41.8 | 42.4 | 46.1 | 50.0 | 55.6 | 59.2 | 63.0 | 67.0 | 71.2 | 75.8 | 80.6 | Table 82 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Subaru) | Estimated Required Average | ge Fuel | Econo | my (mp | g), Pas | ssenge | r Car Fl | eet for | Manufa | acturer | (Subar | u) | |----------------------------------|---------|-------|--------|---------|--------|----------|---------|--------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 46.0 | 46.7 | 50.7 | 55.1 | 61.3 | 61.3 | 61.3 | 61.3 | 61.3 | 61.3 | 61.3 | | Alternative PC1LT3 | 46.0 | 46.7 | 50.7 | 55.1 | 61.3 | 61.9 | 62.5 | 63.1 | 63.8 | 64.4 | 65.1 | | Alternative PC2LT4 | 46.0 | 46.7 | 50.7 | 55.1 | 61.3 | 62.5 | 63.8 | 65.1 | 66.4 | 67.8 | 69.2 | | Alternative PC3LT5 | 46.0 | 46.7 | 50.7 | 55.1 | 61.3 | 63.2 | 65.1 | 67.1 | 69.2 | 71.3 | 73.6 | | Alternative PC6LT8 | 46.0 | 46.7 | 50.7 | 55.1 | 61.3 | 65.2 | 69.3 | 73.8 | 78.5 | 83.5 | 88.8 | # Table 83 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Tesla) | Estimated Required Avera | age Fue | l Econ | omy (m | pg), Pa | ssenge | er Car F | leet for | r Manuf | facture | r (Tesla | 1) | |----------------------------------|---------|--------|--------|---------|--------|----------|----------|---------|---------|----------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 41.1 | 41.7 | 45.3 | 49.3 | 54.8 | 54.8 | 54.8 | 54.8 | 54.8 | 54.8 | 54.8 | | Alternative PC1LT3 | 41.1 | 41.7 | 45.3 | 49.3 | 54.8 | 55.3 | 55.9 | 56.4 | 57.0 | 57.6 | 58.2 | | Alternative PC2LT4 | 41.1 | 41.7 | 45.3 | 49.3 | 54.8 | 55.9 | 57.0 | 58.2 | 59.4 | 60.7 | 61.9 | | Alternative PC3LT5 | 41.1 | 41.7 | 45.3 | 49.3 | 54.8 | 56.5 | 58.2 | 60.1 | 61.9 | 63.8 | 65.8 | | Alternative PC6LT8 | 41.1 | 41.7 | 45.3 | 49.3 | 54.8 | 58.3 | 62.0 | 66.0 | 70.1 | 74.6 | 79.4 | ## Table 84 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Toyota) | Estimated Required Avera | ge Fuel | Econo | my (m | og), Pas | ssenge | r Car F | eet for | Manufa | acturer | (Toyot | a) | |----------------------------------|---------|-------|-------|----------|--------|---------|---------|--------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 44.7 | 45.4 | 49.4 | 53.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | | Alternative PC1LT3 | 44.7 | 45.4 | 49.4 | 53.6 | 59.6 | 60.2 | 60.8 | 61.4 | 62.1 | 62.7 | 63.3 | | Alternative PC2LT4 | 44.7 | 45.4 | 49.4 | 53.6 | 59.6 | 60.8 | 62.1 | 63.4 | 64.6 | 65.9 | 67.3 | | Alternative PC3LT5 | 44.7 | 45.4 | 49.4 | 53.6 | 59.6 | 61.5 | 63.4 | 65.3 | 67.3 | 69.4 | 71.6 | | Alternative PC6LT8 | 44.7 | 45.4 | 49.4 | 53.6 | 59.6 | 63.4 | 67.4 | 71.8 | 76.3 | 81.2 |
86.4 | # Table 85 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Volvo) | Estimated Required Avera | ge Fue | l Econ | omy (m | pg), Pa | ssenge | er Car F | leet for | Manuf | acturer | (Volvo |)) | |----------------------------------|--------|--------|--------|---------|--------|----------|----------|-------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 42.9 | 43.6 | 47.4 | 51.5 | 57.2 | 57.2 | 57.2 | 57.2 | 57.2 | 57.2 | 57.2 | | Alternative PC1LT3 | 42.9 | 43.6 | 47.4 | 51.5 | 57.2 | 57.8 | 58.3 | 58.9 | 59.5 | 60.1 | 60.8 | | Alternative PC2LT4 | 42.9 | 43.6 | 47.4 | 51.5 | 57.2 | 58.3 | 59.5 | 60.8 | 62.0 | 63.3 | 64.6 | | Alternative PC3LT5 | 42.9 | 43.6 | 47.4 | 51.5 | 57.2 | 59.0 | 60.8 | 62.7 | 64.6 | 66.6 | 68.6 | | Alternative PC6LT8 | 42.9 | 43.6 | 47.4 | 51.5 | 57.2 | 60.8 | 64.8 | 68.8 | 73.2 | 77.9 | 82.9 | # Table 86 - Estimated Required Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (VWA) | Estimated Required Avera | age Fue | el Econ | omy (m | pg), Pa | assenge | er Car F | leet fo | r Manu | facture | r (VWA |) | |----------------------------------|---------|---------|--------|---------|---------|----------|---------|--------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 45.0 | 45.7 | 49.7 | 54.0 | 60.0 | 60.0 | 60.0 | 60.0 | 60.0 | 60.0 | 60.0 | | Alternative PC1LT3 | 45.0 | 45.7 | 49.7 | 54.0 | 60.0 | 60.6 | 61.2 | 61.9 | 62.5 | 63.1 | 63.8 | | Alternative PC2LT4 | 45.0 | 45.7 | 49.7 | 54.0 | 60.0 | 61.2 | 62.5 | 63.8 | 65.1 | 66.4 | 67.7 | | Alternative PC3LT5 | 45.0 | 45.7 | 49.7 | 54.0 | 60.0 | 61.9 | 63.8 | 65.8 | 67.7 | 69.9 | 72.0 | | Alternative PC6LT8 | 45.0 | 45.7 | 49.7 | 54.0 | 60.0 | 63.9 | 67.9 | 72.2 | 76.9 | 81.8 | 87.0 | # Table 87 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (BMW) | Estimated Required Ave | rage F | uel Eco | nomy (| mpg), l | _ight Tr | uck Fle | et for I | Manufa | cturer (| (BMW) | | |----------------------------------|--------|---------|--------|---------|----------|---------|----------|--------|----------|-------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.5 | 33.0 | 35.9 | 39.0 | 43.4 | 43.4 | 43.4 | 43.4 | 43.4 | 43.4 | 43.4 | | Alternative PC1LT3 | 32.5 | 33.0 | 35.9 | 39.0 | 43.4 | 44.7 | 46.1 | 47.5 | 49.0 | 50.5 | 52.0 | | Alternative PC2LT4 | 32.5 | 33.0 | 35.9 | 39.0 | 43.4 | 45.2 | 47.0 | 49.0 | 51.0 | 53.2 | 55.4 | | Alternative PC3LT5 | 32.5 | 33.0 | 35.9 | 39.0 | 43.4 | 45.6 | 48.0 | 50.6 | 53.2 | 56.0 | 59.0 | | Alternative PC6LT8 | 32.5 | 33.0 | 35.9 | 39.0 | 43.4 | 47.1 | 51.2 | 55.7 | 60.5 | 65.8 | 71.5 | # Table 88 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Ford) | Estimated Required Ave | erage F | uel Ecc | nomy | (mpg), l | Light T | ruck Flo | eet for | Manufa | cturer | (Ford) | | |----------------------------------|---------|---------|------|----------|---------|----------|---------|--------|--------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 30.3 | 30.8 | 33.2 | 36.1 | 40.2 | 40.2 | 40.2 | 40.2 | 40.2 | 40.2 | 40.2 | | Alternative PC1LT3 | 30.3 | 30.8 | 33.2 | 36.1 | 40.2 | 41.4 | 42.7 | 44.0 | 45.4 | 46.8 | 48.2 | | Alternative PC2LT4 | 30.3 | 30.8 | 33.2 | 36.1 | 40.2 | 41.8 | 43.6 | 45.4 | 47.3 | 49.2 | 51.3 | | Alternative PC3LT5 | 30.3 | 30.8 | 33.2 | 36.1 | 40.2 | 42.3 | 44.5 | 46.8 | 49.3 | 51.9 | 54.6 | | Alternative PC6LT8 | 30.3 | 30.8 | 33.2 | 36.1 | 40.2 | 43.6 | 47.4 | 51.6 | 56.0 | 60.9 | 66.2 | # Table 89 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (GM) | Estimated Required Av | erage F | uel Ec | onomy | (mpg), | Light T | ruck F | leet for | Manufa | acturer | (GM) | | |----------------------------------|---------|--------|-------|--------|---------|--------|----------|--------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 29.8 | 30.3 | 32.5 | 35.4 | 39.3 | 39.3 | 39.3 | 39.3 | 39.3 | 39.3 | 39.3 | | Alternative PC1LT3 | 29.8 | 30.3 | 32.5 | 35.4 | 39.3 | 40.5 | 41.8 | 43.1 | 44.4 | 45.8 | 47.2 | | Alternative PC2LT4 | 29.8 | 30.3 | 32.5 | 35.4 | 39.3 | 40.9 | 42.7 | 44.4 | 46.3 | 48.2 | 50.2 | | Alternative PC3LT5 | 29.8 | 30.3 | 32.5 | 35.4 | 39.3 | 41.4 | 43.6 | 45.8 | 48.3 | 50.8 | 53.5 | | Alternative PC6LT8 | 29.8 | 30.3 | 32.5 | 35.4 | 39.3 | 42.7 | 46.4 | 50.5 | 54.9 | 59.6 | 64.8 | Table 90 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Honda) | Estimated Required Ave | rage Fu | el Ecor | nomy (r | npg), L | ight Tr | uck Fle | et for N | lanufac | turer (l | Honda) | | |----------------------------------|---------|---------|---------|---------|---------|---------|----------|---------|----------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | | Alternative PC1LT3 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 46.7 | 48.2 | 49.7 | 51.2 | 52.8 | 54.4 | | Alternative PC2LT4 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 47.2 | 49.2 | 51.2 | 53.4 | 55.6 | 57.9 | | Alternative PC3LT5 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 47.7 | 50.2 | 52.9 | 55.6 | 58.6 | 61.7 | | Alternative PC6LT8 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 49.3 | 53.6 | 58.2 | 63.3 | 68.8 | 74.7 | Table 91 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Hyundai KiH) | Estimated Required Averag | e Fuel I | Econon | ny (mp | g), Ligh | t Truck | Fleet f | or Man | ufactur | er (Hyu | ındai K | iH) | |----------------------------------|----------|--------|--------|----------|---------|---------|--------|---------|---------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 34.0 | 34.5 | 37.5 | 40.7 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | | Alternative PC1LT3 | 34.0 | 34.5 | 37.5 | 40.7 | 45.3 | 46.7 | 48.1 | 49.6 | 51.1 | 52.7 | 54.3 | | Alternative PC2LT4 | 34.0 | 34.5 | 37.5 | 40.7 | 45.3 | 47.2 | 49.1 | 51.2 | 53.3 | 55.5 | 57.8 | | Alternative PC3LT5 | 34.0 | 34.5 | 37.5 | 40.7 | 45.3 | 47.7 | 50.2 | 52.8 | 55.6 | 58.5 | 61.6 | | Alternative PC6LT8 | 34.0 | 34.5 | 37.5 | 40.7 | 45.3 | 49.2 | 53.5 | 58.1 | 63.2 | 68.7 | 74.7 | Table 92 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Hyundai KiK) | Estimated Required Averag | e Fuel I | Econon | ny (mp | g), Ligh | t Truck | Fleet f | or Man | ufactur | er (Hyu | ındai K | iK) | |----------------------------------|----------|--------|--------|----------|---------|---------|--------|---------|---------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | | Alternative PC1LT3 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 46.7 | 48.2 | 49.6 | 51.2 | 52.8 | 54.4 | | Alternative PC2LT4 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 47.2 | 49.2 | 51.2 | 53.3 | 55.6 | 57.9 | | Alternative PC3LT5 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 47.7 | 50.2 | 52.8 | 55.6 | 58.6 | 61.6 | | Alternative PC6LT8 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 49.2 | 53.5 | 58.2 | 63.2 | 68.7 | 74.7 | # Table 93 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (JLR) | Estimated Required Ave | erage F | uel Eco | onomy | (mpg), | Light T | ruck Fl | eet for | Manufa | acturer | (JLR) | | |----------------------------------|---------|---------|-------|--------|---------|---------|---------|--------|---------|-------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.7 | 33.2 | 36.0 | 39.2 | 43.5 | 43.5 | 43.5 | 43.5 | 43.5 | 43.5 | 43.5 | | Alternative PC1LT3 | 32.7 | 33.2 | 36.0 | 39.2 | 43.5 | 44.9 | 46.2 | 47.7 | 49.2 | 50.7 | 52.2 | | Alternative PC2LT4 | 32.7 | 33.2 | 36.0 | 39.2 | 43.5 | 45.3 | 47.2 | 49.2 | 51.2 | 53.4 | 55.6 | | Alternative PC3LT5 | 32.7 | 33.2 | 36.0 | 39.2 | 43.5 | 45.8 | 48.2 | 50.8 | 53.4 | 56.2 | 59.2 | | Alternative PC6LT8 | 32.7 | 33.2 | 36.0 | 39.2 | 43.5 | 47.3 | 51.4 | 55.9 | 60.7 | 66.0 | 71.8 | # Table 94 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Karma) | Estimated Required Ave | rage Fu | el Ecor | nomy (r | npg), L | ight Tr | uck Fle | et for N | lanufac | turer (l | Karma) | | |----------------------------------|---------|---------|---------|---------|---------|---------|----------|---------|----------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC1LT3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC2LT4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC3LT5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC6LT8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | # Table 95 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Lucid) | Estimated Required Ave | rage Fu | uel Eco | nomy (| mpg), L | ight Tr | uck Fle | et for N | /lanufa | cturer (| Lucid) | |
----------------------------------|---------|---------|--------|---------|---------|---------|----------|---------|----------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC1LT3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC2LT4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC3LT5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC6LT8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ## Table 96 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Mazda) | Estimated Required Ave | rage Fu | iel Ecoi | nomy (ı | npg), L | ight Tr | uck Fle | et for N | lanufac | cturer (l | Mazda) | | |----------------------------------|---------|----------|---------|---------|---------|---------|----------|---------|-----------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 36.0 | 36.6 | 39.8 | 43.2 | 48.0 | 48.0 | 48.0 | 48.0 | 48.0 | 48.0 | 48.0 | | Alternative PC1LT3 | 36.0 | 36.6 | 39.8 | 43.2 | 48.0 | 49.5 | 51.0 | 52.6 | 54.2 | 55.9 | 57.7 | | Alternative PC2LT4 | 36.0 | 36.6 | 39.8 | 43.2 | 48.0 | 50.0 | 52.1 | 54.3 | 56.5 | 58.9 | 61.4 | | Alternative PC3LT5 | 36.0 | 36.6 | 39.8 | 43.2 | 48.0 | 50.6 | 53.2 | 56.0 | 59.0 | 62.1 | 65.3 | | Alternative PC6LT8 | 36.0 | 36.6 | 39.8 | 43.2 | 48.0 | 52.2 | 56.7 | 61.7 | 67.0 | 72.9 | 79.2 | #### Table 97 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Mercedes-Benz) | Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Mercedes-Benz) | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.9 | 33.4 | 36.3 | 39.5 | 43.9 | 43.9 | 43.9 | 43.9 | 43.9 | 43.9 | 43.9 | | Alternative PC1LT3 | 32.9 | 33.4 | 36.3 | 39.5 | 43.9 | 45.2 | 46.6 | 48.1 | 49.5 | 51.1 | 52.7 | | Alternative PC2LT4 | 32.9 | 33.4 | 36.3 | 39.5 | 43.9 | 45.7 | 47.6 | 49.6 | 51.6 | 53.8 | 56.0 | | Alternative PC3LT5 | 32.9 | 33.4 | 36.3 | 39.5 | 43.9 | 46.2 | 48.6 | 51.2 | 53.9 | 56.7 | 59.7 | | Alternative PC6LT8 | 32.9 | 33.4 | 36.3 | 39.5 | 43.9 | 47.7 | 51.8 | 56.3 | 61.2 | 66.6 | 72.3 | ## Table 98 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Mitsubishi) | Estimated Required Average | ge Fuel | Econo | my (mp | g), Lig | ht Truc | k Fleet | for Ma | nufactu | ırer (Mi | tsubish | ni) | |----------------------------------|---------|-------|--------|---------|---------|---------|--------|---------|----------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 37.0 | 37.6 | 40.8 | 44.4 | 49.3 | 49.3 | 49.3 | 49.3 | 49.3 | 49.3 | 49.3 | | Alternative PC1LT3 | 37.0 | 37.6 | 40.8 | 44.4 | 49.3 | 50.8 | 52.4 | 54.0 | 55.7 | 57.4 | 59.2 | | Alternative PC2LT4 | 37.0 | 37.6 | 40.8 | 44.4 | 49.3 | 51.4 | 53.5 | 55.7 | 58.1 | 60.5 | 63.0 | | Alternative PC3LT5 | 37.0 | 37.6 | 40.8 | 44.4 | 49.3 | 51.9 | 54.6 | 57.5 | 60.5 | 63.7 | 67.1 | | Alternative PC6LT8 | 37.0 | 37.6 | 40.8 | 44.4 | 49.3 | 53.6 | 58.3 | 63.3 | 68.8 | 74.8 | 81.3 | Table 99 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Nissan) | Estimated Required Aver | age Fu | el Ecor | nomy (r | npg), L | ight Tru | ıck Fle | et for N | lanufac | turer (l | Nissan) | | |----------------------------------|--------|---------|---------|---------|----------|---------|----------|---------|----------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.9 | 33.4 | 36.3 | 39.5 | 43.9 | 43.9 | 43.9 | 43.9 | 43.9 | 43.9 | 43.9 | | Alternative PC1LT3 | 32.9 | 33.4 | 36.3 | 39.5 | 43.9 | 45.2 | 46.6 | 48.1 | 49.6 | 51.1 | 52.7 | | Alternative PC2LT4 | 32.9 | 33.4 | 36.3 | 39.5 | 43.9 | 45.7 | 47.6 | 49.6 | 51.7 | 53.8 | 56.1 | | Alternative PC3LT5 | 32.9 | 33.4 | 36.3 | 39.5 | 43.9 | 46.2 | 48.6 | 51.2 | 53.9 | 56.7 | 59.7 | | Alternative PC6LT8 | 32.9 | 33.4 | 36.3 | 39.5 | 43.9 | 47.7 | 51.8 | 56.4 | 61.3 | 66.6 | 72.4 | # Table 100 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Stellantis) | Estimated Required Avera | ge Fue | I Econd | omy (m | pg), Lig | jht Truc | ck Fleet | for Ma | nufact | urer (St | ellantis | s) | |----------------------------------|--------|---------|--------|----------|----------|----------|--------|--------|----------|----------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 30.7 | 31.2 | 33.8 | 36.8 | 40.9 | 40.9 | 40.9 | 40.9 | 40.9 | 40.9 | 40.9 | | Alternative PC1LT3 | 30.7 | 31.2 | 33.8 | 36.8 | 40.9 | 42.1 | 43.4 | 44.8 | 46.2 | 47.6 | 49.1 | | Alternative PC2LT4 | 30.7 | 31.2 | 33.8 | 36.8 | 40.9 | 42.6 | 44.4 | 46.2 | 48.1 | 50.1 | 52.2 | | Alternative PC3LT5 | 30.7 | 31.2 | 33.8 | 36.8 | 40.9 | 43.0 | 45.3 | 47.7 | 50.2 | 52.8 | 55.6 | | Alternative PC6LT8 | 30.7 | 31.2 | 33.8 | 36.8 | 40.9 | 44.4 | 48.3 | 52.5 | 57.1 | 62.0 | 67.4 | # Table 101 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Subaru) | Estimated Required Aver | age Fu | el Ecor | omy (n | npg), Li | ight Trι | ıck Flee | et for M | anufac | turer (S | Subaru) | | |----------------------------------|--------|---------|--------|----------|----------|----------|----------|--------|----------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 36.5 | 37.0 | 40.2 | 43.7 | 48.6 | 48.6 | 48.6 | 48.6 | 48.6 | 48.6 | 48.6 | | Alternative PC1LT3 | 36.5 | 37.0 | 40.2 | 43.7 | 48.6 | 50.1 | 51.7 | 53.3 | 54.9 | 56.6 | 58.4 | | Alternative PC2LT4 | 36.5 | 37.0 | 40.2 | 43.7 | 48.6 | 50.6 | 52.7 | 54.9 | 57.2 | 59.6 | 62.1 | | Alternative PC3LT5 | 36.5 | 37.0 | 40.2 | 43.7 | 48.6 | 51.2 | 53.9 | 56.7 | 59.7 | 62.8 | 66.1 | | Alternative PC6LT8 | 36.5 | 37.0 | 40.2 | 43.7 | 48.6 | 52.8 | 57.4 | 62.4 | 67.8 | 73.8 | 80.2 | # Table 102 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Tesla) | Estimated Required Ave | rage F | uel Eco | nomy (| mpg), l | ight Tr | uck Fle | et for I | Manufa | cturer (| Tesla) | | |----------------------------------|--------|---------|--------|---------|---------|---------|----------|--------|----------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 33.4 | 33.9 | 36.9 | 40.1 | 44.5 | 44.5 | 44.5 | 44.5 | 44.5 | 44.5 | 44.5 | | Alternative PC1LT3 | 33.4 | 33.9 | 36.9 | 40.1 | 44.5 | 45.9 | 47.3 | 48.8 | 50.3 | 51.8 | 53.4 | | Alternative PC2LT4 | 33.4 | 33.9 | 36.9 | 40.1 | 44.5 | 46.4 | 48.3 | 50.3 | 52.4 | 54.6 | 56.9 | | Alternative PC3LT5 | 33.4 | 33.9 | 36.9 | 40.1 | 44.5 | 46.8 | 49.3 | 51.9 | 54.6 | 57.5 | 60.5 | | Alternative PC6LT8 | 33.4 | 33.9 | 36.9 | 40.1 | 44.5 | 48.4 | 52.6 | 57.1 | 62.1 | 67.5 | 73.4 | # Table 103 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Toyota) | Estimated Required Aver | age Fu | el Ecor | nomy (r | npg), L | ight Tru | ıck Fle | et for N | lanufac | turer (7 | Γoyota) | | |----------------------------------|--------|---------|---------|---------|----------|---------|----------|---------|----------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 33.0 | 33.5 | 36.3 | 39.4 | 43.8 | 43.8 | 43.8 | 43.8 | 43.8 | 43.8 | 43.8 | | Alternative PC1LT3 | 33.0 | 33.5 | 36.3 | 39.4 | 43.8 | 45.1 | 46.5 | 48.0 | 49.5 | 51.0 | 52.6 | | Alternative PC2LT4 | 33.0 | 33.5 | 36.3 | 39.4 | 43.8 | 45.6 | 47.5 | 49.5 | 51.6 | 53.7 | 55.9 | | Alternative PC3LT5 | 33.0 | 33.5 | 36.3 | 39.4 | 43.8 | 46.1 | 48.5 | 51.1 | 53.8 | 56.6 | 59.6 | | Alternative PC6LT8 | 33.0 | 33.5 | 36.3 | 39.4 | 43.8 | 47.6 | 51.7 | 56.2 | 61.1 | 66.4 | 72.2 | # Table 104 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Volvo) | Estimated Required Ave | rage Fu | uel Eco | nomy (| mpg), L | ight Tr | uck Fle | et for N | /lanufa | cturer (| Volvo) | | |----------------------------------|---------|---------|--------|---------|---------|---------|----------|---------|----------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 33.4 | 33.9 | 36.8 | 40.0 | 44.5 | 44.5 | 44.5 | 44.5 | 44.5 | 44.5 | 44.5 | | Alternative PC1LT3 | 33.4 | 33.9 | 36.8 | 40.0 | 44.5 | 45.9 | 47.3 | 48.7 | 50.2 | 51.8 | 53.4 | | Alternative PC2LT4 | 33.4 | 33.9 | 36.8 | 40.0 | 44.5 | 46.3 | 48.3 | 50.3 | 52.4 | 54.6 | 56.8 | | Alternative PC3LT5 | 33.4 | 33.9 | 36.8 | 40.0 | 44.5 | 46.8 | 49.3 | 51.9 | 54.6 | 57.5 | 60.5 | | Alternative PC6LT8 | 33.4 | 33.9 | 36.8 | 40.0 | 44.5 | 48.4 | 52.6 | 57.1 | 62.1 | 67.5 | 73.4 | Table 105 - Estimated Required Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (VWA) | Estimated Required Ave | rage F | uel Eco | nomy (| mpg), l | Light Tı | ruck Fle | et for l | Manufa | cturer (| (VWA) | | |----------------------------------|--------|---------|--------|---------|----------|----------|----------|--------|----------|-------|------| | Model
Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | | Alternative PC1LT3 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 46.7 | 48.2 | 49.7 | 51.2 | 52.8 | 54.4 | | Alternative PC2LT4 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 47.2 | 49.2 | 51.2 | 53.4 | 55.6 | 57.9 | | Alternative PC3LT5 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 47.7 | 50.2 | 52.9 | 55.7 | 58.6 | 61.7 | | Alternative PC6LT8 | 34.0 | 34.5 | 37.5 | 40.8 | 45.3 | 49.3 | 53.6 | 58.2 | 63.3 | 68.8 | 74.8 | #### **Estimated Achieved CAFE Levels** Table 106 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Total) | Estimated Achieved | Averag | e Fuel | Econor | ny (mp | g), Tota | l Fleet | for Mar | nufactu | rer (To | tal) | | |----------------------------------|--------|--------|--------|--------|----------|---------|---------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 34.1 | 35.5 | 38.4 | 40.9 | 43.8 | 45.2 | 46.0 | 47.2 | 48.4 | 49.8 | 50.8 | | Alternative PC1LT3 | 34.1 | 35.5 | 38.4 | 40.9 | 43.8 | 45.8 | 47.1 | 48.7 | 50.2 | 52.1 | 53.4 | | Alternative PC2LT4 | 34.1 | 35.5 | 38.4 | 40.9 | 43.8 | 45.9 | 47.3 | 49.1 | 50.7 | 52.8 | 54.4 | | Alternative PC3LT5 | 34.1 | 35.5 | 38.4 | 40.9 | 43.8 | 45.9 | 47.6 | 49.5 | 51.4 | 53.6 | 55.5 | | Alternative PC6LT8 | 34.1 | 35.5 | 38.4 | 40.9 | 43.8 | 46.0 | 47.9 | 50.3 | 52.6 | 55.3 | 58.3 | ## Table 107 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Total) | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Total) | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 43.7 | 46.6 | 51.3 | 54.3 | 59.5 | 60.8 | 62.3 | 63.8 | 65.7 | 67.5 | 69.0 | | Alternative PC1LT3 | 43.7 | 46.6 | 51.3 | 54.3 | 59.5 | 61.1 | 62.7 | 64.7 | 66.6 | 68.6 | 70.2 | | Alternative PC2LT4 | 43.7 | 46.6 | 51.3 | 54.3 | 59.5 | 61.3 | 63.2 | 65.4 | 67.5 | 69.6 | 71.4 | | Alternative PC3LT5 | 43.7 | 46.6 | 51.3 | 54.3 | 59.5 | 61.4 | 63.6 | 66.0 | 68.6 | 71.2 | 73.3 | | Alternative PC6LT8 | 43.7 | 46.6 | 51.3 | 54.3 | 59.5 | 61.4 | 65.2 | 68.8 | 72.6 | 76.8 | 81.7 | #### Table 108 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Total) | Estimated Achieved Ave | erage F | uel Ecc | nomy (| (mpg), l | Light T | ruck Flo | et for | Manufa | cturer | (Total) | | |----------------------------------|---------|---------|--------|----------|---------|----------|--------|--------|--------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 30.1 | 31.3 | 34.0 | 36.4 | 38.9 | 40.4 | 41.0 | 42.1 | 43.1 | 44.3 | 45.2 | | Alternative PC1LT3 | 30.1 | 31.3 | 34.0 | 36.4 | 38.9 | 41.0 | 42.2 | 43.8 | 45.0 | 46.8 | 48.0 | | Alternative PC2LT4 | 30.1 | 31.3 | 34.0 | 36.4 | 38.9 | 41.1 | 42.4 | 44.1 | 45.5 | 47.4 | 48.9 | | Alternative PC3LT5 | 30.1 | 31.3 | 34.0 | 36.4 | 38.9 | 41.1 | 42.6 | 44.4 | 46.1 | 48.1 | 49.8 | | Alternative PC6LT8 | 30.1 | 31.3 | 34.0 | 36.4 | 38.9 | 41.1 | 42.7 | 44.8 | 46.7 | 48.9 | 51.3 | ### Table 109 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (BMW) | Estimated Achieved | Averag | e Fuel l | Econon | ny (mp | g), Tota | I Fleet | for Mar | nufactu | rer (BM | IW) | | |----------------------------------|--------|----------|--------|--------|----------|---------|---------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.9 | 34.8 | 38.0 | 41.5 | 46.5 | 46.4 | 48.4 | 50.4 | 52.7 | 54.9 | 56.8 | | Alternative PC1LT3 | 32.9 | 34.8 | 38.0 | 41.5 | 46.5 | 46.4 | 48.4 | 50.7 | 53.1 | 55.3 | 58.2 | | Alternative PC2LT4 | 32.9 | 34.8 | 38.0 | 41.5 | 46.5 | 46.4 | 48.4 | 50.7 | 53.1 | 55.3 | 58.6 | | Alternative PC3LT5 | 32.9 | 34.8 | 38.0 | 41.5 | 46.5 | 46.4 | 48.5 | 50.8 | 53.1 | 55.3 | 58.7 | | Alternative PC6LT8 | 32.9 | 34.8 | 38.0 | 41.5 | 46.5 | 46.4 | 48.8 | 51.3 | 53.9 | 56.2 | 60.5 | #### Table 110 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Ford) | Estimated Achieved | Averag | e Fuel | Econor | ny (mp | g), Tota | al Fleet | for Mai | nufactu | rer (Fo | rd) | | |----------------------------------|--------|--------|--------|--------|----------|----------|---------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 29.0 | 30.1 | 33.5 | 34.3 | 36.4 | 39.1 | 39.2 | 40.0 | 40.0 | 40.6 | 41.2 | | Alternative PC1LT3 | 29.0 | 30.1 | 33.5 | 34.3 | 36.4 | 40.8 | 42.5 | 44.6 | 44.6 | 45.4 | 46.1 | | Alternative PC2LT4 | 29.0 | 30.1 | 33.5 | 34.3 | 36.4 | 41.1 | 43.0 | 45.1 | 45.2 | 45.9 | 46.7 | | Alternative PC3LT5 | 29.0 | 30.1 | 33.5 | 34.3 | 36.4 | 41.1 | 43.0 | 45.1 | 45.2 | 45.9 | 46.7 | | Alternative PC6LT8 | 29.0 | 30.1 | 33.5 | 34.3 | 36.4 | 41.2 | 43.0 | 45.2 | 45.2 | 46.0 | 46.8 | #### Table 111 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (GM) | Estimated Achieved | Avera | ge Fuel | Econo | my (mp | g), Tot | al Fleet | for Ma | nufact | urer (G | M) | | |----------------------------------|-------|---------|-------|--------|---------|----------|--------|--------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 29.1 | 29.0 | 33.7 | 37.1 | 38.3 | 39.5 | 39.5 | 39.5 | 39.6 | 40.2 | 40.3 | | Alternative PC1LT3 | 29.1 | 29.0 | 33.7 | 37.1 | 38.3 | 39.8 | 40.0 | 40.3 | 40.6 | 43.2 | 43.8 | | Alternative PC2LT4 | 29.1 | 29.0 | 33.7 | 37.1 | 38.3 | 39.8 | 40.0 | 40.4 | 40.7 | 43.3 | 44.0 | | Alternative PC3LT5 | 29.1 | 29.0 | 33.7 | 37.1 | 38.3 | 39.8 | 40.0 | 40.4 | 40.7 | 43.4 | 44.2 | | Alternative PC6LT8 | 29.1 | 29.0 | 33.7 | 37.1 | 38.3 | 39.8 | 40.0 | 40.4 | 40.7 | 43.4 | 44.2 | Table 112 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Honda) | Estimated Achieved A | verage | Fuel E | conom | y (mpg |), Total | Fleet f | or Man | ufactur | er (Hor | nda) | | |----------------------------------|--------|--------|-------|--------|----------|---------|--------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 37.8 | 40.2 | 40.2 | 41.7 | 45.7 | 47.5 | 49.6 | 51.2 | 53.3 | 55.3 | 57.1 | | Alternative PC1LT3 | 37.8 | 40.2 | 40.2 | 41.7 | 45.7 | 48.9 | 51.0 | 52.7 | 54.8 | 56.8 | 58.6 | | Alternative PC2LT4 | 37.8 | 40.2 | 40.2 | 41.7 | 45.7 | 49.0 | 51.3 | 53.3 | 56.1 | 58.2 | 60.6 | | Alternative PC3LT5 | 37.8 | 40.2 | 40.2 | 41.7 | 45.7 | 49.5 | 52.5 | 54.7 | 58.3 | 60.4 | 63.1 | | Alternative PC6LT8 | 37.8 | 40.2 | 40.2 | 41.7 | 45.7 | 49.5 | 54.7 | 58.3 | 62.7 | 65.1 | 68.1 | #### Table 113 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Hyundai KiH) | Estimated Achieved Ave | rage Fu | iel Eco | nomy (| mpg), T | otal Flo | eet for | Manufa | cturer | (Hyund | ai KiH) | | |----------------------------------|---------|---------|--------|---------|----------|---------|--------|--------|--------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 39.1 | 40.8 | 41.0 | 44.9 | 49.0 | 50.1 | 50.7 | 52.0 | 53.6 | 55.3 | 56.5 | | Alternative PC1LT3 | 39.1 | 40.8 | 41.0 | 44.9 | 49.0 | 50.1 | 51.8 | 53.2 | 54.8 | 56.3 | 57.8 | | Alternative PC2LT4 | 39.1 | 40.8 | 41.0 | 44.9 | 49.0 | 50.1 | 53.6 | 54.9 | 56.6 | 58.5 | 60.4 | | Alternative PC3LT5 | 39.1 | 40.8 | 41.0 | 44.9 | 49.0 | 50.1 | 55.2 | 56.6 | 58.3 | 60.2 | 62.9 | | Alternative PC6LT8 | 39.1 | 40.8 | 41.0 | 44.9 | 49.0 | 50.1 | 55.3 | 56.7 | 58.3 | 60.8 | 66.7 | #### Table 114 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Hyundai KiK) | Estimated Achieved Ave | rage Fu | uel Eco | nomy (| mpg), T | otal Flo | eet for | Manufa | cturer (| (Hyund | ai KiK) | | |----------------------------------|---------|---------|--------|---------|----------|---------|--------|----------|--------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 38.5 | 40.5 | 44.7 | 44.7 | 49.3 | 49.2 | 49.2 | 49.9 | 51.3 | 52.6 | 53.6 | | Alternative PC1LT3 | 38.5 | 40.5 | 44.7 | 44.7 | 49.3 | 49.2 | 49.2 | 52.3 | 53.6 | 55.6 | 57.0 | | Alternative PC2LT4 | 38.5 | 40.5 | 44.7 | 44.7 | 49.3 | 49.2 | 49.2 | 52.7 | 54.1 | 57.4 | 59.5 | | Alternative PC3LT5 | 38.5 | 40.5 | 44.7 | 44.7 | 49.3 | 49.2 | 49.2 | 53.2 | 55.3 | 58.8 | 62.6 | | Alternative PC6LT8 | 38.5 | 40.5 | 44.7 | 44.7 | 49.3 | 49.2 | 49.2 | 54.4 | 56.7 | 61.7 | 67.7 | #### Table 115 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (JLR) | Estimated Achieved | Averaç | ge Fuel | Econo | my (mp | g), Tota | al Fleet | for Ma | nufactı | ırer (JL | .R) | | |----------------------------------|--------|---------|-------|--------|----------|----------|--------|---------|----------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 27.4 | 34.2 | 36.7 | 36.8 | 38.9 | 39.8 | 39.8 | 40.7 | 42.4 | 44.9 | 46.2 | | Alternative PC1LT3 | 27.4 | 34.2 | 36.7 | 36.8 |
38.9 | 39.8 | 39.8 | 40.7 | 42.8 | 46.3 | 49.0 | | Alternative PC2LT4 | 27.4 | 34.2 | 36.7 | 36.8 | 38.9 | 39.8 | 39.8 | 40.7 | 42.8 | 46.4 | 49.0 | | Alternative PC3LT5 | 27.4 | 34.2 | 36.7 | 36.8 | 38.9 | 39.8 | 39.8 | 40.7 | 42.9 | 46.4 | 49.0 | | Alternative PC6LT8 | 27.4 | 34.2 | 36.7 | 36.8 | 38.9 | 39.8 | 39.8 | 40.7 | 42.9 | 46.4 | 49.0 | #### Table 116 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Karma) | Estimated Achieved | l Avera | ge Fue | l Econo | omy (m | pg), Tot | al Fleet | for Man | ufactur | er (Karn | na) | | |----------------------------------|---------|--------|---------|--------|----------|----------|---------|---------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | | Alternative PC1LT3 | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | | Alternative PC2LT4 | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | | Alternative PC3LT5 | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | | Alternative PC6LT8 | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | Table 117 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Lucid) | Estimated Achieve | ed Aver | age Fue | l Econo | my (mp | g), Tota | al Fleet | for Man | ufactur | er (Luci | d) | | |----------------------------------|---------|---------|---------|--------|----------|----------|---------|---------|----------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 170. | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | | Alternative PC1LT3 | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 170. | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | | Alternative PC2LT4 | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 170. | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | | Alternative PC3LT5 | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 170. | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | | Alternative PC6LT8 | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 170. | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | #### Table 118 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Mazda) | Estimated Achieved A | verage | Fuel E | conom | y (mpg |), Total | Fleet f | or Man | ufactur | er (Maz | zda) | | |----------------------------------|--------|--------|-------|--------|----------|---------|--------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 35.1 | 41.2 | 42.4 | 42.5 | 46.8 | 48.8 | 50.5 | 52.6 | 54.8 | 56.8 | 58.5 | | Alternative PC1LT3 | 35.1 | 41.2 | 42.4 | 42.5 | 46.8 | 48.9 | 50.6 | 52.7 | 54.9 | 57.0 | 58.6 | | Alternative PC2LT4 | 35.1 | 41.2 | 42.4 | 42.5 | 46.8 | 49.2 | 50.8 | 53.2 | 55.6 | 57.7 | 59.3 | | Alternative PC3LT5 | 35.1 | 41.2 | 42.4 | 42.5 | 46.8 | 49.8 | 51.5 | 56.3 | 59.0 | 61.2 | 63.6 | | Alternative PC6LT8 | 35.1 | 41.2 | 42.4 | 42.5 | 46.8 | 51.9 | 53.6 | 64.3 | 68.1 | 70.5 | 72.3 | #### Table 119 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Mercedes-Benz) | Estimated Achieved Avera | age Fue | l Econ | omy (m | pg), To | tal Flee | et for M | anufac | turer (N | /lercede | es-Benz | <u>z)</u> | |----------------------------------|---------|--------|--------|---------|----------|----------|--------|----------|----------|---------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 31.6 | 36.7 | 37.3 | 37.8 | 43.4 | 44.8 | 46.9 | 48.8 | 51.0 | 53.2 | 55.1 | | Alternative PC1LT3 | 31.6 | 36.7 | 37.3 | 37.8 | 43.4 | 44.9 | 47.4 | 49.3 | 53.3 | 55.4 | 57.4 | | Alternative PC2LT4 | 31.6 | 36.7 | 37.3 | 37.8 | 43.4 | 44.9 | 47.4 | 49.4 | 53.6 | 55.8 | 57.8 | | Alternative PC3LT5 | 31.6 | 36.7 | 37.3 | 37.8 | 43.4 | 44.9 | 47.4 | 49.4 | 54.0 | 56.6 | 58.6 | | Alternative PC6LT8 | 31.6 | 36.7 | 37.3 | 37.8 | 43.4 | 44.9 | 47.4 | 49.4 | 54.0 | 56.6 | 58.8 | #### Table 120 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Mitsubishi) | Estimated Achieved Av | erage F | uel Ec | onomy | (mpg), | Total F | leet for | Manuf | acturer | (Mitsu | bishi) | | |----------------------------------|---------|--------|-------|--------|---------|----------|-------|---------|--------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 38.6 | 38.8 | 45.1 | 48.0 | 53.4 | 53.3 | 53.3 | 53.3 | 53.3 | 57.7 | 58.4 | | Alternative PC1LT3 | 38.6 | 38.8 | 45.1 | 48.0 | 53.4 | 53.3 | 53.3 | 53.3 | 53.3 | 62.4 | 63.4 | | Alternative PC2LT4 | 38.6 | 38.8 | 45.1 | 48.0 | 53.4 | 53.3 | 53.3 | 53.2 | 53.3 | 63.6 | 64.4 | | Alternative PC3LT5 | 38.6 | 38.8 | 45.1 | 48.0 | 53.4 | 53.3 | 53.3 | 53.2 | 53.3 | 67.1 | 68.0 | | Alternative PC6LT8 | 38.6 | 38.8 | 45.1 | 48.0 | 53.4 | 53.3 | 53.3 | 53.2 | 53.3 | 69.7 | 70.8 | Table 121 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Nissan) | Estimated Achieved A | verage | Fuel E | conom | y (mpg |), Total | Fleet f | or Man | ufactur | er (Nis | san) | | |----------------------------------|--------|--------|-------|--------|----------|---------|--------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 36.8 | 39.6 | 41.4 | 43.8 | 46.6 | 46.7 | 48.6 | 49.9 | 52.2 | 53.4 | 54.3 | | Alternative PC1LT3 | 36.8 | 39.6 | 41.4 | 43.8 | 46.6 | 46.7 | 50.2 | 51.6 | 54.0 | 55.2 | 56.1 | | Alternative PC2LT4 | 36.8 | 39.6 | 41.4 | 43.8 | 46.6 | 46.7 | 50.8 | 52.5 | 56.4 | 57.7 | 59.0 | | Alternative PC3LT5 | 36.8 | 39.6 | 41.4 | 43.8 | 46.6 | 46.7 | 50.8 | 52.5 | 58.4 | 59.8 | 61.3 | | Alternative PC6LT8 | 36.8 | 39.6 | 41.4 | 43.8 | 46.6 | 46.7 | 51.3 | 53.1 | 59.5 | 62.1 | 66.1 | #### Table 122 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Stellantis) | Estimated Achieved Av | Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Stellantis) | | | | | | | | | | | | | |----------------------------------|--|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 27.3 | 28.5 | 31.4 | 37.0 | 37.5 | 39.2 | 39.3 | 40.9 | 42.1 | 43.1 | 43.8 | | | | Alternative PC1LT3 | 27.3 | 28.5 | 31.4 | 37.0 | 37.5 | 40.1 | 40.2 | 42.6 | 44.1 | 45.1 | 46.9 | | | | Alternative PC2LT4 | 27.3 | 28.5 | 31.4 | 37.0 | 37.5 | 40.1 | 40.2 | 42.8 | 44.4 | 45.4 | 47.3 | | | | Alternative PC3LT5 | 27.3 | 28.5 | 31.4 | 37.0 | 37.5 | 40.1 | 40.2 | 42.8 | 44.4 | 45.6 | 47.5 | | | | Alternative PC6LT8 | 27.3 | 28.5 | 31.4 | 37.0 | 37.5 | 40.1 | 40.2 | 42.8 | 44.3 | 45.6 | 47.7 | | | #### Table 123 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Subaru) | Estimated Achieved A | verage | Fuel E | conom | y (mpg |), Total | Fleet fo | or Manı | ufactur | er (Sub | aru) | | |----------------------------------|--------|--------|-------|--------|----------|----------|---------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 36.7 | 40.3 | 42.2 | 44.1 | 50.0 | 52.3 | 54.3 | 56.6 | 59.5 | 62.0 | 64.2 | | Alternative PC1LT3 | 36.7 | 40.3 | 42.2 | 44.1 | 50.0 | 52.3 | 54.3 | 56.6 | 59.5 | 62.0 | 64.2 | | Alternative PC2LT4 | 36.7 | 40.3 | 42.2 | 44.1 | 50.0 | 52.3 | 54.3 | 56.6 | 59.5 | 62.0 | 64.2 | | Alternative PC3LT5 | 36.7 | 40.3 | 42.2 | 44.1 | 50.0 | 52.3 | 54.4 | 56.6 | 59.5 | 62.1 | 64.3 | | Alternative PC6LT8 | 36.7 | 40.3 | 42.2 | 44.1 | 50.0 | 52.3 | 55.0 | 62.5 | 70.0 | 72.8 | 75.3 | Table 124 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Tesla) | Estimated Achiev | ed Aver | age Fue | el Econo | omy (mp | g), Tota | al Fleet | for Man | ufactur | er (Tesl | a) | | |----------------------------------|---------|---------|----------|---------|----------|----------|---------|---------|----------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | | | 7 | 7 | 7 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | Alternative PC1LT3 | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | | | 7 | 7 | 7 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | Alternative PC2LT4 | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | | | 7 | 7 | 7 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | Alternative PC3LT5 | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | | | 7 | 7 | 7 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | Alternative PC6LT8 | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | 160. | | | 7 | 7 | 7 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | #### Table 125 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Toyota) | Estimated Achieved A | verage | Fuel E | conom | y (mpg |), Total | Fleet f | or Man | ufactur | er (Toy | ota) | | |----------------------------------|--------|--------|-------
--------|----------|---------|--------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 36.6 | 37.7 | 40.6 | 41.7 | 46.6 | 47.7 | 49.2 | 50.7 | 52.6 | 54.8 | 56.5 | | Alternative PC1LT3 | 36.6 | 37.7 | 40.6 | 41.7 | 46.6 | 47.7 | 49.2 | 50.7 | 52.6 | 54.8 | 56.5 | | Alternative PC2LT4 | 36.6 | 37.7 | 40.6 | 41.7 | 46.6 | 47.8 | 49.2 | 50.8 | 52.7 | 54.9 | 57.0 | | Alternative PC3LT5 | 36.6 | 37.7 | 40.6 | 41.7 | 46.6 | 47.8 | 49.9 | 51.9 | 54.2 | 56.9 | 59.6 | | Alternative PC6LT8 | 36.6 | 37.7 | 40.6 | 41.7 | 46.6 | 47.8 | 50.3 | 52.5 | 55.9 | 60.6 | 68.5 | #### Table 126 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (Volvo) | Estimated Achieved | Averag | e Fuel E | Econon | າy (mpູເ | g), Tota | I Fleet | or Man | ufactu | rer (Vol | vo) | | |----------------------------------|--------|----------|--------|----------|----------|---------|--------|--------|----------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 39.0 | 41.3 | 41.3 | 45.3 | 45.8 | 45.8 | 45.7 | 45.8 | 47.5 | 49.5 | 51.2 | | Alternative PC1LT3 | 39.0 | 41.3 | 41.3 | 45.3 | 45.8 | 46.3 | 46.2 | 46.7 | 50.8 | 52.9 | 54.6 | | Alternative PC2LT4 | 39.0 | 41.3 | 41.3 | 45.3 | 45.8 | 46.3 | 46.2 | 46.7 | 52.7 | 54.8 | 57.6 | | Alternative PC3LT5 | 39.0 | 41.3 | 41.3 | 45.3 | 45.8 | 46.3 | 46.2 | 46.7 | 53.1 | 55.2 | 59.7 | | Alternative PC6LT8 | 39.0 | 41.3 | 41.3 | 45.3 | 45.8 | 46.3 | 46.2 | 46.7 | 53.1 | 55.2 | 60.2 | #### Table 127 - Estimated Achieved Average Fuel Economy (mpg), Total Fleet for Manufacturer (VWA) | Estimated Achieved | Averag | e Fuel | Econor | ny (mp | g), Tota | I Fleet | for Mai | nufactu | rer (VV | /A) | | |----------------------------------|--------|--------|--------|--------|----------|---------|---------|---------|---------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 33.8 | 35.2 | 40.3 | 42.9 | 45.0 | 45.6 | 47.0 | 48.4 | 50.2 | 52.4 | 53.8 | | Alternative PC1LT3 | 33.8 | 35.2 | 40.3 | 42.9 | 45.0 | 45.8 | 47.6 | 49.2 | 52.4 | 54.7 | 56.1 | | Alternative PC2LT4 | 33.8 | 35.2 | 40.3 | 42.9 | 45.0 | 45.8 | 47.8 | 49.4 | 53.4 | 56.5 | 58.7 | | Alternative PC3LT5 | 33.8 | 35.2 | 40.3 | 42.9 | 45.0 | 45.8 | 48.0 | 49.6 | 53.7 | 57.3 | 60.0 | | Alternative PC6LT8 | 33.8 | 35.2 | 40.3 | 42.9 | 45.0 | 45.8 | 48.7 | 50.2 | 54.4 | 58.2 | 60.9 | #### Table 128 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (BMW) | Estimated Achieved Avera | age Fue | el Econ | omy (m | npg), Pa | ssenge | er Car F | leet fo | r Manu | facture | r (BMW | ') | |----------------------------------|---------|---------|--------|----------|--------|----------|---------|--------|---------|--------|------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 35.4 | 38.7 | 48.1 | 51.7 | 56.2 | 56.2 | 60.2 | 63.1 | 65.9 | 68.5 | 70.6 | | Alternative PC1LT3 | 35.4 | 38.7 | 48.1 | 51.7 | 56.2 | 56.2 | 60.2 | 63.2 | 65.9 | 68.5 | 70.6 | | Alternative PC2LT4 | 35.4 | 38.7 | 48.1 | 51.7 | 56.2 | 56.2 | 60.3 | 63.2 | 65.9 | 68.5 | 70.6 | | Alternative PC3LT5 | 35.4 | 38.7 | 48.1 | 51.7 | 56.2 | 56.2 | 60.4 | 63.4 | 66.1 | 68.7 | 70.8 | | Alternative PC6LT8 | 35.4 | 38.7 | 48.1 | 51.7 | 56.2 | 56.2 | 61.6 | 65.0 | 68.9 | 71.8 | 75.2 | ## Table 129 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Ford) | Estimated Achieved Aver | age Fu | el Econ | omy (n | npg), Pa | asseng | er Car I | Fleet fo | r Manu | facture | r (Ford |) | |----------------------------------|--------|---------|--------|----------|--------|----------|----------|--------|---------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 40.7 | 40.8 | 56.2 | 57.9 | 57.9 | 58.4 | 58.4 | 58.4 | 58.6 | 59.5 | 60.4 | | Alternative PC1LT3 | 40.7 | 40.8 | 56.2 | 57.9 | 57.9 | 59.2 | 59.2 | 59.2 | 59.5 | 60.8 | 62.0 | | Alternative PC2LT4 | 40.7 | 40.8 | 56.2 | 57.9 | 57.9 | 65.5 | 65.5 | 65.5 | 66.0 | 66.9 | 68.2 | | Alternative PC3LT5 | 40.7 | 40.8 | 56.2 | 57.9 | 57.9 | 65.5 | 65.5 | 65.5 | 65.9 | 66.9 | 69.0 | | Alternative PC6LT8 | 40.7 | 40.8 | 56.2 | 57.9 | 57.9 | 66.6 | 66.6 | 66.6 | 67.1 | 68.1 | 70.3 | ## Table 130 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (GM) | Estimated Achieved Ave | rage Fu | iel Ecoi | nomy (ı | npg), P | asseng | ger Car | Fleet fo | or Manı | ufacture | er (GM) | | |----------------------------------|---------|----------|---------|---------|--------|---------|----------|---------|----------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 39.1 | 39.3 | 49.2 | 52.0 | 56.8 | 56.9 | 56.9 | 56.9 | 57.1 | 57.1 | 57.2 | | Alternative PC1LT3 | 39.1 | 39.3 | 49.2 | 52.0 | 56.8 | 57.0 | 57.0 | 60.3 | 60.6 | 62.4 | 62.5 | | Alternative PC2LT4 | 39.1 | 39.3 | 49.2 | 52.0 | 56.8 | 57.0 | 57.0 | 61.5 | 62.3 | 63.6 | 64.3 | | Alternative PC3LT5 | 39.1 | 39.3 | 49.2 | 52.0 | 56.8 | 57.0 | 57.0 | 61.6 | 62.5 | 65.6 | 66.7 | | Alternative PC6LT8 | 39.1 | 39.3 | 49.2 | 52.0 | 56.8 | 57.0 | 57.0 | 61.6 | 62.5 | 65.6 | 66.7 | Table 131 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Honda) | Estimated Achieved Avera | ge Fue | l Econo | my (m | pg), Pa | ssenge | r Car F | leet for | Manuf | acturer | (Hond | a) | |----------------------------------|--------|---------|-------|---------|--------|---------|----------|-------|---------|-------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 43.4 | 47.0 | 47.2 | 48.8 | 53.6 | 56.0 | 59.0 | 61.0 | 63.5 | 65.8 | 68.3 | | Alternative PC1LT3 | 43.4 | 47.0 | 47.2 | 48.8 | 53.6 | 57.1 | 60.1 | 62.2 | 64.6 | 67.0 | 69.5 | | Alternative PC2LT4 | 43.4 | 47.0 | 47.2 | 48.8 | 53.6 | 57.1 | 60.1 | 62.2 | 64.6 | 67.0 | 69.5 | | Alternative PC3LT5 | 43.4 | 47.0 | 47.2 | 48.8 | 53.6 | 57.4 | 61.0 | 63.1 | 65.6 | 68.0 | 70.6 | | Alternative PC6LT8 | 43.4 | 47.0 | 47.2 | 48.8 | 53.6 | 57.4 | 67.4 | 74.1 | 76.8 | 79.4 | 82.9 | Table 132 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Hyundai KiH) | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Hyundai KiH) | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 42.9 | 46.0 | 46.4 | 50.2 | 55.8 | 57.5 | 58.1 | 59.6 | 61.4 | 63.3 | 64.7 | | | | Alternative PC1LT3 | 42.9 | 46.0 | 46.4 | 50.2 | 55.8 | 57.6 | 58.8 | 60.3 | 62.1 | 63.8 | 65.1 | | | | Alternative PC2LT4 | 42.9 | 46.0 | 46.4 | 50.2 | 55.8 | 57.6 | 59.9 | 61.4 | 63.2 | 65.5 | 66.9 | | | | Alternative PC3LT5 | 42.9 | 46.0 | 46.4 | 50.2 | 55.8 | 57.6 | 62.1 | 63.7 | 65.5 | 67.6 | 69.8 | | | | Alternative PC6LT8 | 42.9 | 46.0 | 46.4 | 50.2 | 55.8 | 57.6 | 62.3 | 64.0 | 65.8 | 69.0 | 78.7 | | | Table 133 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Hyundai KiK) | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Hyundai KiK) | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 44.3 | 46.5 | 55.7 | 55.7 | 57.9 | 57.9 | 57.9 | 58.4 | 59.9 | 61.4 | 62.5 | | | | Alternative PC1LT3 | 44.3 | 46.5 | 55.7 | 55.7 | 57.9 | 58.0 | 58.0 | 59.5 | 61.1 | 63.0 | 64.1 | | | | Alternative PC2LT4 | 44.3 | 46.5 | 55.7 | 55.7 | 57.9 | 58.0 | 58.0 | 60.8 | 62.4 | 64.3 | 65.5 | | | | Alternative PC3LT5 | 44.3 | 46.5 | 55.7 | 55.7 | 57.9 | 58.0 | 58.0 | 62.2 | 65.7 | 68.0 | 69.8 | | | | Alternative PC6LT8 | 44.3 | 46.5 | 55.7 | 55.7 | 57.9 | 58.0 | 58.0 | 65.5 | 69.7 | 76.1 | 83.6 | | | #### Table 134 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (JLR) | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (JLR) | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 29.4 | 54.5 | 54.5 | 54.5 | 61.7 | 61.8 | 61.8 | 63.0 | 65.2 | 67.3 | 69.1 | | | | Alternative PC1LT3 | 29.4 | 54.5 | 54.5 | 54.5 | 61.7 | 61.8 | 61.9 | 63.2 | 65.4 | 67.4 | 69.1 | | | | Alternative PC2LT4 | 29.4 | 54.5 | 54.5 | 54.5 | 61.7 | 61.8 | 61.9 | 63.2 | 65.4 | 67.4 | 69.1 | | | | Alternative PC3LT5 | 29.4 | 54.5 | 54.5 | 54.5 | 61.7 | 61.8 | 61.9 | 63.2 | 67.5 | 69.6 | 71.7 | | | | Alternative PC6LT8 | 29.4 | 54.5 | 54.5 | 54.5 | 61.7 | 61.8 | 61.9 | 63.1 | 67.6 | 69.6 | 71.8 | | | Table 135 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Karma) | Estimated Achieved Ave | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Karma) | | | | | | | | | | | | | | |----------------------------------
---|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | | | | | Alternative PC1LT3 | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | | | | | Alternative PC2LT4 | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | | | | | Alternative PC3LT5 | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | | | | | Alternative PC6LT8 | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | | | | Table 136 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Lucid) | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Lucid) | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 170. | | | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | | | | Alternative PC1LT3 | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 170. | | | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | | | | Alternative PC2LT4 | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 170. | | | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | | | | Alternative PC3LT5 | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 170. | | | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | | | | Alternative PC6LT8 | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 166. | 170. | | | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | | | Table 137 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Mazda) | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Mazda) | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 40.1 | 40.8 | 49.6 | 51.5 | 56.8 | 59.9 | 61.9 | 64.1 | 66.7 | 69.2 | 71.3 | | | | Alternative PC1LT3 | 40.1 | 40.8 | 49.6 | 51.5 | 56.8 | 60.4 | 62.4 | 64.6 | 67.2 | 69.7 | 71.8 | | | | Alternative PC2LT4 | 40.1 | 40.8 | 49.6 | 51.5 | 56.8 | 60.4 | 62.4 | 64.6 | 67.2 | 69.7 | 71.8 | | | | Alternative PC3LT5 | 40.1 | 40.8 | 49.6 | 51.5 | 56.8 | 60.4 | 62.9 | 67.5 | 70.2 | 72.8 | 75.3 | | | | Alternative PC6LT8 | 40.1 | 40.8 | 49.6 | 51.5 | 56.8 | 60.4 | 62.9 | 78.9 | 81.8 | 84.6 | 87.0 | | | # Table 138 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Mercedes-Benz) | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Mercedes-Benz) | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | No Action Alternative (Baseline) | 34.1 | 41.6 | 43.7 | 45.6 | 54.0 | 55.9 | 55.9 | 58.6 | 60.9 | 63.3 | 65.9 | | | Alternative PC1LT3 | 34.1 | 41.6 | 43.7 | 45.6 | 54.0 | 56.2 | 56.2 | 58.9 | 61.3 | 63.6 | 66.3 | | | Alternative PC2LT4 | 34.1 | 41.6 | 43.7 | 45.6 | 54.0 | 56.2 | 56.2 | 59.3 | 61.6 | 64.0 | 66.6 | | | Alternative PC3LT5 | 34.1 | 41.6 | 43.7 | 45.6 | 54.0 | 56.2 | 56.2 | 59.3 | 62.9 | 66.4 | 69.1 | | | Alternative PC6LT8 | 34.1 | 41.6 | 43.7 | 45.6 | 54.0 | 56.2 | 56.2 | 59.3 | 63.0 | 66.5 | 69.6 | | Table 139 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Mitsubishi) | Estimated Achieved Average | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Mitsubishi) | | | | | | | | | | | | | | |----------------------------------|--|------|------|------|------|------|------|------|------|------|------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 41.4 | 41.7 | 50.4 | 54.1 | 62.0 | 62.0 | 62.0 | 62.0 | 62.0 | 67.0 | 67.8 | | | | | Alternative PC1LT3 | 41.4 | 41.7 | 50.4 | 54.1 | 62.0 | 62.0 | 62.0 | 62.0 | 62.0 | 69.5 | 70.7 | | | | | Alternative PC2LT4 | 41.4 | 41.7 | 50.4 | 54.1 | 62.0 | 62.0 | 62.0 | 62.0 | 62.0 | 69.5 | 70.5 | | | | | Alternative PC3LT5 | 41.4 | 41.7 | 50.4 | 54.1 | 62.0 | 62.0 | 62.0 | 62.0 | 62.0 | 73.4 | 74.5 | | | | | Alternative PC6LT8 | 41.4 | 41.7 | 50.4 | 54.1 | 62.0 | 62.0 | 62.0 | 62.0 | 62.0 | 78.6 | 80.1 | | | | Table 140 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Nissan) | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Nissan) | | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | No Action Alternative (Baseline) | 42.4 | 46.5 | 50.0 | 54.1 | 58.6 | 58.7 | 58.9 | 60.1 | 62.0 | 63.4 | 64.4 | | | Alternative PC1LT3 | 42.4 | 46.5 | 50.0 | 54.1 | 58.6 | 58.7 | 58.9 | 60.1 | 62.0 | 63.4 | 64.4 | | | Alternative PC2LT4 | 42.4 | 46.5 | 50.0 | 54.1 | 58.6 | 58.8 | 59.6 | 60.8 | 63.1 | 64.5 | 66.3 | | | Alternative PC3LT5 | 42.4 | 46.5 | 50.0 | 54.1 | 58.6 | 58.8 | 59.6 | 60.8 | 65.1 | 66.9 | 68.9 | | | Alternative PC6LT8 | 42.4 | 46.5 | 50.0 | 54.1 | 58.6 | 58.8 | 61.1 | 62.4 | 67.7 | 72.7 | 81.8 | | Table 141 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Stellantis) | Estimated Achieved Averag | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Stellantis) | | | | | | | | | | | | | | |----------------------------------|--|------|------|------|------|------|------|------|------|------|------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 28.2 | 30.5 | 41.2 | 51.1 | 52.4 | 52.4 | 53.1 | 54.8 | 56.2 | 57.5 | 58.5 | | | | | Alternative PC1LT3 | 28.2 | 30.5 | 41.2 | 51.1 | 52.4 | 52.4 | 53.1 | 55.9 | 57.4 | 58.7 | 59.6 | | | | | Alternative PC2LT4 | 28.2 | 30.5 | 41.2 | 51.1 | 52.4 | 52.4 | 53.1 | 56.1 | 57.9 | 60.2 | 61.6 | | | | | Alternative PC3LT5 | 28.2 | 30.5 | 41.2 | 51.1 | 52.4 | 52.4 | 53.1 | 56.1 | 57.9 | 62.6 | 65.1 | | | | | Alternative PC6LT8 | 28.2 | 30.5 | 41.2 | 51.1 | 52.4 | 52.4 | 53.1 | 56.1 | 57.9 | 62.6 | 66.5 | | | | Table 142 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Subaru) | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Subaru) | | | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 37.0 | 46.1 | 46.1 | 52.9 | 58.6 | 60.7 | 62.9 | 66.0 | 69.0 | 71.9 | 75.2 | | | | Alternative PC1LT3 | 37.0 | 46.1 | 46.1 | 52.9 | 58.6 | 60.7 | 63.0 | 66.0 | 69.0 | 71.9 | 75.2 | | | | Alternative PC2LT4 | 37.0 | 46.1 | 46.1 | 52.9 | 58.6 | 60.7 | 63.0 | 66.0 | 69.0 | 71.9 | 75.2 | | | | Alternative PC3LT5 | 37.0 | 46.1 | 46.1 | 52.9 | 58.6 | 60.7 | 63.6 | 66.7 | 69.8 | 72.7 | 75.9 | | | | Alternative PC6LT8 | 37.0 | 46.1 | 46.1 | 52.9 | 58.6 | 60.7 | 67.6 | 74.5 | 80.2 | 83.3 | 88.3 | | | Table 143 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Tesla) | Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Tesla) | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Alternative PC1LT3 | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Alternative PC2LT4 | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Alternative PC3LT5 | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Alternative PC6LT8 | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | 161. | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Table 144 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Toyota) | Estimated Achieved Avera | ge Fue | l Econo | my (m | pg), Pa |
ssenge | r Car F | leet for | Manufa | acturer | (Toyot | a) | |----------------------------------|--------|---------|-------|---------|--------|---------|----------|--------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 44.0 | 46.3 | 47.7 | 49.3 | 56.2 | 58.4 | 60.4 | 62.4 | 64.7 | 67.0 | 68.7 | | Alternative PC1LT3 | 44.0 | 46.3 | 47.7 | 49.3 | 56.2 | 58.4 | 60.4 | 62.4 | 64.7 | 67.0 | 68.7 | | Alternative PC2LT4 | 44.0 | 46.3 | 47.7 | 49.3 | 56.2 | 58.4 | 60.4 | 62.4 | 64.7 | 67.0 | 68.7 | | Alternative PC3LT5 | 44.0 | 46.3 | 47.7 | 49.3 | 56.2 | 58.4 | 60.4 | 62.5 | 65.1 | 67.4 | 69.2 | | Alternative PC6LT8 | 44.0 | 46.3 | 47.7 | 49.3 | 56.2 | 58.5 | 61.2 | 64.1 | 71.6 | 76.7 | 81.1 | ### Table 145 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (Volvo) | Estimated Achieved Avera | age Fue | el Econ | omy (m | pg), Pa | ssenge | er Car F | leet for | Manut | facture | r (Volvo |) | |----------------------------------|---------|---------|--------|---------|--------|----------|----------|-------|---------|----------|----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 53.6 | 55.4 | 56.0 | 59.6 | 61.8 | 61.8 | 61.8 | 62.5 | 64.4 | 66.7 | 68.6 | | Alternative PC1LT3 | 53.6 | 55.4 | 56.0 | 59.6 | 61.8 | 61.8 | 61.8 | 62.5 | 64.8 | 67.1 | 69.3 | | Alternative PC2LT4 | 53.6 | 55.4 | 56.0 | 59.6 | 61.8 | 61.8 | 61.8 | 62.5 | 65.9 | 68.2 | 71.6 | | Alternative PC3LT5 | 53.6 | 55.4 | 56.0 | 59.6 | 61.8 | 61.8 | 61.8 | 62.5 | 66.0 | 68.3 | 72.6 | | Alternative PC6LT8 | 53.6 | 55.4 | 56.0 | 59.6 | 61.8 | 61.8 | 61.8 | 62.5 | 66.0 | 68.5 | 75.7 | ### Table 146 - Estimated Achieved Average Fuel Economy (mpg), Passenger Car Fleet for Manufacturer (VWA) | Estimated Achieved Avera | age Fu | el Econ | omy (m | npg), Pa | asseng | er Car I | leet fo | r Manu | facture | r (VWA | .) | |----------------------------------|--------|---------|--------|----------|--------|----------|---------|--------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 37.8 | 38.8 | 44.3 | 47.4 | 53.6 | 55.5 | 60.5 | 62.4 | 64.5 | 67.0 | 68.6 | | Alternative PC1LT3 | 37.8 | 38.8 | 44.3 | 47.4 | 53.6 | 55.5 | 61.5 | 63.4 | 65.6 | 67.8 | 69.5 | | Alternative PC2LT4 | 37.8 | 38.8 | 44.3 | 47.4 | 53.6 | 55.5 | 62.5 | 64.4 | 66.6 | 68.8 | 70.5 | | Alternative PC3LT5 | 37.8 | 38.8 | 44.3 | 47.4 | 53.6 | 55.5 | 63.5 | 65.4 | 67.7 | 71.1 | 72.8 | | Alternative PC6LT8 | 37.8 | 38.8 | 44.3 | 47.4 | 53.6 | 55.5 | 66.8 | 68.8 | 71.1 | 75.1 | 76.9 | ### Table 147 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (BMW) | Estimated Achieved Ave | erage F | uel Eco | nomy (| mpg), l | _ight Tı | uck Fle | et for l | Manufa | cturer (| (BMW) | | |----------------------------------|---------|---------|--------|---------|----------|---------|----------|--------|----------|-------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 30.3 | 31.3 | 31.3 | 34.9 | 40.1 | 40.1 | 41.2 | 42.7 | 44.7 | 46.5 | 48.1 | | Alternative PC1LT3 | 30.3 | 31.3 | 31.3 | 34.9 | 40.1 | 40.1 | 41.2 | 43.2 | 45.2 | 47.0 | 50.2 | | Alternative PC2LT4 | 30.3 | 31.3 | 31.3 | 34.9 | 40.1 | 40.1 | 41.2 | 43.2 | 45.2 | 47.0 | 50.7 | | Alternative PC3LT5 | 30.3 | 31.3 | 31.3 | 34.9 | 40.1 | 40.1 | 41.2 | 43.2 | 45.2 | 47.0 | 50.7 | | Alternative PC6LT8 | 30.3 | 31.3 | 31.3 | 34.9 | 40.1 | 40.1 | 41.2 | 43.2 | 45.2 | 47.0 | 51.2 | Table 148 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Ford) | Estimated Achieved Ave | erage F | uel Ecc | nomy | (mpg), | Light T | ruck Fl | eet for | Manufa | cturer | (Ford) | | |----------------------------------|---------|---------|------|--------|---------|---------|---------|--------|--------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 27.9 | 29.1 | 32.1 | 32.9 | 35.1 | 37.8 | 37.9 | 38.7 | 38.7 | 39.4 | 40.0 | | Alternative PC1LT3 | 27.9 | 29.1 | 32.1 | 32.9 | 35.1 | 39.5 | 41.3 | 43.5 | 43.5 | 44.2 | 44.9 | | Alternative PC2LT4 | 27.9 | 29.1 | 32.1 | 32.9 | 35.1 | 39.7 | 41.6 | 43.8 | 43.8 | 44.5 | 45.2 | | Alternative PC3LT5 | 27.9 | 29.1 | 32.1 | 32.9 | 35.1 | 39.7 | 41.6 | 43.8 | 43.8 | 44.5 | 45.2 | | Alternative PC6LT8 | 27.9 | 29.1 | 32.1 | 32.9 | 35.1 | 39.7 | 41.5 | 43.8 | 43.8 | 44.5 | 45.2 | ### Table 149 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (GM) | Estimated Achieved Av | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (GM) | | | | | | | | | | | | | |----------------------------------|--|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 26.8 | 26.9 | 30.9 | 34.5 | 35.4 | 36.7 | 36.7 | 36.7 | 36.7 | 37.4 | 37.5 | | | | Alternative PC1LT3 | 26.8 | 26.9 | 30.9 | 34.5 | 35.4 | 37.0 | 37.3 | 37.3 | 37.5 | 40.1 | 40.7 | | | | Alternative PC2LT4 | 26.8 | 26.9 | 30.9 | 34.5 | 35.4 | 37.0 | 37.3 | 37.3 | 37.5 | 40.0 | 40.7 | | | | Alternative PC3LT5 | 26.8 | 26.9 | 30.9 | 34.5 | 35.4 | 37.0 | 37.3 | 37.3 | 37.5 | 40.0 | 40.7 | | | | Alternative PC6LT8 | 26.8 | 26.9 | 30.9 | 34.5 | 35.4 | 37.0 | 37.3 | 37.3 | 37.5 | 40.0 | 40.7 | | | ### Table 150 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Honda) | Estimated Achieved Ave | rage Fu | iel Ecoi | nomy (ı | mpg), L | ight Tr | uck Fle | et for N | lanufac | turer (| Honda) | | |----------------------------------|---------|----------|---------|---------|---------|---------|----------|---------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.8 | 34.8 | 34.9 | 36.7 | 40.2 | 41.8 | 43.4 | 44.9 | 46.6 | 48.3 | 49.7 | | Alternative PC1LT3 | 32.8 | 34.8 | 34.9 | 36.7 | 40.2 | 43.4 | 44.9 | 46.4 | 48.2 | 50.0 | 51.3 | | Alternative PC2LT4 | 32.8 | 34.8 | 34.9 | 36.7 | 40.2 | 43.6 | 45.4 | 47.5 | 50.2 | 52.0 | 54.3 | | Alternative PC3LT5 | 32.8 | 34.8 | 34.9 | 36.7 | 40.2 | 44.1 | 46.7 | 48.9 | 53.0 | 55.0 | 57.5 | | Alternative PC6LT8 | 32.8 | 34.8 | 34.9 | 36.7 | 40.2 | 44.1 | 46.9 | 49.2 | 54.0 | 56.0 | 58.6 | Table 151 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Hyundai KiH) | Estimated Achieved Averag | e Fuel | Econor | ny (mp | g), Ligh | t Truck | Fleet f | or Man | ufactui | er (Hyu | undai K | iH) | |----------------------------------|--------|--------|--------|----------|---------|---------|--------|---------|---------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 34.3 | 35.1 | 35.4 | 39.6 | 42.6 | 43.3 | 44.1 | 45.2 | 46.6 | 47.9 | 49.0 | | Alternative PC1LT3 | 34.3 | 35.1 | 35.4 | 39.6 | 42.6 | 43.4 | 45.5 | 46.7 | 48.0 | 49.3 | 50.9 | | Alternative PC2LT4 | 34.3 | 35.1 | 35.4 | 39.6 | 42.6 | 43.4 | 47.7 | 48.9 | 50.3 | 51.8 | 54.0 | | Alternative PC3LT5 | 34.3 | 35.1 | 35.4 | 39.6 | 42.6 | 43.4 | 48.8 | 50.0 | 51.5 | 53.2 | 56.2 | | Alternative PC6LT8 | 34.3 | 35.1 | 35.4 | 39.6 | 42.6 | 43.4 | 48.8 | 50.0 | 51.5 | 53.2 | 56.2 | Table 152 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Hyundai KiK) | Estimated Achieved Averag | e Fuel | Econor | ny (mp | g), Ligh | t Truck | Fleet f | or Man | ufactu | rer (Hyu | ındai K | iK) | |----------------------------------|--------|--------|--------|----------|---------|---------|--------|--------|----------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.6 | 34.9 | 36.3 | 36.6 | 42.5 | 42.5 | 42.5 | 43.4 | 44.6 | 45.6 | 46.5 | | Alternative PC1LT3 | 32.6 | 34.9 | 36.3 | 36.6 | 42.5 | 42.5 | 42.5 | 46.4 | 47.6 | 49.5 | 51.0 | | Alternative PC2LT4 | 32.6 | 34.9 | 36.3 | 36.6 | 42.5 | 42.5 | 42.5 | 46.4 | 47.5 | 51.5 | 54.2 | | Alternative PC3LT5 | 32.6 | 34.9 | 36.3 | 36.6 | 42.5 | 42.5 | 42.5 | 46.4 | 47.5 | 51.5 | 56.3 | | Alternative PC6LT8 | 32.6 | 34.9 | 36.3 | 36.6 | 42.5 | 42.5 | 42.5 | 46.3 | 47.5 | 51.5 | 56.3 | ### Table 153 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (JLR) | Estimated Achieved Av | erage F | uel Ec | onomy | (mpg), | Light T | ruck Fl | eet for | Manufa | acturer | (JLR) | | |----------------------------------|---------|--------|-------|--------|---------|---------|---------|--------|---------|-------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 27.3 | 33.9 | 36.4 | 36.5 | 38.6 | 39.5 | 39.5 | 40.4 | 42.1 | 44.6 | 45.8 | | Alternative PC1LT3 | 27.3 | 33.9 | 36.4 | 36.5 | 38.6 | 39.5 | 39.5 | 40.4 | 42.5 | 46.0 | 48.7 | | Alternative PC2LT4 | 27.3 | 33.9 | 36.4 | 36.5 | 38.6 | 39.5 | 39.5 | 40.4 | 42.5 | 46.0 | 48.7 | | Alternative PC3LT5 | 27.3 | 33.9 | 36.4 | 36.5 | 38.6 | 39.5 | 39.5 | 40.4 | 42.5 | 46.0 | 48.7 | | Alternative PC6LT8 | 27.3 | 33.9 | 36.4 | 36.5 | 38.6 | 39.5 | 39.5 | 40.4 | 42.5 | 46.0 | 48.7 | ### Table 154 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Karma) | Estimated Achieved Ave | rage Fu | iel Ecoi | nomy (ı | mpg), L | ight Tr | uck Fle | et for N | lanufac | turer (| Karma) | |
----------------------------------|---------|----------|---------|---------|---------|---------|----------|---------|---------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC1LT3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC2LT4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC3LT5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC6LT8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Table 155 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Lucid) | Estimated Achieved Ave | rage F | uel Eco | nomy (| mpg), l | ight Tr | uck Fle | et for I | Manufa | cturer (| Lucid) | | |----------------------------------|--------|---------|--------|---------|---------|---------|----------|--------|----------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC1LT3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC2LT4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC3LT5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Alternative PC6LT8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Table 156 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Mazda) | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Mazda) | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 34.3 | 41.3 | 41.4 | 41.4 | 45.6 | 47.6 | 49.2 | 51.4 | 53.5 | 55.5 | 57.1 | | Alternative PC1LT3 | 34.3 | 41.3 | 41.4 | 41.4 | 45.6 | 47.7 | 49.3 | 51.4 | 53.5 | 55.5 | 57.1 | | Alternative PC2LT4 | 34.3 | 41.3 | 41.4 | 41.4 | 45.6 | 48.0 | 49.6 | 52.0 | 54.3 | 56.3 | 57.9 | | Alternative PC3LT5 | 34.3 | 41.3 | 41.4 | 41.4 | 45.6 | 48.6 | 50.2 | 55.0 | 57.8 | 59.9 | 62.2 | | Alternative PC6LT8 | 34.3 | 41.3 | 41.4 | 41.4 | 45.6 | 50.9 | 52.6 | 62.8 | 66.6 | 68.9 | 70.6 | ## Table 157 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Mercedes-Benz) | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Mercedes-Benz) | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 29.4 | 33.1 | 33.2 | 33.2 | 37.6 | 38.9 | 41.9 | 43.4 | 45.4 | 47.4 | 48.9 | | Alternative PC1LT3 | 29.4 | 33.1 | 33.2 | 33.2 | 37.6 | 38.9 | 42.4 | 44.0 | 48.5 | 50.4 | 52.0 | | Alternative PC2LT4 | 29.4 | 33.1 | 33.2 | 33.2 | 37.6 | 38.9 | 42.4 | 44.0 | 48.9 | 50.8 | 52.4 | | Alternative PC3LT5 | 29.4 | 33.1 | 33.2 | 33.2 | 37.6 | 38.9 | 42.4 | 44.0 | 48.9 | 50.8 | 52.4 | | Alternative PC6LT8 | 29.4 | 33.1 | 33.2 | 33.2 | 37.6 | 38.9 | 42.4 | 44.0 | 48.9 | 50.8 | 52.5 | Table 158 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Mitsubishi) | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Mitsubishi) | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 35.6 | 35.9 | 40.5 | 43.1 | 46.9 | 46.9 | 46.9 | 46.9 | 46.9 | 50.8 | 51.4 | | Alternative PC1LT3 | 35.6 | 35.9 | 40.5 | 43.1 | 46.9 | 46.9 | 46.9 | 46.9 | 46.9 | 56.8 | 57.5 | | Alternative PC2LT4 | 35.6 | 35.9 | 40.5 | 43.1 | 46.9 | 46.9 | 46.9 | 46.9 | 46.9 | 58.7 | 59.3 | | Alternative PC3LT5 | 35.6 | 35.9 | 40.5 | 43.1 | 46.9 | 46.9 | 46.9 | 46.9 | 46.9 | 61.9 | 62.6 | | Alternative PC6LT8 | 35.6 | 35.9 | 40.5 | 43.1 | 46.9 | 46.9 | 46.9 | 46.9 | 46.9 | 62.8 | 63.6 | ### Table 159 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Nissan) | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Nissan) | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 30.9 | 33.3 | 34.2 | 36.0 | 38.1 | 38.2 | 40.9 | 42.3 | 44.6 | 45.6 | 46.3 | | Alternative PC1LT3 | 30.9 | 33.3 | 34.2 | 36.0 | 38.1 | 38.2 | 43.4 | 44.8 | 47.4 | 48.4 | 49.2 | | Alternative PC2LT4 | 30.9 | 33.3 | 34.2 | 36.0 | 38.1 | 38.2 | 43.9 | 46.0 | 50.7 | 51.8 | 52.6 | | Alternative PC3LT5 | 30.9 | 33.3 | 34.2 | 36.0 | 38.1 | 38.2 | 43.9 | 46.0 | 52.6 | 53.7 | 54.6 | | Alternative PC6LT8 | 30.9 | 33.3 | 34.2 | 36.0 | 38.1 | 38.2 | 43.9 | 46.0 | 52.7 | 53.7 | 54.6 | ## Table 160 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Stellantis) | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Stellantis) | | | | | | | | | | | s) | |--|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 27.2 | 28.3 | 30.4 | 35.8 | 36.2 | 38.0 | 38.0 | 39.7 | 40.8 | 41.8 | 42.5 | | Alternative PC1LT3 | 27.2 | 28.3 | 30.4 | 35.8 | 36.2 | 39.0 | 39.1 | 41.4 | 42.9 | 43.9 | 45.6 | | Alternative PC2LT4 | 27.2 | 28.3 | 30.4 | 35.8 | 36.2 | 39.0 | 39.1 | 41.7 | 43.1 | 44.1 | 45.9 | | Alternative PC3LT5 | 27.2 | 28.3 | 30.4 | 35.8 | 36.2 | 39.0 | 39.1 | 41.7 | 43.1 | 44.1 | 46.0 | | Alternative PC6LT8 | 27.2 | 28.3 | 30.4 | 35.8 | 36.2 | 39.0 | 39.1 | 41.7 | 43.1 | 44.1 | 46.0 | ### Table 161 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Subaru) | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Subaru) | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 36.6 | 39.4 | 41.6 | 43.0 | 48.9 | 51.3 | 53.2 | 55.4 | 58.3 | 60.8 | 62.9 | | Alternative PC1LT3 | 36.6 | 39.4 | 41.6 | 43.0 | 48.9 | 51.3 | 53.3 | 55.4 | 58.3 | 60.8 | 62.9 | | Alternative PC2LT4 | 36.6 | 39.4 | 41.6 | 43.0 | 48.9 | 51.3 | 53.3 | 55.4 | 58.3 | 60.8 | 62.9 | | Alternative PC3LT5 | 36.6 | 39.4 | 41.6 | 43.0 | 48.9 | 51.3 | 53.3 | 55.4 | 58.3 | 60.8 | 62.9 | | Alternative PC6LT8 | 36.6 | 39.4 | 41.6 | 43.0 | 48.9 | 51.3 | 53.5 | 61.1 | 68.8 | 71.5 | 73.7 | Table 162 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Tesla) | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Tesla) | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Alternative PC1LT3 | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Alternative PC2LT4 | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Alternative PC3LT5 | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Alternative PC6LT8 | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | 154. | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ### Table 163 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Toyota) | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Toyota) | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 32.7 | 33.6 | 37.2 | 38.3 | 42.5 | 43.4 | 44.7 | 46.1 | 47.8 | 49.8 | 51.5 | | Alternative PC1LT3 | 32.7 | 33.6 | 37.2 | 38.3 | 42.5 | 43.4 | 44.7 | 46.1 | 47.8 | 49.8 | 51.5 | | Alternative PC2LT4 | 32.7 | 33.6 | 37.2 | 38.3 | 42.5 | 43.4 | 44.7 | 46.2 | 47.9 | 50.0 | 52.1 | | Alternative PC3LT5 | 32.7 | 33.6 | 37.2 | 38.3 | 42.5 | 43.4 | 45.6 | 47.6 | 49.7 | 52.4 | 55.3 | | Alternative PC6LT8 | 32.7 | 33.6 | 37.2 | 38.3 | 42.5 | 43.5 | 45.9 | 47.9 | 50.1 | 54.3 | 63.0 | ### Table 164 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for
Manufacturer (Volvo) | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (Volvo) | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 34.5 | 37.2 | 37.3 | 41.5 | 41.8 | 41.8 | 41.8 | 41.8 | 43.4 | 45.2 | 46.8 | | Alternative PC1LT3 | 34.5 | 37.2 | 37.3 | 41.5 | 41.8 | 42.4 | 42.4 | 42.8 | 47.2 | 49.1 | 50.6 | | Alternative PC2LT4 | 34.5 | 37.2 | 37.3 | 41.5 | 41.8 | 42.4 | 42.4 | 42.8 | 49.1 | 51.1 | 53.7 | | Alternative PC3LT5 | 34.5 | 37.2 | 37.3 | 41.5 | 41.8 | 42.4 | 42.4 | 42.8 | 49.6 | 51.5 | 56.0 | | Alternative PC6LT8 | 34.5 | 37.2 | 37.3 | 41.5 | 41.8 | 42.4 | 42.4 | 42.8 | 49.6 | 51.5 | 56.0 | Table 165 - Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (VWA) | Estimated Achieved Average Fuel Economy (mpg), Light Truck Fleet for Manufacturer (VWA) | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 31.5 | 33.1 | 38.2 | 40.7 | 41.4 | 41.6 | 42.0 | 43.3 | 44.9 | 46.9 | 48.1 | | Alternative PC1LT3 | 31.5 | 33.1 | 38.2 | 40.7 | 41.4 | 41.9 | 42.5 | 44.0 | 47.4 | 49.4 | 50.7 | | Alternative PC2LT4 | 31.5 | 33.1 | 38.2 | 40.7 | 41.4 | 41.9 | 42.5 | 44.0 | 48.3 | 51.5 | 53.7 | | Alternative PC3LT5 | 31.5 | 33.1 | 38.2 | 40.7 | 41.4 | 41.9 | 42.5 | 44.0 | 48.3 | 51.8 | 54.6 | | Alternative PC6LT8 | 31.5 | 33.1 | 38.2 | 40.7 | 41.4 | 41.9 | 42.5 | 44.0 | 48.3 | 51.8 | 54.6 | ### **CAFE Costs per Vehicle** Table 166 - MY 2032 Required and Achieved CAFE Levels (mpg), and Per-Vehicle Regulatory Costs (\$) for Total Fleet by Alternative | MY 2032 Required and Achieved CAFE Levels (mpg), and Per-Vehicle Regulatory Costs (\$) for Total Fleet by Alternative | | | | | | | | | | | |---|--------------------|--------------------|--------------------|--|--|--|--|--|--|--| | | Avg Required (mpg) | Avg Achieved (mpg) | Avg Reg. Cost (\$) | | | | | | | | | No Action Alternative (Baseline) | 46.7 | 50.8 | 2077 | | | | | | | | | Alternative PC1LT3 | 54.3 | 53.4 | 2678 | | | | | | | | | Alternative PC2LT4 | 57.8 | 54.4 | 3008 | | | | | | | | | Alternative PC3LT5 | 61.5 | 55.5 | 3679 | | | | | | | | | Alternative PC6LT8 | 74.5 | 58.3 | 5562 | | | | | | | | # Table 167 - MY 2032 Required and Achieved CAFE Levels (mpg), and Per-Vehicle Regulatory Costs (\$) for Passenger Car Fleet by Alternative | MY 2032 Required and Achieved CAFE Levels (mpg), and Per-Vehicle Regulatory Costs (\$) for Passenger Car Fleet by Alternative | | | | | | | | | | | | |---|------|------|------|--|--|--|--|--|--|--|--| | Avg Required (mpg) Avg Achieved (mpg) Avg Reg. Cost (\$) | | | | | | | | | | | | | No Action Alternative (Baseline) | 58.8 | 69.0 | 1312 | | | | | | | | | | Alternative PC1LT3 | 62.4 | 70.2 | 1731 | | | | | | | | | | Alternative PC2LT4 | 66.4 | 71.4 | 1966 | | | | | | | | | | Alternative PC3LT5 | 70.6 | 73.3 | 2517 | | | | | | | | | | Alternative PC6LT8 | 85.2 | 81.7 | 4393 | | | | | | | | | ## Table 168 - MY 2032 Required and Achieved CAFE Levels (mpg), and Per-Vehicle Regulatory Costs (\$) for Light Truck Fleet by Alternative | MY 2032 Required and Achieved C | MY 2032 Required and Achieved CAFE Levels (mpg), and Per-Vehicle Regulatory Costs (\$) for Light Truck Fleet by Alternative | | | | | | | | | | | | |--|---|------|------|--|--|--|--|--|--|--|--|--| | Avg Required (mpg) Avg Achieved (mpg) Avg Reg. Cost (\$) | | | | | | | | | | | | | | No Action Alternative (Baseline) | 42.6 | 45.2 | 2438 | | | | | | | | | | | Alternative PC1LT3 | 51.2 | 48.0 | 3125 | | | | | | | | | | | Alternative PC2LT4 | 54.4 | 48.9 | 3502 | | | | | | | | | | | Alternative PC3LT5 | 58.0 | 49.8 | 4232 | | | | | | | | | | | Alternative PC6LT8 | 70.3 | 51.3 | 6118 | | | | | | | | | | ### **Various Impacts of Alternatives** Table 169 - Impacts for No Action Alternative (Baseline), Average SCC | Impacts for No Action Alternative (Ba | seline), Average | SCC | | |--|--------------------|--------------|----------------| | Category | Passenger Car | Light Truck | Combined Fleet | | Fuel Economy | | • | | | Required Fuel Economy for MY 2032(mpg) | 58.8 | 42.6 | 46.7 | | Achieved Fuel Economy for MY 2032 (mpg) | 69.0 | 45.2 | 50.8 | | Achieved Fuel Economy for MY 2022 - for reference (mpg) | 43.7 | 30.1 | 34.1 | | Average MY 2032 Vehicle - Incremental to | Alternative 0 (E | Baseline) | | | Per Vehicle Price Increase (dollars) | 0 | 0 | 0 | | Lifetime Fuel Cost (per vehicle), 3% Discount Rate (dollars) | 0 | 0 | 0 | | Lifetime Fuel Cost (per vehicle), 7% Discount Rate (dollars) | 0 | 0 | 0 | | Payback Period Relative To MY 2022, 3% Discount Rate (years) | 0.0 | 0.0 | 0.0 | | Payback Period Relative To MY 2022, 7% Discount Rate (years) | 0.0 | 0.0 | 0.0 | | Lifetime of Vehicles Through 2032 - Incremen | tal to Alternative | 0 (Baseline) | | | Total Lifetime Fuel Volume (billion gallons) | 0 | 0 | 0 | | Total Lifetime CO2 Volume (million metric tons) | 0 | 0 | 0 | | Fatalities (Including Rebound Miles) | 0 | 0 | 0 | | Fatalities (Excluding Rebound Miles) | 0 | 0 | 0 | | Total Technology Costs, 3% Discount Rate (\$b) | 0.0 | 0.0 | 0.0 | | Total Technology Costs, 7% Discount Rate (\$b) | 0.0 | 0.0 | 0.0 | | Total Net Societal Benefits, 3% Discount Rate (\$b) | 0.0 | 0.0 | 0.0 | | Total Net Societal Benefits, 7% Discount Rate (\$b) | 0.0 | 0.0 | 0.0 | ### Table 170 - Impacts for Alternative PC1LT3, Average SCC | Impacts for Alternative PC1LT3 | 3, Average SCC | | | |--|---------------------|----------------|----------------| | Category | Passenger Car | Light Truck | Combined Fleet | | Fuel Economy | | | | | Required Fuel Economy for MY 2032(mpg) | 62.4 | 51.2 | 54.3 | | Achieved Fuel Economy for MY 2032 (mpg) | 70.2 | 48.0 | 53.4 | | Achieved Fuel Economy for MY 2022 - for reference (mpg) | 43.7 | 30.1 | 34.1 | | Average MY 2032 Vehicle - Incremental to | o Alternative 0 (E | Baseline) | | | Per Vehicle Price Increase (dollars) | 419 | 687 | 601 | | Lifetime Fuel Cost (per vehicle), 3% Discount Rate (dollars) | -153 | -1,083 | -784 | | Lifetime Fuel Cost (per vehicle), 7% Discount Rate (dollars) | -119 | -839 | -608 | | Payback Period Relative To MY 2022, 3% Discount Rate (years) | 1.0 | 1.0 | 1.0 | | Payback Period Relative To MY 2022, 7% Discount Rate (years) | 1.0 | 0.0 | 0.3 | | Lifetime of Vehicles Through 2032 - Incremen | ital to Alternative | e 0 (Baseline) | | | Total Lifetime Fuel Volume (billion gallons) | -1 | -20 | -21 | | Total Lifetime CO2 Volume (million metric tons) | -14 | -222 | -236 | | Fatalities (Including Rebound Miles) | -4 | 255 | 251 | | Fatalities (Excluding Rebound Miles) | -16 | 69 | 52 | | Total Technology Costs, 3% Discount Rate (\$b) | 8.3 | 21.6 | 29.9 | | Total Technology Costs, 7% Discount Rate (\$b) | 6.0 | 15.5 | 21.5 | | Total Net Societal Benefits, 3% Discount Rate (\$b) | -4.7 | 17.4 | 12.7 | | Total Net Societal Benefits, 7% Discount Rate (\$b) | -4.1 | 10.4 | 6.3 | Table 171 - Impacts for Alternative PC2LT4, Average SCC | Impacts for Alternative PC2LT4 | I, Average SCC | | | |--|---------------------|--------------|----------------| | Category | Passenger Car | Light Truck | Combined Fleet | | Fuel Economy | | | | | Required Fuel Economy for MY 2032(mpg) | 66.4 | 54.4 | 57.8 | | Achieved Fuel Economy for MY 2032 (mpg) | 71.4 | 48.9 | 54.4 | | Achieved Fuel Economy for MY 2022 - for reference (mpg) | 43.7 | 30.1 | 34.1 | | Average MY 2032 Vehicle - Incremental to | o Alternative 0 (E | Baseline) | | | Per Vehicle Price Increase (dollars) | 654 | 1,064 | 932 | | Lifetime Fuel Cost (per vehicle), 3% Discount Rate (dollars) | -302 | -1,389 | -1,043 | | Lifetime Fuel Cost (per vehicle), 7% Discount Rate (dollars) | -236 | -1,076 | -809 | | Payback Period Relative To MY 2022, 3% Discount Rate (years) | 1.0 | 1.0 | 1.0 | | Payback Period Relative To MY 2022, 7% Discount Rate (years) | 2.0 | 1.0 | 1.3 | | Lifetime of Vehicles Through 2032 - Incremen | ntal to Alternative | 0 (Baseline) | 1 | | Total Lifetime Fuel Volume (billion gallons) | -2 | -25 | -27 | | Total Lifetime CO2 Volume (million metric tons) | -27 | -273 | -301 | | Fatalities (Including Rebound Miles) | 17 | 280 | 298 | | Fatalities (Excluding Rebound Miles) | -9 | 58 | 49 | | Total Technology Costs, 3% Discount Rate (\$b) | 10.9 | 26.9 | 37.8 | | Total Technology Costs, 7% Discount Rate (\$b) | 7.8 | 19.2 | 27.1 | | Total Net Societal Benefits, 3% Discount Rate (\$b) | -5.1 | 21.9 | 16.8 | | Total Net Societal Benefits, 7% Discount Rate (\$b) | -4.5 | 12.9 | 8.4 | Table 172 - Impacts for Alternative PC3LT5, Average SCC | Impacts for Alternative PC3LT5 | 5, Average SCC | | | |--|---------------------|--------------|----------------| | Category | Passenger Car | Light Truck | Combined Fleet | | Fuel Economy | | | | | Required Fuel Economy for MY 2032(mpg) | 70.6 | 58.0 | 61.5 | | Achieved Fuel Economy for MY 2032 (mpg) | 73.3 | 49.8 |
55.5 | | Achieved Fuel Economy for MY 2022 - for reference (mpg) | 43.7 | 30.1 | 34.1 | | Average MY 2032 Vehicle - Incremental to | o Alternative 0 (E | Baseline) | | | Per Vehicle Price Increase (dollars) | 1,205 | 1,795 | 1,602 | | Lifetime Fuel Cost (per vehicle), 3% Discount Rate (dollars) | -529 | -1,643 | -1,296 | | Lifetime Fuel Cost (per vehicle), 7% Discount Rate (dollars) | -415 | -1,274 | -1,006 | | Payback Period Relative To MY 2022, 3% Discount Rate (years) | 3.0 | 2.0 | 2.3 | | Payback Period Relative To MY 2022, 7% Discount Rate (years) | 4.0 | 3.0 | 3.3 | | Lifetime of Vehicles Through 2032 - Incremen | ntal to Alternative | 0 (Baseline) | | | Total Lifetime Fuel Volume (billion gallons) | -3 | -28 | -31 | | Total Lifetime CO2 Volume (million metric tons) | -37 | -308 | -346 | | Fatalities (Including Rebound Miles) | 141 | 339 | 480 | | Fatalities (Excluding Rebound Miles) | 96 | 78 | 174 | | Total Technology Costs, 3% Discount Rate (\$b) | 15.7 | 35.0 | 50.7 | | Total Technology Costs, 7% Discount Rate (\$b) | 11.2 | 24.9 | 36.1 | | Total Net Societal Benefits, 3% Discount Rate (\$b) | -11.7 | 20.6 | 8.8 | | Total Net Societal Benefits, 7% Discount Rate (\$b) | -8.9 | 11.6 | 2.7 | Table 173 - Impacts for Alternative PC6LT8, Average SCC | Impacts for Alternative PC6LT8 | 3, Average SCC | | | |--|---------------------|--------------|----------------| | Category | Passenger Car | Light Truck | Combined Fleet | | Fuel Economy | | | | | Required Fuel Economy for MY 2032(mpg) | 85.2 | 70.3 | 74.5 | | Achieved Fuel Economy for MY 2032 (mpg) | 81.7 | 51.3 | 58.3 | | Achieved Fuel Economy for MY 2022 - for reference (mpg) | 43.7 | 30.1 | 34.1 | | Average MY 2032 Vehicle - Incremental to | o Alternative 0 (E | Baseline) | | | Per Vehicle Price Increase (dollars) | 3,080 | 3,680 | 3,485 | | Lifetime Fuel Cost (per vehicle), 3% Discount Rate (dollars) | -1,426 | -2,263 | -2,002 | | Lifetime Fuel Cost (per vehicle), 7% Discount Rate (dollars) | -1,120 | -1,751 | -1,555 | | Payback Period Relative To MY 2022, 3% Discount Rate (years) | 7.0 | 5.0 | 5.6 | | Payback Period Relative To MY 2022, 7% Discount Rate (years) | 97.0 | 95.0 | 95.6 | | Lifetime of Vehicles Through 2032 - Incremen | ital to Alternative | 0 (Baseline) | | | Total Lifetime Fuel Volume (billion gallons) | -8 | -35 | -43 | | Total Lifetime CO2 Volume (million metric tons) | -90 | -392 | -482 | | Fatalities (Including Rebound Miles) | 210 | 349 | 559 | | Fatalities (Excluding Rebound Miles) | 103 | 52 | 155 | | Total Technology Costs, 3% Discount Rate (\$b) | 23.9 | 44.9 | 68.8 | | Total Technology Costs, 7% Discount Rate (\$b) | 16.9 | 31.7 | 48.5 | | Total Net Societal Benefits, 3% Discount Rate (\$b) | -10.9 | 26.5 | 15.6 | | Total Net Societal Benefits, 7% Discount Rate (\$b) | -9.7 | 14.2 | 4.5 | ### Required and Achieved CAFE Levels, Baseline vs Preferred Alternative Table 174 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg) | Comparison | of No Action | Alternative (B | aseline) a | ınd Alterr | | Required an | d Achieve | ed CAFE I | Levels in MYs | 2022-2032 fo | r the Tota | al Fleet | |------------|---------------------------|----------------|------------------|--------------|---------------------------|--------------|------------------|--------------|---------------------------|--------------|------------------|--------------| | | BMW | | | | Ford | | | | GM | | | | | | No Action A
(Baseline) | Alternative | Alterna
PC2LT | | No Action A
(Baseline) | Alternative | Alterna
PC2LT | | No Action A
(Baseline) | lternative | Alterna
PC2LT | | | Model Year | Required | Achieve | Required | Achieve
d | Required | Achieve
d | Required | Achieve
d | Required | Achieve | Required | Achieve
d | | 2022 | 37.6 | 32.9 | 37.6 | 32.9 | 31.4 | 29.0 | 31.4 | 29.0 | 32.5 | 29.1 | 32.5 | 29.1 | | 2023 | 37.9 | 34.8 | 37.9 | 34.8 | 31.8 | 30.1 | 31.8 | 30.1 | 32.9 | 29.0 | 32.9 | 29.0 | | 2024 | 41.0 | 38.0 | 41.0 | 38.0 | 34.3 | 33.5 | 34.3 | 33.5 | 35.2 | 33.7 | 35.2 | 33.7 | | 2025 | 44.4 | 41.5 | 44.4 | 41.5 | 37.2 | 34.3 | 37.2 | 34.3 | 38.2 | 37.1 | 38.2 | 37.1 | | 2026 | 49.3 | 46.5 | 49.3 | 46.5 | 41.4 | 36.4 | 41.4 | 36.4 | 42.3 | 38.3 | 42.3 | 38.3 | | 2027 | 49.2 | 46.4 | 50.8 | 46.4 | 41.4 | 39.1 | 42.9 | 41.1 | 42.2 | 39.5 | 43.8 | 39.8 | | 2028 | 49.2 | 48.4 | 52.4 | 48.4 | 41.3 | 39.2 | 44.7 | 43.0 | 42.2 | 39.5 | 45.6 | 40.0 | | 2029 | 49.1 | 50.4 | 54.1 | 50.7 | 41.3 | 40.0 | 46.5 | 45.1 | 42.2 | 39.5 | 47.2 | 40.4 | | 2030 | 49.2 | 52.7 | 55.9 | 53.1 | 41.3 | 40.0 | 48.4 | 45.2 | 42.2 | 39.6 | 49.1 | 40.7 | | 2031 | 49.2 | 54.9 | 57.8 | 55.3 | 41.4 | 40.6 | 50.3 | 45.9 | 42.3 | 40.2 | 51.0 | 43.3 | | 2032 | 49.2 | 56.8 | 59.7 | 58.6 | 41.4 | 41.2 | 52.3 | 46.7 | 42.3 | 40.3 | 53.0 | 44.0 | Table 175 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg)Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg) Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg)Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg) | | | | | | Fleet | (mpg) | | | | | | | | |------------|---|----------|-------------|---|-----------|----------|--|----------|--------------------|-------------|----------|----------|--| | | Honda | | | | Hyundai k | űΗ | | | Hyundai k | Hyundai KiK | | | | | | No Action Alternative Alternative PC2LT4 (Baseline) | | Alternative | No Action Alternative Alternative PC2LT4 (Baseline) | | | No Action
Alternative
(Baseline) | Э | Alternative PC2LT4 | | | | | | Model Year | Required | Achieved | | | 2022 | 39.1 | 37.8 | 39.1 | 37.8 | 39.6 | 39.1 | 39.6 | 39.1 | 39.5 | 38.5 | 39.5 | 38.5 | | | 2023 | 39.4 | 40.2 | 39.4 | 40.2 | 40.0 | 40.8 | 40.0 | 40.8 | 39.8 | 40.5 | 39.8 | 40.5 | | | 2024 | 42.7 | 40.2 | 42.7 | 40.2 | 43.3 | 41.0 | 43.3 | 41.0 | 43.1 | 44.7 | 43.1 | 44.7 | | | 2025 | 46.2 | 41.7 | 46.2 | 41.7 | 46.8 | 44.9 | 46.8 | 44.9 | 46.7 | 44.7 | 46.7 | 44.7 | | | 2026 | 51.2 | 45.7 | 51.2 | 45.7 | 51.9 | 49.0 | 51.9 | 49.0 | 51.7 | 49.3 | 51.7 | 49.3 | | | 2027 | 51.1 | 47.5 | 52.8 | 49.0 | 51.9 | 50.1 | 53.5 | 50.1 | 51.7 | 49.2 | 53.3 | 49.2 | | | 2028 | 51.1 | 49.6 | 54.5 | 51.3 | 51.8 | 50.7 | 55.1 | 53.6 | 51.6 | 49.2 | 55.0 | 49.2 | | | 2029 | 51.0 | 51.2 | 56.2 | 53.3 | 51.8 | 52.0 | 56.8 | 54.9 | 51.6 | 49.9 | 56.7 | 52.7 | | | 2030 | 51.1 | 53.3 | 58.1 | 56.1 | 51.8 | 53.6 | 58.6 | 56.6 | 51.6 | 51.3 | 58.5 | 54.1 | | | 2031 | 51.1 | 55.3 | 60.1 | 58.2 | 51.9 | 55.3 | 60.5 | 58.5 | 51.7 | 52.6 | 60.5 | 57.4 | | | 2032 | 51.1 | 57.1 | 62.0 | 60.6 | 51.9 | 56.5 | 62.3 | 60.4 | 51.7 | 53.6 | 62.4 | 59.5 | | Table 176 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg) | Comparisor | of No Action | Alternative (B | aseline) | and Alter | | Γ4 Required an
(mpg) | d Achiev | ed CAFE | Levels in MY | s 2022-2032 fo | r the Tot | al Fleet | |------------|---------------------------|----------------|------------------|--------------|-------------------|-------------------------|----------|----------------------|--------------|------------------|-----------|--------------| | | JLR | | | | Karma | | | | Lucid | | | | | | No Action A
(Baseline) | lternative | Alterna
PC2LT | | (Baseline) PC2LT4 | | | No Action (Baseline) | Alternative | Alterna
PC2LT | | | | Model Year | Required | Achieve
d | | 2022 | 32.9 | 27.4 | 32.9 | 27.4 | 40.6 | 66.7 | 40.6 | 66.7 | 40.6 | 166.5 | 40.6 | 166.5 | | 2023 | 33.4 | 34.2 | 33.4 | 34.2 | 41.1 | 66.7 | 41.1 | 66.7 | 41.1 | 166.5 | 41.1 | 166.5 | | 2024 | 36.2 | 36.7 | 36.2 | 36.7 | 44.3 | 66.7 | 44.3 | 66.7 | 44.3 | 166.5 | 44.3 | 166.5 | | 2025 | 39.4 | 36.8 | 39.4 | 36.8 | 48.1 | 66.7 | 48.1 | 66.7 | 48.1 | 166.5 | 48.1 | 166.5 | | 2026 | 43.7 | 38.9 | 43.7 | 38.9 | 53.5 | 138.6 | 53.5 | 138.6 | 53.5 | 166.5 | 53.5 | 166.5 | | 2027 | 43.7 | 39.8 | 45.5 | 39.8 | 54.1 | 138.6 | 55.2 | 138.6 | 54.1 | 166.5 | 55.2 | 166.5 | | 2028 | 43.7 | 39.8 | 47.4 | 39.8 | 54.1 | 138.6 | 56.3 | 138.6 | 54.1 | 166.5 | 56.3 | 166.5 | | 2029 | 43.7 | 40.7 | 49.4 | 40.7 | 54.1 | 138.6 | 57.5 | 138.6 | 54.1 | 166.5 | 57.5 | 166.5 | | 2030 | 43.7 | 42.4 | 51.4 | 42.8 | 54.1 | 138.6 | 58.6 | 138.6 | 54.1 | 166.5 | 58.6 | 166.5 | | 2031 | 43.7 | 44.9 | 53.6 | 46.4 | 54.1 | 138.6 | 59.8 | 138.6 | 54.1 | 166.5 | 59.8 | 166.5 | | 2032 | 43.7 | 46.2 | 55.8 | 49.0 | 54.1 | 138.6 | 61.1 | 138.6 | 54.1 | 170.6 | 61.1 | 170.6 | Table 177 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg) | Comparison | of No Action | Alternative (Ba | aseline) a | nd Alterr | | Required and | d Achieve | d CAFE I | Levels in MYs | 2022-2032 fo | r the Tota | al Fleet | |------------|---|-----------------|------------|--------------|---------------------------|--------------|-----------|--------------|------------------------|--------------|------------------|--------------| | | Mazda | | | | Mercedes-E | Benz | | | Mitsubishi | | | | | | No Action Alternative (Baseline) Alternative PC2LT4 | | | | No Action A
(Baseline) | , | | | No Action A (Baseline) | Iternative | Alterna
PC2LT | | | Model Year | Required | Achieve | Required | Achieve
d | Required | Achieve | Required |
Achieve
d | Required | Achieve | Required | Achieve
d | | 2022 | 37.3 | 35.1 | 37.3 | 35.1 | 36.8 | 31.6 | 36.8 | 31.6 | 42.0 | 38.6 | 42.0 | 38.6 | | 2023 | 37.8 | 41.2 | 37.8 | 41.2 | 37.2 | 36.7 | 37.2 | 36.7 | 42.5 | 38.8 | 42.5 | 38.8 | | 2024 | 41.0 | 42.4 | 41.0 | 42.4 | 40.2 | 37.3 | 40.2 | 37.3 | 45.9 | 45.1 | 45.9 | 45.1 | | 2025 | 44.4 | 42.5 | 44.4 | 42.5 | 43.6 | 37.8 | 43.6 | 37.8 | 49.8 | 48.0 | 49.8 | 48.0 | | 2026 | 49.4 | 46.8 | 49.4 | 46.8 | 48.4 | 43.4 | 48.4 | 43.4 | 55.2 | 53.4 | 55.2 | 53.4 | | 2027 | 49.3 | 48.8 | 51.3 | 49.2 | 48.3 | 44.8 | 49.9 | 44.9 | 55.1 | 53.3 | 56.9 | 53.3 | | 2028 | 49.3 | 50.5 | 53.3 | 50.8 | 48.3 | 46.9 | 51.5 | 47.4 | 55.1 | 53.3 | 58.7 | 53.3 | | 2029 | 49.3 | 52.6 | 55.4 | 53.2 | 48.3 | 48.8 | 53.3 | 49.4 | 55.1 | 53.3 | 60.5 | 53.2 | | 2030 | 49.3 | 54.8 | 57.6 | 55.6 | 48.3 | 51.0 | 55.0 | 53.6 | 55.1 | 53.3 | 62.5 | 53.3 | | 2031 | 49.3 | 56.8 | 59.9 | 57.7 | 48.3 | 53.2 | 56.9 | 55.8 | 55.1 | 57.7 | 64.6 | 63.6 | | 2032 | 49.3 | 58.5 | 62.3 | 59.3 | 48.3 | 55.1 | 58.8 | 57.8 | 55.1 | 58.4 | 66.6 | 64.4 | Table 178 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg) | Comparison | of No Action | Alternative (B | aseline) a | ınd Alterr | | Required an | d Achieve | ed CAFE | Levels in MYs | 2022-2032 fo | or the Tota | al Fleet | |------------|---------------------------|----------------|------------------|--------------|---------------------------|-------------|------------------|---------|---------------------------|--------------|------------------|----------| | | Nissan | | | | Stellantis | | | | Subaru | | | | | | No Action A
(Baseline) | Alternative | Alterna
PC2LT | | No Action A
(Baseline) | Alternative | Alterna
PC2LT | | No Action A
(Baseline) | lternative | Alterna
PC2LT | | | Model Year | Required | Achieve | Required | Achieve
d | Required | Achieve | Required | Achieve | Required | Achieve | Required | Achieve | | 2022 | 38.9 | 36.8 | 38.9 | 36.8 | 31.9 | 27.3 | 31.9 | 27.3 | 37.8 | 36.7 | 37.8 | 36.7 | | 2023 | 39.3 | 39.6 | 39.3 | 39.6 | 32.3 | 28.5 | 32.3 | 28.5 | 38.2 | 40.3 | 38.2 | 40.3 | | 2024 | 42.4 | 41.4 | 42.4 | 41.4 | 34.9 | 31.4 | 34.9 | 31.4 | 41.4 | 42.2 | 41.4 | 42.2 | | 2025 | 46.0 | 43.8 | 46.0 | 43.8 | 38.0 | 37.0 | 38.0 | 37.0 | 44.9 | 44.1 | 44.9 | 44.1 | | 2026 | 50.9 | 46.6 | 50.9 | 46.6 | 42.1 | 37.5 | 42.1 | 37.5 | 50.0 | 50.0 | 50.0 | 50.0 | | 2027 | 50.9 | 46.7 | 52.4 | 46.7 | 42.1 | 39.2 | 43.8 | 40.1 | 49.9 | 52.3 | 51.9 | 52.3 | | 2028 | 50.8 | 48.6 | 54.1 | 50.8 | 42.1 | 39.3 | 45.6 | 40.2 | 49.9 | 54.3 | 53.9 | 54.3 | | 2029 | 50.8 | 49.9 | 55.8 | 52.5 | 42.1 | 40.9 | 47.3 | 42.8 | 49.9 | 56.6 | 56.0 | 56.6 | | 2030 | 50.8 | 52.2 | 57.6 | 56.4 | 42.1 | 42.1 | 49.2 | 44.4 | 49.9 | 59.5 | 58.2 | 59.5 | | 2031 | 50.9 | 53.4 | 59.5 | 57.7 | 42.1 | 43.1 | 51.1 | 45.4 | 49.9 | 62.0 | 60.5 | 62.0 | | 2032 | 50.9 | 54.3 | 61.4 | 59.0 | 42.1 | 43.8 | 53.2 | 47.3 | 49.9 | 64.2 | 62.9 | 64.2 | Table 179 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg) | Comparison | of No Action | n Alternative (B | aseline) a | and Altern | | Required and | I Achieve | d CAFE I | evels in MYs | 2022-2032 for | the Tota | I Fleet | |------------|----------------------|------------------|------------------|--------------|----------|--------------|-----------|---------------------------|--------------|------------------|----------|--------------| | | Tesla | | | | Toyota | | | | Volvo | | | | | | No Action (Baseline) | Alternative | Alterna
PC2LT | | | | | No Action A
(Baseline) | Iternative | Alterna
PC2LT | | | | Model Year | Required | Achieve
d | | 2022 | 40.7 | 160.7 | 40.7 | 160.7 | 37.1 | 36.6 | 37.1 | 36.6 | 36.0 | 39.0 | 36.0 | 39.0 | | 2023 | 41.2 | 160.7 | 41.2 | 160.7 | 37.4 | 37.7 | 37.4 | 37.7 | 36.4 | 41.3 | 36.4 | 41.3 | | 2024 | 44.8 | 160.7 | 44.8 | 160.7 | 40.4 | 40.6 | 40.4 | 40.6 | 39.4 | 41.3 | 39.4 | 41.3 | | 2025 | 48.6 | 160.6 | 48.6 | 160.6 | 43.6 | 41.7 | 43.6 | 41.7 | 42.6 | 45.3 | 42.6 | 45.3 | | 2026 | 54.1 | 160.6 | 54.1 | 160.6 | 48.4 | 46.6 | 48.4 | 46.6 | 47.4 | 45.8 | 47.4 | 45.8 | | 2027 | 54.1 | 160.6 | 55.2 | 160.6 | 48.3 | 47.7 | 50.0 | 47.8 | 47.3 | 45.8 | 49.0 | 46.3 | | 2028 | 54.1 | 160.6 | 56.4 | 160.6 | 48.3 | 49.2 | 51.8 | 49.2 | 47.3 | 45.7 | 50.8 | 46.2 | | 2029 | 54.1 | 160.6 | 57.7 | 160.6 | 48.3 | 50.7 | 53.6 | 50.8 | 47.3 | 45.8 | 52.7 | 46.7 | | 2030 | 54.1 | 160.6 | 58.9 | 160.6 | 48.3 | 52.6 | 55.5 | 52.7 | 47.3 | 47.5 | 54.6 | 52.7 | | 2031 | 54.1 | 160.6 | 60.3 | 160.6 | 48.3 | 54.8 | 57.5 | 54.9 | 47.3 | 49.5 | 56.7 | 54.8 | | 2032 | 54.1 | 160.6 | 61.5 | 160.6 | 48.4 | 56.5 | 59.5 | 57.0 | 47.3 | 51.2 | 58.7 | 57.6 | Table 180 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg) | Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Total Fleet (mpg) | | | | | | | | | | | | | |--|----------------------------------|--------------|-----------------------|--------------|----------------------------------|---------|-----------------------|--------------|----------------------------------|--------------|-----------------------|--------------| | | VWA | | | | Total | | | | | | | | | | No Action Alternative (Baseline) | | Alternative
PC2LT4 | | No Action Alternative (Baseline) | | Alternative
PC2LT4 | | No Action Alternative (Baseline) | | Alternative
PC2LT4 | | | Model Year | Required | Achieve
d | Required | Achieve
d | Required | Achieve | Required | Achieve
d | Required | Achieve
d | Required | Achieve
d | | 2022 | 37.9 | 33.8 | 37.9 | 33.8 | 35.8 | 34.1 | 35.8 | 34.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 38.2 | 35.2 | 38.2 | 35.2 | 36.1 | 35.5 | 36.1 | 35.5 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 41.3 | 40.3 | 41.3 | 40.3 | 39.0 | 38.4 | 39.0 | 38.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 44.8 | 42.9 | 44.8 | 42.9 | 42.2 | 40.9 | 42.2 | 40.9 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 49.6 | 45.0 | 49.6 | 45.0 | 46.8 | 43.8 | 46.8 | 43.8 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 49.6 | 45.6 | 51.3 | 45.8 | 46.7 | 45.2 | 48.4 | 45.9 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 49.6 | 47.0 | 53.1 | 47.8 | 46.7 | 46.0 | 50.1 | 47.3 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 49.5 | 48.4 | 55.0 | 49.4 | 46.7 | 47.2 | 51.9 | 49.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 49.6 | 50.2 | 57.0 | 53.4 | 46.7 | 48.4 | 53.8 | 50.7 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 49.6 | 52.4 | 59.0 | 56.5 | 46.7 | 49.8 | 55.7 | 52.8 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 49.6 | 53.8 | 61.1 | 58.7 | 46.7 | 50.8 | 57.8 | 54.4 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-181 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Passenger Car Fleet (mpg) | Comparison | of No Action Al | ternative (Ba | seline) ar | d Alterna | | Required and et (mpg) | d Achieve | d CAFE L | evels in MYs | 2022-2032 fc | or the Pas | senger | |------------|------------------------|---------------|---------------------|-----------|---------------------------|-----------------------|---------------------|----------|---------------------------|--------------|---------------------|----------| | | BMW | | | | Ford | | | | GM | | | | | | No Action A (Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | | | Model Year | Required | Achieved | | 2022 | 43.3 | 35.4 | 43.3 | 35.4 | 43.4 | 40.7 | 43.4 | 40.7 | 45.1 | 39.1 | 45.1 | 39.1 | | 2023 | 44.0 | 38.7 | 44.0 | 38.7 | 44.1 | 40.8 | 44.1 | 40.8 | 45.8 | 39.3 | 45.8 | 39.3 | | 2024 | 47.8 | 48.1 | 47.8 | 48.1 | 47.9 | 56.2 | 47.9 | 56.2 | 49.7 | 49.2 | 49.7 | 49.2 | | 2025 | 52.0 | 51.7 | 52.0 | 51.7 | 52.1 | 57.9 | 52.1 | 57.9 | 54.1 | 52.0 | 54.1 | 52.0 | | 2026 | 57.7 | 56.2 | 57.7 | 56.2 | 57.9 | 57.9 | 57.9 | 57.9 | 60.1 | 56.8 | 60.1 | 56.8 | | 2027 | 57.7 | 56.2 | 58.9 | 56.2 | 57.9 | 58.4 | 59.0 | 65.5 | 60.1 | 56.9 | 61.3 | 57.0 | | 2028 | 57.7 | 60.2 | 60.1 | 60.3 | 57.9 | 58.4 | 60.2 | 65.5 | 60.1 | 56.9 | 62.6 | 57.0 | | 2029 | 57.7 | 63.1 | 61.3 | 63.2 | 57.9 | 58.4 | 61.5 | 65.5 | 60.1 | 56.9 | 63.9 | 61.5 | | 2030 | 57.7 | 65.9 | 62.6 | 65.9 | 57.9 | 58.6 | 62.7 | 66.0 | 60.1 | 57.1 | 65.1 | 62.3 | | 2031 | 57.7 | 68.5 | 63.9 | 68.5 | 57.9 | 59.5 | 64.0 | 66.9 | 60.1 | 57.1 | 66.5 | 63.6 | | 2032 | 57.7 | 70.6 | 65.2 | 70.6 | 57.9 | 60.4 | 65.3 | 68.2 | 60.1 | 57.2 | 67.8 | 64.3 | Table 0-182 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Passenger Car Fleet (mpg) | Comparison | of No Action Al | ternative (Ba | seline) ar | nd Alterna | | Required an et (mpg) | d Achieve | d CAFE L | evels in MYs | 2022-2032 f | or the Pas | senger | |------------|---------------------------|---------------|---------------------|------------|------------------------|----------------------|---------------------|----------|---------------------------|-------------|--------------------|----------| | | Honda | | | | Hyundai Kih | 1 | | | Hyundai Kik | (| | | | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | | No Action A (Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternat
PC2LT4 | | | Model Year | Required | Achieved | | 2022 | 44.7 | 43.4 | 44.7 | 43.4 | 44.2 | 42.9 | 44.2 | 42.9 | 44.7 | 44.3 | 44.7 | 44.3 | | 2023 | 45.4 | 47.0 | 45.4 | 47.0 | 44.9 | 46.0 | 44.9 | 46.0 | 45.4 | 46.5 | 45.4 | 46.5 | | 2024 | 49.4 | 47.2 | 49.4 | 47.2 | 48.8
 46.4 | 48.8 | 46.4 | 49.4 | 55.7 | 49.4 | 55.7 | | 2025 | 53.7 | 48.8 | 53.7 | 48.8 | 53.1 | 50.2 | 53.1 | 50.2 | 53.6 | 55.7 | 53.6 | 55.7 | | 2026 | 59.6 | 53.6 | 59.6 | 53.6 | 59.0 | 55.8 | 59.0 | 55.8 | 59.6 | 57.9 | 59.6 | 57.9 | | 2027 | 59.6 | 56.0 | 60.8 | 57.1 | 59.0 | 57.5 | 60.2 | 57.6 | 59.6 | 57.9 | 60.8 | 58.0 | | 2028 | 59.6 | 59.0 | 62.1 | 60.1 | 59.0 | 58.1 | 61.4 | 59.9 | 59.6 | 57.9 | 62.1 | 58.0 | | 2029 | 59.6 | 61.0 | 63.3 | 62.2 | 59.0 | 59.6 | 62.7 | 61.4 | 59.6 | 58.4 | 63.3 | 60.8 | | 2030 | 59.6 | 63.5 | 64.6 | 64.6 | 59.0 | 61.4 | 64.0 | 63.2 | 59.6 | 59.9 | 64.6 | 62.4 | | 2031 | 59.6 | 65.8 | 66.0 | 67.0 | 59.0 | 63.3 | 65.3 | 65.5 | 59.6 | 61.4 | 65.9 | 64.3 | | 2032 | 59.6 | 68.3 | 67.3 | 69.5 | 59.0 | 64.7 | 66.6 | 66.9 | 59.6 | 62.5 | 67.2 | 65.5 | Table 0-183 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Passenger Car Fleet (mpg) | Comparison | of No Action A | Alternative (B | aseline) a | and Alterr | | T4 Required a
Fleet (mpg) | ınd Achie | ved CAFE | Levels in M\ | /s 2022-2032 | for the Pa | ssenger | |------------|---------------------------|----------------|------------|------------|----------------------|------------------------------|--------------------|----------|----------------------|--------------|--------------------|----------| | | JLR | | | | Karma | | | | Lucid | | | | | | No Action A
(Baseline) | lternative | Alternat | | No Action (Baseline) | Alternative | Alternat
PC2LT4 | | No Action (Baseline) | Alternative | Alternat
PC2LT4 | | | Model Year | Required | Achieved | , – , | | Required | Achieved | Required | Achieved | Required | Achieved | Required | Achieved | | 2022 | 43.2 | 29.4 | 43.2 | 29.4 | 40.6 | 66.7 | 40.6 | 66.7 | 40.6 | 166.5 | 40.6 | 166.5 | | 2023 | 43.8 | 54.5 | 43.8 | 54.5 | 41.1 | 66.7 | 41.1 | 66.7 | 41.1 | 166.5 | 41.1 | 166.5 | | 2024 | 47.6 | 54.5 | 47.6 | 54.5 | 44.3 | 66.7 | 44.3 | 66.7 | 44.3 | 166.5 | 44.3 | 166.5 | | 2025 | 51.8 | 54.5 | 51.8 | 54.5 | 48.1 | 66.7 | 48.1 | 66.7 | 48.1 | 166.5 | 48.1 | 166.5 | | 2026 | 57.5 | 61.7 | 57.5 | 61.7 | 53.5 | 138.6 | 53.5 | 138.6 | 53.5 | 166.5 | 53.5 | 166.5 | | 2027 | 57.5 | 61.8 | 58.7 | 61.8 | 54.1 | 138.6 | 55.2 | 138.6 | 54.1 | 166.5 | 55.2 | 166.5 | | 2028 | 57.5 | 61.8 | 59.9 | 61.9 | 54.1 | 138.6 | 56.3 | 138.6 | 54.1 | 166.5 | 56.3 | 166.5 | | 2029 | 57.5 | 63.0 | 61.1 | 63.2 | 54.1 | 138.6 | 57.5 | 138.6 | 54.1 | 166.5 | 57.5 | 166.5 | | 2030 | 57.5 | 65.2 | 62.4 | 65.4 | 54.1 | 138.6 | 58.6 | 138.6 | 54.1 | 166.5 | 58.6 | 166.5 | | 2031 | 57.5 | 67.3 | 63.6 | 67.4 | 54.1 | 138.6 | 59.8 | 138.6 | 54.1 | 166.5 | 59.8 | 166.5 | | 2032 | 57.5 | 69.1 | 64.9 | 69.1 | 54.1 | 138.6 | 61.1 | 138.6 | 54.1 | 170.6 | 61.1 | 170.6 | Table 184 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Passenger Car Fleet (mpg) | Comparison | of No Action A | ternative (Ba | aseline) ar | nd Alterna | | Required an et (mpg) | d Achieve | ed CAFE L | evels in MYs | 2022-2032 f | or the Pas | ssenger | |------------|---------------------------|---------------|---------------------|------------|---------------------------|----------------------|---------------------|-----------|---------------------------|-------------|--------------------------------|----------| | | Mazda | | | | Mercedes-E | Benz | | | Mitsubishi | | | | | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternat
PC2LT ² | | | Model Year | Required | Achieved | | 2022 | 46.1 | 40.1 | 46.1 | 40.1 | 41.8 | 34.1 | 41.8 | 34.1 | 47.0 | 41.4 | 47.0 | 41.4 | | 2023 | 46.8 | 40.8 | 46.8 | 40.8 | 42.4 | 41.6 | 42.4 | 41.6 | 47.7 | 41.7 | 47.7 | 41.7 | | 2024 | 50.9 | 49.6 | 50.9 | 49.6 | 46.1 | 43.7 | 46.1 | 43.7 | 51.9 | 50.4 | 51.9 | 50.4 | | 2025 | 55.3 | 51.5 | 55.3 | 51.5 | 50.1 | 45.6 | 50.1 | 45.6 | 56.4 | 54.1 | 56.4 | 54.1 | | 2026 | 61.5 | 56.8 | 61.5 | 56.8 | 55.6 | 54.0 | 55.6 | 54.0 | 62.7 | 62.0 | 62.7 | 62.0 | | 2027 | 61.5 | 59.9 | 62.7 | 60.4 | 55.6 | 55.9 | 56.8 | 56.2 | 62.7 | 62.0 | 63.9 | 62.0 | | 2028 | 61.5 | 61.9 | 64.0 | 62.4 | 55.6 | 55.9 | 57.9 | 56.2 | 62.7 | 62.0 | 65.2 | 62.0 | | 2029 | 61.5 | 64.1 | 65.3 | 64.6 | 55.6 | 58.6 | 59.1 | 59.3 | 62.7 | 62.0 | 66.6 | 62.0 | | 2030 | 61.5 | 66.7 | 66.7 | 67.2 | 55.6 | 60.9 | 60.3 | 61.6 | 62.7 | 62.0 | 67.9 | 62.0 | | 2031 | 61.5 | 69.2 | 68.0 | 69.7 | 55.6 | 63.3 | 61.6 | 64.0 | 62.7 | 67.0 | 69.3 | 69.5 | | 2032 | 61.5 | 71.3 | 69.4 | 71.8 | 55.6 | 65.9 | 62.8 | 66.6 | 62.7 | 67.8 | 70.7 | 70.5 | Table 0-185 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Passenger Car Fleet (mpg) | Comparison | of No Action Al | ternative (Ba | ıseline) ar | nd Alterna | | Required an et (mpg) | d Achieve | d CAFE L | evels in MYs | 2022-2032 f | or the Pas | senger | |------------|---------------------------|---------------|---------------------|------------|---------------------------|----------------------|---------------------|----------|---------------------------|-------------|--------------------|----------| | | Nissan | | | | Stellantis | | | | Subaru | | | | | | No Action A
(Baseline) | lternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternat
PC2LT4 | | | Model Year | Required | Achieved | | 2022 | 44.7 | 42.4 | 44.7 | 42.4 | 41.8 | 28.2 | 41.8 | 28.2 | 46.0 | 37.0 | 46.0 | 37.0 | | 2023 | 45.4 | 46.5 | 45.4 | 46.5 | 42.4 | 30.5 | 42.4 | 30.5 | 46.7 | 46.1 | 46.7 | 46.1 | | 2024 | 49.3 | 50.0 | 49.3 | 50.0 | 46.1 | 41.2 | 46.1 | 41.2 | 50.7 | 46.1 | 50.7 | 46.1 | | 2025 | 53.6 | 54.1 | 53.6 | 54.1 | 50.0 | 51.1 | 50.0 | 51.1 | 55.1 | 52.9 | 55.1 | 52.9 | | 2026 | 59.6 | 58.6 | 59.6 | 58.6 | 55.6 | 52.4 | 55.6 | 52.4 | 61.3 | 58.6 | 61.3 | 58.6 | | 2027 | 59.6 | 58.7 | 60.8 | 58.8 | 55.6 | 52.4 | 56.8 | 52.4 | 61.3 | 60.7 | 62.5 | 60.7 | | 2028 | 59.6 | 58.9 | 62.1 | 59.6 | 55.6 | 53.1 | 57.9 | 53.1 | 61.3 | 62.9 | 63.8 | 63.0 | | 2029 | 59.6 | 60.1 | 63.3 | 60.8 | 55.6 | 54.8 | 59.1 | 56.1 | 61.3 | 66.0 | 65.1 | 66.0 | | 2030 | 59.6 | 62.0 | 64.6 | 63.1 | 55.6 | 56.2 | 60.3 | 57.9 | 61.3 | 69.0 | 66.4 | 69.0 | | 2031 | 59.6 | 63.4 | 65.9 | 64.5 | 55.6 | 57.5 | 61.5 | 60.2 | 61.3 | 71.9 | 67.8 | 71.9 | | 2032 | 59.6 | 64.4 | 67.3 | 66.3 | 55.6 | 58.5 | 62.8 | 61.6 | 61.3 | 75.2 | 69.2 | 75.2 | Table 0-186 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Passenger Car Fleet (mpg) | Comparison | of No Action | Alternative (B | aseline) a | nd Alternat | tive PC2LT4 F
Car Flee | | d Achieve | d CAFE L | evels in MYs | 2022-2032 fo | or the Pas | senger | |------------|-------------------------|----------------|--------------------|-------------|---------------------------|------------|---------------------|----------|---------------------------|--------------|------------|----------| | | Tesla | | | | Toyota | | | | Volvo | | | | | | No Action
(Baseline) | Alternative | Alternat
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternat | | | Model Year | Required | Achieved | | 2022 | 41.1 | 161.0 | 41.1 | 161.0 | 44.7 | 44.0 | 44.7 | 44.0 | 42.9 | 53.6 | 42.9 | 53.6 | | 2023 | 41.7 | 161.0 | 41.7 | 161.0 | 45.4 | 46.3 | 45.4 | 46.3 | 43.6 | 55.4 | 43.6 | 55.4 | | 2024 | 45.3 | 161.0 | 45.3 | 161.0 | 49.4 | 47.7 | 49.4 | 47.7 | 47.4 | 56.0 | 47.4 | 56.0 | | 2025 | 49.3 | 161.0 | 49.3 | 161.0 | 53.6 | 49.3 | 53.6 | 49.3 | 51.5 | 59.6 | 51.5 | 59.6 | | 2026 | 54.8 | 161.0 | 54.8 | 161.0 | 59.6 | 56.2 | 59.6 | 56.2 | 57.2 | 61.8 | 57.2 | 61.8 | | 2027 | 54.8 | 161.0 | 55.9 | 161.0 | 59.6 | 58.4 | 60.8 | 58.4 | 57.2 | 61.8 | 58.3 | 61.8 | | 2028 | 54.8 | 161.0 | 57.0 | 161.0 | 59.6 | 60.4 | 62.1 | 60.4 | 57.2 | 61.8 | 59.5 | 61.8 | | 2029 | 54.8 | 161.0 | 58.2 | 161.0 | 59.6 | 62.4 | 63.4 | 62.4 | 57.2 | 62.5 | 60.8 | 62.5 | | 2030 | 54.8 | 161.0 | 59.4 | 161.0 | 59.6 | 64.7 | 64.6 | 64.7 | 57.2 | 64.4 | 62.0 | 65.9 | | 2031 | 54.8 | 161.0 | 60.7 | 161.0 | 59.6 | 67.0 | 65.9 | 67.0 | 57.2 | 66.7 | 63.3 | 68.2 | | 2032 | 54.8 | 161.0 | 61.9 | 161.0 | 59.6 | 68.7 | 67.3 | 68.7 | 57.2 | 68.6 | 64.6 | 71.6 | Table 0-187 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Passenger Car Fleet (mpg) | Comparison | of No Action Alt | ernative (Ba | seline) and | d Alternati | ve PC2LT4 R
Car Flee | | Achieved | CAFE Lev | vels in MYs 2 | 022-2032 for | the Pass | senger | |------------|---------------------------|--------------|----------------------|-------------|---------------------------|------------|--------------------|----------|---------------------------|--------------|------------------|----------| | | VWA | | | | Total | | | | | | | | | | No Action A
(Baseline) | lternative | Alternativ
PC2LT4 | ve | No Action A
(Baseline) | lternative | Alternation PC2LT4 | ve | No Action A
(Baseline) | lternative | Alterna
PC2LT | | | Model Year | Required | Achieved | | 2022 | 45.0 | 37.8 | 45.0 | 37.8 | 44.1 | 43.7 | 44.1 | 43.7 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 45.7 | 38.8 | 45.7 | 38.8 | 44.8 | 46.6 | 44.8 | 46.6 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 49.7 | 44.3 | 49.7 | 44.3 | 48.7 | 51.3 | 48.7 | 51.3 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 54.0 | 47.4 | 54.0 | 47.4 | 52.9 | 54.3 | 52.9 | 54.3 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 60.0 | 53.6 | 60.0 | 53.6 | 58.8 | 59.5 | 58.8 | 59.5 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 60.0 | 55.5 | 61.2 | 55.5 | 58.8 | 60.8 | 60.0 | 61.3 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 60.0 | 60.5 | 62.5 | 62.5 | 58.8 | 62.3 | 61.2 | 63.2
 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 60.0 | 62.4 | 63.8 | 64.4 | 58.8 | 63.8 | 62.5 | 65.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 60.0 | 64.5 | 65.1 | 66.6 | 58.8 | 65.7 | 63.7 | 67.5 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 60.0 | 67.0 | 66.4 | 68.8 | 58.8 | 67.5 | 65.1 | 69.6 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 60.0 | 68.6 | 67.7 | 70.5 | 58.8 | 69.0 | 66.4 | 71.4 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-188 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Light Truck Fleet (mpg) | Comparison | of No Action Al | ternative (Ba | seline) an | d Alterna | | Required and (mpg) | d Achieve | d CAFE L | evels in MYs | 2022-2032 f | or the Ligi | nt Truck | |------------|------------------------|---------------|---------------------|-----------|------------------------|--------------------|---------------------|----------|---------------------------|-------------|-------------|----------| | | BMW | | | | Ford | | | | GM | | | | | | No Action A (Baseline) | Iternative | Alternati
PC2LT4 | | No Action A (Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternat | | | Model Year | Required | Achieved | | 2022 | 32.5 | 30.3 | 32.5 | 30.3 | 30.3 | 27.9 | 30.3 | 27.9 | 29.8 | 26.8 | 29.8 | 26.8 | | 2023 | 33.0 | 31.3 | 33.0 | 31.3 | 30.8 | 29.1 | 30.8 | 29.1 | 30.3 | 26.9 | 30.3 | 26.9 | | 2024 | 35.9 | 31.3 | 35.9 | 31.3 | 33.2 | 32.1 | 33.2 | 32.1 | 32.5 | 30.9 | 32.5 | 30.9 | | 2025 | 39.0 | 34.9 | 39.0 | 34.9 | 36.1 | 32.9 | 36.1 | 32.9 | 35.4 | 34.5 | 35.4 | 34.5 | | 2026 | 43.4 | 40.1 | 43.4 | 40.1 | 40.2 | 35.1 | 40.2 | 35.1 | 39.3 | 35.4 | 39.3 | 35.4 | | 2027 | 43.4 | 40.1 | 45.2 | 40.1 | 40.2 | 37.8 | 41.8 | 39.7 | 39.3 | 36.7 | 40.9 | 37.0 | | 2028 | 43.4 | 41.2 | 47.0 | 41.2 | 40.2 | 37.9 | 43.6 | 41.6 | 39.3 | 36.7 | 42.7 | 37.3 | | 2029 | 43.4 | 42.7 | 49.0 | 43.2 | 40.2 | 38.7 | 45.4 | 43.8 | 39.3 | 36.7 | 44.4 | 37.3 | | 2030 | 43.4 | 44.7 | 51.0 | 45.2 | 40.2 | 38.7 | 47.3 | 43.8 | 39.3 | 36.7 | 46.3 | 37.5 | | 2031 | 43.4 | 46.5 | 53.2 | 47.0 | 40.2 | 39.4 | 49.2 | 44.5 | 39.3 | 37.4 | 48.2 | 40.0 | | 2032 | 43.4 | 48.1 | 55.4 | 50.7 | 40.2 | 40.0 | 51.3 | 45.2 | 39.3 | 37.5 | 50.2 | 40.7 | Table 0-189 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Light Truck Fleet (mpg) | Comparison | of No Action Al | ternative (Ba | seline) an | d Alterna | | Required and
(mpg) | d Achieve | d CAFE L | evels in MYs | 2022-2032 f | or the Ligi | nt Truck | |------------|------------------------|---------------|---------------------|-----------|---------------------------|-----------------------|---------------------|----------|---------------------------|-------------|-------------|----------| | | Honda | | | | Hyundai Kil- | 1 | | | Hyundai Kik | (| | | | | No Action A (Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | lternative | Alternat | | | Model Year | Required | Achieved | | 2022 | 34.0 | 32.8 | 34.0 | 32.8 | 34.0 | 34.3 | 34.0 | 34.3 | 34.0 | 32.6 | 34.0 | 32.6 | | 2023 | 34.5 | 34.8 | 34.5 | 34.8 | 34.5 | 35.1 | 34.5 | 35.1 | 34.5 | 34.9 | 34.5 | 34.9 | | 2024 | 37.5 | 34.9 | 37.5 | 34.9 | 37.5 | 35.4 | 37.5 | 35.4 | 37.5 | 36.3 | 37.5 | 36.3 | | 2025 | 40.8 | 36.7 | 40.8 | 36.7 | 40.7 | 39.6 | 40.7 | 39.6 | 40.8 | 36.6 | 40.8 | 36.6 | | 2026 | 45.3 | 40.2 | 45.3 | 40.2 | 45.3 | 42.6 | 45.3 | 42.6 | 45.3 | 42.5 | 45.3 | 42.5 | | 2027 | 45.3 | 41.8 | 47.2 | 43.6 | 45.3 | 43.3 | 47.2 | 43.4 | 45.3 | 42.5 | 47.2 | 42.5 | | 2028 | 45.3 | 43.4 | 49.2 | 45.4 | 45.3 | 44.1 | 49.1 | 47.7 | 45.3 | 42.5 | 49.2 | 42.5 | | 2029 | 45.3 | 44.9 | 51.2 | 47.5 | 45.3 | 45.2 | 51.2 | 48.9 | 45.3 | 43.4 | 51.2 | 46.4 | | 2030 | 45.3 | 46.6 | 53.4 | 50.2 | 45.3 | 46.6 | 53.3 | 50.3 | 45.3 | 44.6 | 53.3 | 47.5 | | 2031 | 45.3 | 48.3 | 55.6 | 52.0 | 45.3 | 47.9 | 55.5 | 51.8 | 45.3 | 45.6 | 55.6 | 51.5 | | 2032 | 45.3 | 49.7 | 57.9 | 54.3 | 45.3 | 49.0 | 57.8 | 54.0 | 45.3 | 46.5 | 57.9 | 54.2 | Table 0-190 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Light Truck Fleet (mpg) | Comparison o | f No Action Alte | rnative (Base | eline) and A | Alternative | PC2LT4 Req | | chieved C | AFE Lev | els in MYs 20 | 022-2032 for | the Light | Truck | |--------------|---------------------------|---------------|----------------------|-------------|---------------------------|------------|-----------|----------|------------------------|--------------|------------------|----------| | | JLR | | | | Karma | | | | Lucid | | | | | | No Action A
(Baseline) | Iternative | Alternativ
PC2LT4 | е | No Action A
(Baseline) | Iternative | Alternat | | No Action A (Baseline) | Iternative | Alterna
PC2LT | | | Model Year | Required | Achieved | | 2022 | 32.7 | 27.3 | 32.7 | 27.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 33.2 | 33.9 | 33.2 | 33.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 36.0 | 36.4 | 36.0 | 36.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 39.2 | 36.5 | 39.2 | 36.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 43.5 | 38.6 | 43.5 | 38.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 43.5 | 39.5 | 45.3 | 39.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 43.5 | 39.5 | 47.2 | 39.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 43.5 | 40.4 | 49.2 | 40.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 43.5 | 42.1 | 51.2 | 42.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 43.5 | 44.6 | 53.4 | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 43.5 | 45.8 | 55.6 | 48.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-191 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Light Truck Fleet (mpg) | Comparison | of No Action Al | ternative (Ba | seline) an | d Alterna | | Required and (mpg) | d Achieve | d CAFE L | evels in MYs | 2022-2032 fo | or the Ligh | nt Truck | |------------|------------------------|---------------|---------------------|-----------|---------------------------|--------------------|---------------------|----------|---------------------------|--------------|--------------------|----------| | | Mazda | | | | Mercedes-B | enz | | | Mitsubishi | | | | | | No Action A (Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | - | No Action A
(Baseline) | Iternative | Alternat
PC2LT4 | | | Model Year | Required | Achieved | | 2022 | 36.0 | 34.3 | 36.0 | 34.3 | 32.9 | 29.4 | 32.9 | 29.4 | 37.0 | 35.6 | 37.0 | 35.6 | | 2023 | 36.6 | 41.3 | 36.6 | 41.3 | 33.4 | 33.1 | 33.4 | 33.1 | 37.6 | 35.9 | 37.6 | 35.9 | | 2024 | 39.8 | 41.4 | 39.8 | 41.4 | 36.3 | 33.2 | 36.3 | 33.2 | 40.8 | 40.5 | 40.8 | 40.5 | | 2025 | 43.2 | 41.4 | 43.2 | 41.4 | 39.5 | 33.2 | 39.5 | 33.2 | 44.4 | 43.1 | 44.4 | 43.1 | | 2026 | 48.0 | 45.6 | 48.0 | 45.6 | 43.9 | 37.6 | 43.9 | 37.6 | 49.3 | 46.9 | 49.3 | 46.9 | | 2027 | 48.0 | 47.6 | 50.0 | 48.0 | 43.9 | 38.9 | 45.7 | 38.9 | 49.3 | 46.9 | 51.4 | 46.9 | | 2028 | 48.0 | 49.2 | 52.1 | 49.6 | 43.9 | 41.9 | 47.6 | 42.4 | 49.3 | 46.9 | 53.5 | 46.9 | | 2029 | 48.0 | 51.4 | 54.3 | 52.0 | 43.9 | 43.4 | 49.6 | 44.0 | 49.3 | 46.9 | 55.7 | 46.9 | | 2030 | 48.0 | 53.5 | 56.5 | 54.3 | 43.9 | 45.4 | 51.6 | 48.9 | 49.3 | 46.9 | 58.1 | 46.9 | | 2031 | 48.0 | 55.5 | 58.9 | 56.3 | 43.9 | 47.4 | 53.8 | 50.8 | 49.3 | 50.8 | 60.5 | 58.7 | | 2032 | 48.0 | 57.1 | 61.4 | 57.9 | 43.9 | 48.9 | 56.0 | 52.4 | 49.3 | 51.4 | 63.0 | 59.3 | Table 0-192 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Light Truck Fleet (mpg) | Comparison | of No Action Al | ternative (Ba | seline) an | d Alterna | | Required and (mpg) | d Achieve | d CAFE L | evels in MYs | 2022-2032 f | or the LigI | nt Truck | |------------|---------------------------|---------------|---------------------|-----------|------------------------|--------------------|---------------------|----------|---------------------------|-------------|-------------|----------| | | Nissan | | | | Stellantis | | | | Subaru | | | | | | No Action A
(Baseline) | lternative | Alternati
PC2LT4 | | No Action A (Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | lternative | Alternat | | | Model Year | Required | Achieved | | 2022 | 32.9 | 30.9 | 32.9 | 30.9 | 30.7 | 27.2 | 30.7 | 27.2 | 36.5 | 36.6 | 36.5 | 36.6 | | 2023 | 33.4 | 33.3 | 33.4 | 33.3 | 31.2 | 28.3 | 31.2 | 28.3 | 37.0 | 39.4 | 37.0 | 39.4 | | 2024 | 36.3 | 34.2 | 36.3 | 34.2 | 33.8 | 30.4 | 33.8 | 30.4 | 40.2 | 41.6 | 40.2 | 41.6 | | 2025 | 39.5 | 36.0 | 39.5 | 36.0 | 36.8 | 35.8 | 36.8 | 35.8 | 43.7 | 43.0 | 43.7 | 43.0 | | 2026 | 43.9 | 38.1 | 43.9 | 38.1 | 40.9 | 36.2 | 40.9 | 36.2 | 48.6 | 48.9 | 48.6 | 48.9 | | 2027 | 43.9 | 38.2 | 45.7 | 38.2 | 40.9 | 38.0 | 42.6 | 39.0 | 48.6 | 51.3 | 50.6 | 51.3 | | 2028 | 43.9 | 40.9 | 47.6 | 43.9 | 40.9 | 38.0 | 44.4 | 39.1 | 48.6 | 53.2 | 52.7 | 53.3 | | 2029 | 43.9 | 42.3 | 49.6 | 46.0 | 40.9 | 39.7 | 46.2 | 41.7 | 48.6 | 55.4 | 54.9 | 55.4 | | 2030 | 43.9 | 44.6 | 51.7 | 50.7 | 40.9 | 40.8 | 48.1 | 43.1 | 48.6 | 58.3 | 57.2 | 58.3 | | 2031 | 43.9 | 45.6 | 53.8 | 51.8 | 40.9 | 41.8 | 50.1 | 44.1 | 48.6 | 60.8 | 59.6 | 60.8 | | 2032 | 43.9 | 46.3 | 56.1 | 52.6 | 40.9 | 42.5 | 52.2 | 45.9 | 48.6 | 62.9 | 62.1 | 62.9 | Table 0-193 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Light Truck Fleet (mpg) | Comparison o | of No Action A | Alternative (Ba | aseline) ar | nd Alternat | ive PC2LT4 R
Fleet | | Achieved | CAFE L | evels in MYs |
2022-2032 fc | r the Ligh | t Truck | |--------------|----------------------|-----------------|--------------------|-------------|---------------------------|------------|--------------------|----------|---------------------------|--------------|------------|----------| | | Tesla | | | | Toyota | | | | Volvo | | | | | | No Action (Baseline) | Alternative | Alternat
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternat
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternat | | | Model Year | Required | Achieved | | 2022 | 33.4 | 154.4 | 33.4 | 154.4 | 33.0 | 32.7 | 33.0 | 32.7 | 33.4 | 34.5 | 33.4 | 34.5 | | 2023 | 33.9 | 154.4 | 33.9 | 154.4 | 33.5 | 33.6 | 33.5 | 33.6 | 33.9 | 37.2 | 33.9 | 37.2 | | 2024 | 36.9 | 154.4 | 36.9 | 154.4 | 36.3 | 37.2 | 36.3 | 37.2 | 36.8 | 37.3 | 36.8 | 37.3 | | 2025 | 40.1 | 154.4 | 40.1 | 154.4 | 39.4 | 38.3 | 39.4 | 38.3 | 40.0 | 41.5 | 40.0 | 41.5 | | 2026 | 44.5 | 154.4 | 44.5 | 154.4 | 43.8 | 42.5 | 43.8 | 42.5 | 44.5 | 41.8 | 44.5 | 41.8 | | 2027 | 44.5 | 154.4 | 46.4 | 154.4 | 43.8 | 43.4 | 45.6 | 43.4 | 44.5 | 41.8 | 46.3 | 42.4 | | 2028 | 44.5 | 154.4 | 48.3 | 154.4 | 43.8 | 44.7 | 47.5 | 44.7 | 44.5 | 41.8 | 48.3 | 42.4 | | 2029 | 44.5 | 154.4 | 50.3 | 154.4 | 43.8 | 46.1 | 49.5 | 46.2 | 44.5 | 41.8 | 50.3 | 42.8 | | 2030 | 44.5 | 154.4 | 52.4 | 154.4 | 43.8 | 47.8 | 51.6 | 47.9 | 44.5 | 43.4 | 52.4 | 49.1 | | 2031 | 44.5 | 154.4 | 54.6 | 154.4 | 43.8 | 49.8 | 53.7 | 50.0 | 44.5 | 45.2 | 54.6 | 51.1 | | 2032 | 44.5 | 154.4 | 56.9 | 154.4 | 43.8 | 51.5 | 55.9 | 52.1 | 44.5 | 46.8 | 56.8 | 53.7 | Table 0-194 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Light Truck Fleet (mpg) | Comparison o | of No Action Alt | ernative (Bas | seline) and | I Alternati | ve PC2LT4 R
Fleet (| | Achieved | CAFE Lev | els in MYs 20 | 022-2032 for | the Light | t Truck | |--------------|---------------------------|---------------|--------------------|-------------|---------------------------|------------|---------------------|----------|---------------------------|--------------|------------------|----------| | | VWA | | | | Total | | | | | | | | | | No Action A
(Baseline) | Iternative | Alternation PC2LT4 | ve | No Action A
(Baseline) | lternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Alternative | Alterna
PC2LT | | | Model Year | Required | Achieved | | 2022 | 34.0 | 31.5 | 34.0 | 31.5 | 32.1 | 30.1 | 32.1 | 30.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 34.5 | 33.1 | 34.5 | 33.1 | 32.6 | 31.3 | 32.6 | 31.3 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 37.5 | 38.2 | 37.5 | 38.2 | 35.3 | 34.0 | 35.3 | 34.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 40.8 | 40.7 | 40.8 | 40.7 | 38.3 | 36.4 | 38.3 | 36.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 45.3 | 41.4 | 45.3 | 41.4 | 42.6 | 38.9 | 42.6 | 38.9 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 45.3 | 41.6 | 47.2 | 41.9 | 42.6 | 40.4 | 44.4 | 41.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 45.3 | 42.0 | 49.2 | 42.5 | 42.6 | 41.0 | 46.2 | 42.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 45.3 | 43.3 | 51.2 | 44.0 | 42.6 | 42.1 | 48.2 | 44.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 45.3 | 44.9 | 53.4 | 48.3 | 42.6 | 43.1 | 50.2 | 45.5 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 45.3 | 46.9 | 55.6 | 51.5 | 42.6 | 44.3 | 52.2 | 47.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 45.3 | 48.1 | 57.9 | 53.7 | 42.6 | 45.2 | 54.4 | 48.9 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-195 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Domestic Car Fleet (mpg) | Comparison of | No Action Alte | rnative (Base | eline) and | d Alterna | | Required and | d Achieve | d CAFE Le | evels in MYs | 2022-2032 fo | r the Dom | estic Car | |---------------|---------------------------|---------------|------------------|-----------|---------------------------|--------------|----------------------|-----------|---------------------------|--------------|----------------------|-----------| | | BMW | | | | Ford | | | | GM | | | | | | No Action A
(Baseline) | lternative | Alterna
PC2LT | | No Action A
(Baseline) | Iternative | Alternativ
PC2LT4 | /e | No Action A
(Baseline) | Iternative | Alternativ
PC2LT4 | /e | | Model Year | Required | Achieved | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 43.4 | 40.7 | 43.4 | 40.7 | 44.3 | 38.3 | 44.3 | 38.3 | | 2023 | 0.0 | 0.0 | 0.0 | 0.0 | 44.1 | 40.8 | 44.1 | 40.8 | 45.0 | 38.6 | 45.0 | 38.6 | | 2024 | 0.0 | 0.0 | 0.0 | 0.0 | 47.9 | 56.2 | 47.9 | 56.2 | 48.9 | 49.6 | 48.9 | 49.6 | | 2025 | 0.0 | 0.0 | 0.0 | 0.0 | 52.1 | 57.9 | 52.1 | 57.9 | 53.2 | 52.3 | 53.2 | 52.3 | | 2026 | 0.0 | 0.0 | 0.0 | 0.0 | 57.9 | 57.9 | 57.9 | 57.9 | 59.1 | 56.3 | 59.1 | 56.3 | | 2027 | 0.0 | 0.0 | 0.0 | 0.0 | 57.9 | 58.4 | 59.0 | 65.5 | 59.1 | 56.5 | 60.3 | 56.6 | | 2028 | 0.0 | 0.0 | 0.0 | 0.0 | 57.9 | 58.4 | 60.2 | 65.5 | 59.1 | 56.5 | 61.5 | 56.6 | | 2029 | 0.0 | 0.0 | 0.0 | 0.0 | 57.9 | 58.4 | 61.5 | 65.5 | 59.1 | 56.5 | 62.8 | 61.5 | | 2030 | 0.0 | 0.0 | 0.0 | 0.0 | 57.9 | 58.6 | 62.7 | 66.0 | 59.1 | 56.5 | 64.0 | 61.6 | | 2031 | 0.0 | 0.0 | 0.0 | 0.0 | 57.9 | 59.5 | 64.0 | 66.9 | 59.1 | 56.5 | 65.4 | 62.5 | | 2032 | 0.0 | 0.0 | 0.0 | 0.0 | 57.9 | 60.4 | 65.3 | 68.2 | 59.1 | 56.6 | 66.7 | 63.3 | Table 0-196 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Domestic Car Fleet (mpg) | Comparison of | No Action Alt | ernative (Bas | eline) and | d Alternat | | Required and et (mpg) | Achieve | d CAFE Le | vels in MYs 2 | 022-2032 for | the Dome | estic Car | |---------------|------------------------|---------------|---------------------|------------|----------------------|-----------------------|---------------------|-----------|------------------------|--------------|--------------------|-----------| | | Honda | | | | Hyundai Ki | Н | | | Hyundai Kik | (| | | | | No Action A (Baseline) | Iternative | Alternati
PC2LT4 | | No Action (Baseline) | Alternative | Alternati
PC2LT4 | | No Action A (Baseline) | Iternative | Alternat
PC2LT4 | | | Model Year | Required | Achieved | | 2022 | 44.7 | 43.4 | 44.7 | 43.4 | 48.7 | 50.7 | 48.7 | 50.7 | 45.8 | 45.0 | 45.8 | 45.0 | | 2023 | 45.4 | 47.0 | 45.4 | 47.0 | 49.5 | 284.8 | 49.5 | 284.8 | 46.5 | 45.0 | 46.5 | 45.0 | | 2024 | 49.4 | 47.2 | 49.4 | 47.2 | 53.8 | 284.8 | 53.8 | 284.8 | 50.6 | 61.5 | 50.6 | 61.5 | | 2025 | 53.7 | 48.8 | 53.7 | 48.8 | 58.4 | 284.8 | 58.4 | 284.8 | 55.0 | 61.5 | 55.0 | 61.5 | | 2026 | 59.6 | 53.6 | 59.6 | 53.6 | 64.9 | 284.8 | 64.9 | 284.8 | 61.1 | 61.5 | 61.1 | 61.5 | | 2027 | 59.6 | 56.0 | 60.8 | 57.1 | 64.9 | 284.8 | 66.3 | 284.8 | 61.1 | 61.5 | 62.3 | 61.5 | | 2028 | 59.6 | 59.0 | 62.1 | 60.1 | 64.9 | 295.8 | 67.6 | 301.4 | 61.1 | 61.5 | 63.6 | 61.5 | | 2029 | 59.6 | 61.0 | 63.3 | 62.2 | 64.9 | 295.8 | 69.0 | 301.4 | 61.1 | 62.0 | 64.9 | 62.5 | | 2030 | 59.6 | 63.5 | 64.6 | 64.6 | 64.9 | 295.8 | 70.4 | 301.4 | 61.1 | 63.7 | 66.2 | 64.1 | | 2031 | 59.6 | 65.8 | 66.0 | 67.0 | 64.9 | 295.8 | 71.8 | 301.4 | 61.1 | 65.2 | 67.6 | 65.7 | | 2032 | 59.6 | 68.3 | 67.3 | 69.5 | 64.9 | 295.8 | 73.3 | 301.4 | 61.1 | 66.4 | 69.0 | 66.9 | Table 0-197 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Domestic Car Fleet (mpg) | Comparison of | f No Action Alt | ernative (Bas | seline) ar | nd Altern | | Γ4 Required a
leet (mpg) | nd Achiev | ed CAFE L | evels in MY | s 2022-2032 fo | or the Dor | nestic Ca | |---------------|---------------------------|---------------|------------------|-----------|-------------------------|-----------------------------|---------------------|-----------|-------------------------|----------------|---------------------|-----------| | | JLR | | | | Karma | | | | Lucid | | | | | | No Action A
(Baseline) | Alternative | Alterna
PC2LT | | No Action
(Baseline) | Alternative | Alternati
PC2LT4 | | No Action
(Baseline) | Alternative | Alternati
PC2LT4 | | | Model Year | Required | Achieved | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 40.6 | 66.7 | 40.6 | 66.7 | 40.6 | 166.5 | 40.6 | 166.5 | | 2023 | 0.0 | 0.0 | 0.0 | 0.0 | 41.1 | 66.7 | 41.1 | 66.7 | 41.1 | 166.5 | 41.1 | 166.5 | | 2024 | 0.0 | 0.0 | 0.0 | 0.0 | 44.3 | 66.7 | 44.3 | 66.7 | 44.3 | 166.5 | 44.3 | 166.5 | | 2025 | 0.0 | 0.0 | 0.0 | 0.0 | 48.1 | 66.7 | 48.1 | 66.7 | 48.1 | 166.5 | 48.1 | 166.5 | | 2026 | 0.0 | 0.0 | 0.0 | 0.0 | 53.5 | 138.6 | 53.5 | 138.6 | 53.5 | 166.5 | 53.5 | 166.5 | | 2027 | 0.0 | 0.0 | 0.0 | 0.0 | 54.1 | 138.6 | 55.2 | 138.6 | 54.1 | 166.5 | 55.2 | 166.5 | | 2028 | 0.0 | 0.0 | 0.0 | 0.0 | 54.1 | 138.6 | 56.3 | 138.6 | 54.1 | 166.5 | 56.3 | 166.5 | | 2029 | 0.0 | 0.0 | 0.0 | 0.0 | 54.1 | 138.6 | 57.5 | 138.6 | 54.1 | 166.5 | 57.5 | 166.5 | | 2030 | 0.0 | 0.0 | 0.0 | 0.0 | 54.1 | 138.6 | 58.6 | 138.6 | 54.1 | 166.5 | 58.6 | 166.5 | | 2031 | 0.0 | 0.0 | 0.0 | 0.0 | 54.1 | 138.6 | 59.8 | 138.6 | 54.1 | 166.5 | 59.8 | 166.5 | | 2032 | 0.0 | 0.0 | 0.0 | 0.0 | 54.1 | 138.6 | 61.1 | 138.6 | 54.1 | 170.6 | 61.1 | 170.6 | Table 0-198 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Domestic Car Fleet (mpg) | Comparison of I | No Action Altern | ative (Baseli | ne) and A | Iternative | PC2LT4 Red
Fleet (r | | chieved C | AFE Lev | els in MYs 20 |)22-2032 for | the Dome | stic Car | |-----------------|---------------------------|---------------|--------------------|------------|------------------------|------------|---------------------|----------|------------------------|--------------|--------------------|----------| | | Mazda | | | | Mercedes-B | Benz | | | Mitsubishi | | | | | | No Action A
(Baseline) | lternative | Alternat
PC2LT4 | | No Action A (Baseline) | Iternative | Alternati
PC2LT4 | | No Action A (Baseline) | Iternative | Alternat
PC2LT4 | | | Model Year | Required | Achieved | | 2022 | 0.0
 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-199 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Domestic Car Fleet (mpg) | Comparison of | No Action Alte | rnative (Base | eline) and | Alternativ | e PC2LT4 Re
Fleet (| | Achieved C | AFE Leve | ls in MYs 202 | 22-2032 for t | he Dome | stic Car | |---------------|---------------------------|---------------|----------------------|------------|---------------------------|------------|--------------------|----------|---------------------------|---------------|------------------|----------| | | Nissan | | | | Stellantis | | | | Subaru | | | | | | No Action A
(Baseline) | lternative | Alternativ
PC2LT4 | ve | No Action A
(Baseline) | Iternative | Alternation PC2LT4 | ve | No Action A
(Baseline) | Iternative | Alterna
PC2LT | | | Model Year | Required | Achieved | | 2022 | 44.5 | 41.7 | 44.5 | 41.7 | 41.4 | 27.8 | 41.4 | 27.8 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 45.2 | 42.8 | 45.2 | 42.8 | 42.0 | 30.1 | 42.0 | 30.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 49.1 | 46.4 | 49.1 | 46.4 | 45.7 | 41.2 | 45.7 | 41.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 53.4 | 51.4 | 53.4 | 51.4 | 49.6 | 50.7 | 49.6 | 50.7 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 59.3 | 57.1 | 59.3 | 57.1 | 55.1 | 51.7 | 55.1 | 51.7 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 59.3 | 57.3 | 60.5 | 57.4 | 55.1 | 51.7 | 56.3 | 51.7 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 59.3 | 57.5 | 61.8 | 57.5 | 55.1 | 52.4 | 57.4 | 52.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 59.3 | 58.7 | 63.0 | 58.8 | 55.1 | 54.2 | 58.6 | 55.7 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 59.3 | 60.8 | 64.3 | 61.2 | 55.1 | 55.6 | 59.8 | 57.5 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 59.3 | 62.1 | 65.6 | 62.6 | 55.1 | 56.9 | 61.0 | 59.8 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 59.3 | 63.2 | 67.0 | 64.7 | 55.1 | 57.9 | 62.2 | 61.1 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-200 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Domestic Car Fleet (mpg) | Comparison of | No Action A | Iternative (Ba | seline) an | d Alternativ | ve PC2LT4 Re
Fleet | - | Achieved | CAFE Le | vels in MYs 2 | 022-2032 fo | r the Dom | estic Car | |---------------|-------------------------|----------------|--------------------|--------------|---------------------------|------------|--------------------|----------|---------------------------|-------------|-----------|-----------| | | Tesla | | | | Toyota | | | | Volvo | | | | | | No Action
(Baseline) | Alternative | Alternat
PC2LT4 | | No Action A
(Baseline) | lternative | Alternat
PC2LT4 | | No Action A
(Baseline) | lternative | Alternat | | | Model Year | Required | Achieved | | 2022 | 40.8 | 157.5 | 40.8 | 157.5 | 43.1 | 41.0 | 43.1 | 41.0 | 42.3 | 42.2 | 42.3 | 42.2 | | 2023 | 41.4 | 157.5 | 41.4 | 157.5 | 43.7 | 41.5 | 43.7 | 41.5 | 42.9 | 45.5 | 42.9 | 45.5 | | 2024 | 45.0 | 157.5 | 45.0 | 157.5 | 47.5 | 44.6 | 47.5 | 44.6 | 46.7 | 45.5 | 46.7 | 45.5 | | 2025 | 48.9 | 157.5 | 48.9 | 157.5 | 51.7 | 48.1 | 51.7 | 48.1 | 50.7 | 49.5 | 50.7 | 49.5 | | 2026 | 54.4 | 157.5 | 54.4 | 157.5 | 57.4 | 52.5 | 57.4 | 52.5 | 56.4 | 53.7 | 56.4 | 53.7 | | 2027 | 54.4 | 157.5 | 55.5 | 157.5 | 57.4 | 54.9 | 58.6 | 54.9 | 56.4 | 53.7 | 57.5 | 53.7 | | 2028 | 54.4 | 157.5 | 56.6 | 157.5 | 57.4 | 56.6 | 59.8 | 56.6 | 56.4 | 53.7 | 58.7 | 53.7 | | 2029 | 54.4 | 157.5 | 57.8 | 157.5 | 57.4 | 58.4 | 61.0 | 58.4 | 56.4 | 53.7 | 59.9 | 53.7 | | 2030 | 54.4 | 157.5 | 58.9 | 157.5 | 57.4 | 60.6 | 62.2 | 60.6 | 56.4 | 55.8 | 61.1 | 58.8 | | 2031 | 54.4 | 157.5 | 60.2 | 157.5 | 57.4 | 62.7 | 63.5 | 62.7 | 56.4 | 58.1 | 62.3 | 61.2 | | 2032 | 54.4 | 157.5 | 61.4 | 157.5 | 57.4 | 64.4 | 64.8 | 64.4 | 56.4 | 60.0 | 63.6 | 63.1 | Table 0-201 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Domestic Car Fleet (mpg) | Comparison of | No Action Alte | rnative (Bas | eline) and | Alternativ | e PC2LT4 Re
Fleet (| - | Achieved C | AFE Leve | ls in MYs 202 | 22-2032 for t | he Dome | stic Car | |---------------|---------------------------|--------------|--------------------|------------|---------------------------|------------|--------------------|----------|---------------------------|---------------|------------------|----------| | | VWA | | | | Total | | | | | | | | | | No Action A
(Baseline) | Alternative | Alternation PC2LT4 | ve | No Action A
(Baseline) | lternative | Alternation PC2LT4 | | No Action A
(Baseline) | lternative | Alterna
PC2LT | | | Model Year | Required | Achieved | | 2022 | 41.4 | 32.8 | 41.4 | 32.8 | 43.5 | 44.9 | 43.5 | 44.9 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 42.0 | 32.8 | 42.0 | 32.8 | 44.2 | 46.9 | 44.2 | 46.9 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 45.7 | 38.2 | 45.7 | 38.2 | 48.1 | 53.2 | 48.1 | 53.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 49.6 | 38.2 | 49.6 | 38.2 | 52.3 | 56.7 | 52.3 | 56.7 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 55.2 | 80.6 | 55.2 | 80.6 | 58.0 | 61.3 | 58.0 | 61.3 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 55.2 | 80.6 | 56.3 | 80.6 | 58.0 | 62.5 | 59.2 | 63.5 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 55.2 | 81.1 | 57.4 | 81.1 | 58.0 | 63.9 | 60.4 | 64.9 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 55.2 | 85.2 | 58.6 | 85.2 | 58.0 | 65.3 | 61.7 | 67.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 55.2 | 87.1 | 59.8 | 87.1 | 58.0 | 67.0 | 62.9 | 69.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 55.2 | 88.8 | 61.0 | 88.8 | 58.0 | 68.5 | 64.2 | 70.9 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 55.2 | 91.0 | 62.3 | 91.0 | 58.0 | 69.9 | 65.5 | 72.8 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-202 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Imported Car Fleet (mpg) | Comparison of | No Action Alte | rnative (Base | eline) and | Alternativ | e PC2LT4 Re
Fleet (| - | Achieved | CAFE Le | evels in MYs | 2022-2032 fo | or the Impo | orted Car | |---------------|---------------------------|---------------|----------------------|------------|---------------------------|------------|------------------|----------|---------------------------|--------------|----------------------|-----------| | | BMW | | | | Ford | | | | GM | | | | | | No Action A
(Baseline) | Iternative | Alternativ
PC2LT4 | /e | No Action A
(Baseline) | Iternative | Alterna
PC2LT | | No Action A
(Baseline) | Iternative | Alternativ
PC2LT4 | | | Model Year | Required | Achieved | | 2022 | 43.3 | 35.4 | 43.3 | 35.4 | 0.0 | 0.0 | 0.0 | 0.0 | 47.1 | 41.1 | 47.1 | 41.1 | | 2023 | 44.0 | 38.7 | 44.0 | 38.7 | 0.0 | 0.0 | 0.0 | 0.0 | 47.9 | 41.2 | 47.9 | 41.2 | | 2024 | 47.8 | 48.1 | 47.8 | 48.1 | 0.0 | 0.0 | 0.0 | 0.0 | 52.0 | 48.0 | 52.0 | 48.0 | | 2025 | 52.0 | 51.7 | 52.0 | 51.7 | 0.0 | 0.0 | 0.0 | 0.0 | 56.5 | 51.4 | 56.5 | 51.4 | | 2026 | 57.7 | 56.2 | 57.7 | 56.2 | 0.0 | 0.0 | 0.0 | 0.0 | 62.8 | 58.1 | 62.8 | 58.1 | | 2027 | 57.7 | 56.2 | 58.9 | 56.2 | 0.0 | 0.0 | 0.0 | 0.0 | 62.8 | 58.1 | 64.1 | 58.1 | | 2028 | 57.7 | 60.2 | 60.1 | 60.3 | 0.0 | 0.0 | 0.0 | 0.0 | 62.8 | 58.1 | 65.4 | 58.1 | | 2029 | 57.7 | 63.1 | 61.3 | 63.2 | 0.0 | 0.0 | 0.0 | 0.0 | 62.8 | 58.1 | 66.8 | 61.6 | | 2030 | 57.7 | 65.9 | 62.6 | 65.9 | 0.0 | 0.0 | 0.0 | 0.0 | 62.8 | 58.9 | 68.1 | 64.2 | | 2031 | 57.7 | 68.5 | 63.9 | 68.5 | 0.0 | 0.0 | 0.0 | 0.0 | 62.8 | 58.9 | 69.5 | 66.9 | | 2032 | 57.7 | 70.6 | 65.2 | 70.6 | 0.0 | 0.0 | 0.0 | 0.0 | 62.8 | 59.0 | 70.9 | 66.9 | Table 0-203 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Imported Car Fleet (mpg) | Comparison of | No Action A | Iternative (Bas | seline) an | d Alternativ | ve PC2LT4 Ro
Fleet (| - | Achieved | CAFE Le | vels in MYs 2 | 022-2032 foi | the Impo | rted Car | |---------------|----------------------|-----------------|---------------------|--------------|-------------------------|------------|---------------------|----------|------------------------|--------------|--------------------|----------| | | Honda | | | | Hyundai Kil- | 1 | | | Hyundai Kik | | | | | | No Action (Baseline) | Alternative | Alternati
PC2LT4 | | No Action A (Baseline) | Iternative | Alternati
PC2LT4 | | No Action A (Baseline) | Iternative | Alternat
PC2LT4 | | | Model Year | Required | Achieved | | 2022 | 44.9 | 29.4 | 44.9 | 29.4 | 44.1 | 42.7 | 44.1 | 42.7 | 44.4 | 44.1 | 44.4 | 44.1 | | 2023 | 45.6 | 30.0 | 45.6 | 30.0 | 44.8 | 44.7 | 44.8 | 44.7 | 45.0 | 46.9 | 45.0 | 46.9 | | 2024 | 49.5 | 30.1 | 49.5 | 30.1 | 48.7 | 45.1 | 48.7 | 45.1 | 49.0 | 54.0 | 49.0 | 54.0 | | 2025 | 53.8 | 30.2 | 53.8 | 30.2 | 52.9 | 48.8 | 52.9 | 48.8 | 53.2 | 54.0 | 53.2 | 54.0 | | 2026 | 59.8 | 103.6 | 59.8 | 103.6 | 58.8 | 54.3 | 58.8 | 54.3 | 59.1 | 56.9 | 59.1 | 56.9 | | 2027 | 59.8 | 103.4 | 61.1 | 103.4 | 58.8 | 56.0 | 60.0 | 56.2 | 59.1 | 56.9 | 60.3 | 56.9 | | 2028 | 59.8 | 103.2 | 62.3 | 103.2 | 58.8 | 56.6 | 61.2 | 58.3 | 59.1 | 56.9 | 61.6 | 56.9 | | 2029 | 59.8 | 103.1 | 63.6 | 103.1 | 58.8 | 58.1 | 62.5 | 59.8 | 59.1 | 57.3 | 62.8 | 60.3 | | 2030 | 59.8 | 102.9 | 64.9 |
102.9 | 58.8 | 59.8 | 63.8 | 61.6 | 59.1 | 58.8 | 64.1 | 61.8 | | 2031 | 59.8 | 102.7 | 66.2 | 102.7 | 58.8 | 61.7 | 65.1 | 63.9 | 59.1 | 60.2 | 65.4 | 63.9 | | 2032 | 59.8 | 102.6 | 67.6 | 102.6 | 58.8 | 63.0 | 66.4 | 65.2 | 59.1 | 61.4 | 66.7 | 65.0 | Table 0-204 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Imported Car Fleet (mpg) | Comparison of | No Action Alter | native (Basel | ine) and A | Iternative F | PC2LT4 Requ
Fleet (mp | | nieved C | AFE Leve | els in MYs 20 | 22-2032 for t | he Impor | ted Car | |---------------|------------------------|---------------|------------|--------------|--------------------------|------------|----------|----------|------------------------|---------------|------------------|----------| | | JLR | | | | Karma | | | | Lucid | | | | | | No Action A (Baseline) | Iternative | Alternativ | e PC2LT4 | No Action A (Baseline) | Iternative | Alternat | | No Action A (Baseline) | Iternative | Alterna
PC2LT | | | Model Year | Required | Achieved | | 2022 | 43.2 | 29.4 | 43.2 | 29.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 43.8 | 54.5 | 43.8 | 54.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 47.6 | 54.5 | 47.6 | 54.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 51.8 | 54.5 | 51.8 | 54.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 57.5 | 61.7 | 57.5 | 61.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 57.5 | 61.8 | 58.7 | 61.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 57.5 | 61.8 | 59.9 | 61.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 57.5 | 63.0 | 61.1 | 63.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 57.5 | 65.2 | 62.4 | 65.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 57.5 | 67.3 | 63.6 | 67.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 57.5 | 69.1 | 64.9 | 69.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-205 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Imported Car Fleet (mpg) | Comparison o | f No Action Alt | ernative (Bas | eline) and | l Alternati | | Required and (mpg) | Achieved | CAFE Le | evels in MYs 2 | 2022-2032 fo | r the Impo | orted Car | |--------------|---------------------------|---------------|---------------------|-------------|------------|--------------------|----------|----------|----------------|----------------------------------|------------|-----------| | | Mazda | | | | Mercedes-B | enz | | | Mitsubishi | | | | | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | | | | | | | No Action Alternative (Baseline) | | tive
4 | | Model Year | Required | Achieved | | 2022 | 46.1 | 40.1 | 46.1 | 40.1 | 41.8 | 34.1 | 41.8 | 34.1 | 47.0 | 41.4 | 47.0 | 41.4 | | 2023 | 46.8 | 40.8 | 46.8 | 40.8 | 42.4 | 41.6 | 42.4 | 41.6 | 47.7 | 41.7 | 47.7 | 41.7 | | 2024 | 50.9 | 49.6 | 50.9 | 49.6 | 46.1 | 43.7 | 46.1 | 43.7 | 51.9 | 50.4 | 51.9 | 50.4 | | 2025 | 55.3 | 51.5 | 55.3 | 51.5 | 50.1 | 45.6 | 50.1 | 45.6 | 56.4 | 54.1 | 56.4 | 54.1 | | 2026 | 61.5 | 56.8 | 61.5 | 56.8 | 55.6 | 54.0 | 55.6 | 54.0 | 62.7 | 62.0 | 62.7 | 62.0 | | 2027 | 61.5 | 59.9 | 62.7 | 60.4 | 55.6 | 55.9 | 56.8 | 56.2 | 62.7 | 62.0 | 63.9 | 62.0 | | 2028 | 61.5 | 61.9 | 64.0 | 62.4 | 55.6 | 55.9 | 57.9 | 56.2 | 62.7 | 62.0 | 65.2 | 62.0 | | 2029 | 61.5 | 64.1 | 65.3 | 64.6 | 55.6 | 58.6 | 59.1 | 59.3 | 62.7 | 62.0 | 66.6 | 62.0 | | 2030 | 61.5 | 66.7 | 66.7 | 67.2 | 55.6 | 60.9 | 60.3 | 61.6 | 62.7 | 62.0 | 67.9 | 62.0 | | 2031 | 61.5 | 69.2 | 68.0 | 69.7 | 55.6 | 63.3 | 61.6 | 64.0 | 62.7 | 67.0 | 69.3 | 69.5 | | 2032 | 61.5 | 71.3 | 69.4 | 71.8 | 55.6 | 65.9 | 62.8 | 66.6 | 62.7 | 67.8 | 70.7 | 70.5 | Table 0-206 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Imported Car Fleet (mpg) | Comparison o | f No Action Alt | ernative (Bas | eline) and | l Alternati | | Required and (mpg) | Achieved | CAFE Le | evels in MYs 2 | 2022-2032 fo | or the Impo | orted Car | |--------------|---------------------------|---------------|---------------------|-------------|---------------------------|--------------------|-----------------------|----------|----------------------------------|--------------|-------------|-----------| | | Nissan | | | | Stellantis | | | | Subaru | | | | | | No Action A
(Baseline) | Iternative | Alternati
PC2LT4 | | No Action A
(Baseline) | Iternative | Alternative
PC2LT4 | | No Action Alternative (Baseline) | | Alternat | | | Model Year | Required | Achieved | | 2022 | 45.2 | 44.3 | 45.2 | 44.3 | 44.9 | 32.2 | 44.9 | 32.2 | 46.0 | 37.0 | 46.0 | 37.0 | | 2023 | 45.9 | 60.2 | 45.9 | 60.2 | 45.5 | 34.1 | 45.5 | 34.1 | 46.7 | 46.1 | 46.7 | 46.1 | | 2024 | 49.9 | 62.5 | 49.9 | 62.5 | 49.5 | 41.0 | 49.5 | 41.0 | 50.7 | 46.1 | 50.7 | 46.1 | | 2025 | 54.3 | 62.6 | 54.3 | 62.6 | 53.8 | 54.3 | 53.8 | 54.3 | 55.1 | 52.9 | 55.1 | 52.9 | | 2026 | 60.3 | 62.7 | 60.3 | 62.7 | 59.8 | 59.2 | 59.8 | 59.2 | 61.3 | 58.6 | 61.3 | 58.6 | | 2027 | 60.3 | 62.7 | 61.5 | 62.7 | 59.8 | 59.2 | 61.0 | 59.2 | 61.3 | 60.7 | 62.5 | 60.7 | | 2028 | 60.3 | 62.9 | 62.8 | 65.6 | 59.8 | 59.2 | 62.3 | 59.2 | 61.3 | 62.9 | 63.8 | 63.0 | | 2029 | 60.3 | 64.1 | 64.0 | 66.8 | 59.8 | 59.7 | 63.5 | 59.8 | 61.3 | 66.0 | 65.1 | 66.0 | | 2030 | 60.3 | 65.5 | 65.4 | 68.5 | 59.8 | 61.7 | 64.8 | 61.8 | 61.3 | 69.0 | 66.4 | 69.0 | | 2031 | 60.3 | 66.8 | 66.7 | 69.8 | 59.8 | 62.9 | 66.1 | 63.1 | 61.3 | 71.9 | 67.8 | 71.9 | | 2032 | 60.3 | 67.8 | 68.0 | 70.9 | 59.8 | 63.9 | 67.5 | 66.0 | 61.3 | 75.2 | 69.2 | 75.2 | Table 0-207 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Imported Car Fleet (mpg) | Comparison of | No Action A | Iternative (Bas | seline) an | d Alternativ | ve PC2LT4 Re
Fleet (| - | Achieved | CAFE Le | vels in MYs 2 | 022-2032 for | the Impo | rted Car | |---------------|----------------------|-----------------|---------------------|--------------|---|----------|----------------------------------|----------|-----------------------|--------------|----------|----------| | | Tesla | | | | Toyota | | | | Volvo | | | | | | No Action (Baseline) | Alternative | Alternati
PC2LT4 | | No Action Alternative Alternative (Baseline) PC2LT4 | | No Action Alternative (Baseline) | | Alternative
PC2LT4 | | | | | Model Year | Required | Achieved | | 2022 | 42.4 | 177.7 | 42.4 | 177.7 | 45.3 | 45.2 | 45.3 | 45.2 | 43.2 | 60.6 | 43.2 | 60.6 | | 2023 | 43.1 | 177.7 | 43.1 | 177.7 | 46.0 | 48.2 | 46.0 | 48.2 | 43.9 | 61.2 | 43.9 | 61.2 | | 2024 | 46.8 | 177.7 | 46.8 | 177.7 | 50.0 | 48.8 | 50.0 | 48.8 | 47.7 | 62.2 | 47.7 | 62.2 | | 2025 | 50.9 | 177.7 | 50.9 | 177.7 | 54.3 | 49.8 | 54.3 | 49.8 | 51.8 | 65.4 | 51.8 | 65.4 | | 2026 | 56.6 | 177.7 | 56.6 | 177.7 | 60.4 | 57.6 | 60.4 | 57.6 | 57.6 | 66.0 | 57.6 | 66.0 | | 2027 | 56.6 | 177.7 | 57.7 | 177.7 | 60.4 | 59.7 | 61.6 | 59.7 | 57.6 | 66.0 | 58.7 | 66.0 | | 2028 | 56.6 | 177.7 | 58.9 | 177.7 | 60.4 | 61.8 | 62.9 | 61.8 | 57.6 | 66.0 | 59.9 | 66.0 | | 2029 | 56.6 | 177.7 | 60.1 | 177.7 | 60.4 | 63.8 | 64.2 | 63.8 | 57.6 | 67.2 | 61.2 | 67.2 | | 2030 | 56.6 | 177.7 | 61.3 | 177.7 | 60.4 | 66.2 | 65.5 | 66.2 | 57.6 | 69.0 | 62.4 | 69.6 | | 2031 | 56.6 | 177.7 | 62.6 | 177.7 | 60.4 | 68.5 | 66.8 | 68.5 | 57.6 | 71.3 | 63.7 | 71.8 | | 2032 | 56.6 | 177.7 | 63.8 | 177.7 | 60.4 | 70.3 | 68.2 | 70.3 | 57.6 | 73.2 | 65.0 | 76.1 | Table 0-208 - Comparison of No Action Alternative (Baseline) and Alternative PC2LT4 Required and Achieved CAFE Levels in MYs 2022-2032 for the Imported Car Fleet (mpg) | Comparison of | f No Action Alte | rnative (Bas | eline) and | Alternativ | e PC2LT4 Re
Fleet (| - | Achieved C | AFE Leve | els in MYs 20 | 22-2032 for | the Impor | ted Car | |---------------|---------------------------|--------------|----------------------|------------|---------------------------|------------|------------|-----------------------|---------------|-------------|--------------------|----------| | | VWA | | | | Total | | | | | | | | | | No Action A
(Baseline) | Iternative | Alternativ
PC2LT4 | | No Action A
(Baseline) | lternative | | Alternative
PC2LT4 | | lternative | Alternative PC2LT4 | | | Model Year | Required | Achieved | | 2022 | 45.3 | 38.2 | 45.3 | 38.2 | 44.7 | 42.7 | 44.7 | 42.7 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 46.0 | 39.4 | 46.0 | 39.4 | 45.4 | 46.3 | 45.4 | 46.3 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 50.0 | 44.9 | 50.0 | 44.9 | 49.3 | 49.6 | 49.3 | 49.6 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 54.4 | 48.3 | 54.4 | 48.3 | 53.6 | 52.2 | 53.6 | 52.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 60.4 | 52.3 | 60.4 | 52.3 | 59.5 | 57.9 | 59.5 | 57.9 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 60.4 | 54.2 | 61.6 | 54.2 | 59.5 | 59.3 | 60.7 | 59.3 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 60.4 | 59.3 | 62.9 | 61.4 | 59.5 | 60.9 | 62.0 | 61.6 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 60.4 | 61.1 | 64.2 | 63.2 | 59.5 | 62.5 | 63.3 | 63.8 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 60.4 | 63.3 | 65.5 | 65.4 | 59.5 | 64.5 | 64.6 | 65.9 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 60.4 | 65.7 | 66.8 | 67.6 | 59.5 | 66.6 | 65.9 | 68.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 60.4 | 67.3 | 68.2 | 69.3 | 59.5 | 68.1 | 67.2 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | ## **Incremental Benefits and Costs** Table 209 - Incremental Benefits and Costs Over the Lifetimes of Total Fleet Produced Through 2032 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs Over the Lifetimes of Total Percent Discount Rate, by Alte | | | 32 (2021\$ BI | LLIONS), 3% | |---|----------|--------|---------------|-------------| | Alternative |
PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Private Costs | | | | | | Technology Costs to Increase Fuel Economy | 29.9 | 37.8 | 50.7 | 68.8 | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.1 | 0.2 | 1.1 | | Safety Costs Internalized by Drivers | 4.3 | 5.3 | 6.6 | 8.7 | | Subtotal - Incremental Private Costs | 34.2 | 43.3 | 57.5 | 78.6 | | External Costs | · | | | | | Congestion and Noise Costs from Rebound-Effect Driving | 3.0 | 3.6 | 5.3 | 5.3 | | Safety Costs Not Internalized by Drivers | 1.7 | 1.7 | 4.6 | 5.0 | | Loss in Fuel Tax Revenue | 7.9 | 10.0 | 11.3 | 15.6 | | Subtotal - Incremental External Costs | 12.6 | 15.4 | 21.2 | 26.0 | | Total Incremental Social Costs | 46.8 | 58.6 | 78.7 | 104.5 | | Private Benefits | · | · | · | | | Reduced Fuel Costs | 37.6 | 47.7 | 55.1 | 75.9 | | Benefits from Additional Driving | 7.3 | 9.0 | 11.0 | 14.1 | | Less Frequent Refueling | 2.0 | 2.7 | 3.1 | 4.6 | | Subtotal - Incremental Private Benefits | 46.9 | 59.4 | 69.1 | 94.6 | | External Benefits | | | | • | | Reduction in Petroleum Market Externality | 1.5 | 1.9 | 2.1 | 2.9 | | Reduced Climate Damages, Average SCC | 42.4 | 53.9 | 61.9 | 85.8 | | Reduced Health Damages | 0.2 | 0.3 | 0.2 | 0.4 | | Subtotal - Incremental External Benefits | 44.1 | 56.1 | 64.3 | 89.1 | | Total Incremental Social Benefits, Average SCC | 59.5 | 75.5 | 87.5 | 120.1 | | | <u>-</u> | • | • | • | | Net Incremental Social Benefits, Average SCC | 12.7 | 16.8 | 8.8 | 15.6 | | | | | | | Table 210 - Incremental Benefits and Costs Over the Lifetimes of Passenger Car Fleet Produced Through 2032 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs Over the Lifetimes of Passenger Car Fleet Produced Through 2032 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, Average SCC | | | | | | | | | |---|--------|--------|--------|--------|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Private Costs | • | • | • | • | | | | | | Technology Costs to Increase Fuel Economy | 8.3 | 10.9 | 15.7 | 23.9 | | | | | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.0 | 0.1 | 0.4 | | | | | | Safety Costs Internalized by Drivers | 0.3 | 0.6 | 1.0 | 2.3 | | | | | | Subtotal - Incremental Private Costs | 8.6 | 11.5 | 16.7 | 26.6 | | | | | | External Costs | | | | • | | | | | | Congestion and Noise Costs from Rebound-Effect Driving | -0.3 | 0.0 | 1.4 | 2.2 | | | | | | Safety Costs Not Internalized by Drivers | -0.3 | -0.1 | 2.4 | 3.1 | | | | | | Loss in Fuel Tax Revenue | 0.4 | 0.8 | 1.0 | 2.5 | | | | | | Subtotal - Incremental External Costs | -0.2 | 0.6 | 4.9 | 7.9 | | | | | | Total Incremental Social Costs | 8.4 | 12.1 | 21.6 | 34.5 | | | | | | Private Benefits | | | | | | | | | | Reduced Fuel Costs | 2.3 | 4.4 | 6.0 | 14.4 | | | | | | Benefits from Additional Driving | 0.4 | 0.9 | 1.5 | 3.5 | | | | | | Less Frequent Refueling | 0.2 | 0.4 | 0.5 | 1.2 | | | | | | Subtotal - Incremental Private Benefits | 2.9 | 5.7 | 8.0 | 19.0 | | | | | | External Benefits | • | • | • | • | | | | | | Reduction in Petroleum Market Externality | 0.1 | 0.1 | 0.2 | 0.5 | | | | | | Reduced Climate Damages, Average SCC | 2.5 | 4.8 | 6.6 | 15.9 | | | | | | Reduced Health Damages | 0.0 | 0.0 | -0.1 | -0.1 | | | | | | Subtotal - Incremental External Benefits | 2.6 | 5.0 | 6.7 | 16.3 | | | | | | Total Incremental Social Benefits, Average SCC | 3.6 | 7.1 | 9.8 | 23.5 | | | | | | | • | • | · | · | | | | | | Net Incremental Social Benefits, Average SCC | -4.7 | -5.1 | -11.7 | -10.9 | | | | | Table 211 - Incremental Benefits and Costs Over the Lifetimes of Light Truck Fleet Produced Through 2032 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs Over the Lifetimes of Light Truck Fleet Produced Through 2032 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, Average SCC | | | | | | | | | |---|--------|--------|--------|--------|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Private Costs | | • | • | | | | | | | Technology Costs to Increase Fuel Economy | 21.6 | 26.9 | 35.0 | 44.9 | | | | | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.1 | 0.2 | 0.8 | | | | | | Safety Costs Internalized by Drivers | 4.0 | 4.8 | 5.6 | 6.3 | | | | | | Subtotal - Incremental Private Costs | 25.6 | 31.8 | 40.7 | 52.0 | | | | | | External Costs | · | | | | | | | | | Congestion and Noise Costs from Rebound-Effect Driving | 3.3 | 3.6 | 3.9 | 3.2 | | | | | | Safety Costs Not Internalized by Drivers | 2.0 | 1.8 | 2.2 | 1.8 | | | | | | Loss in Fuel Tax Revenue | 7.5 | 9.3 | 10.3 | 13.1 | | | | | | Subtotal - Incremental External Costs | 12.8 | 14.7 | 16.4 | 18.1 | | | | | | Total Incremental Social Costs | 38.5 | 46.5 | 57.1 | 70.1 | | | | | | Private Benefits | · | | | | | | | | | Reduced Fuel Costs | 35.3 | 43.3 | 49.1 | 61.5 | | | | | | Benefits from Additional Driving | 6.9 | 8.1 | 9.4 | 10.6 | | | | | | Less Frequent Refueling | 1.8 | 2.3 | 2.6 | 3.5 | | | | | | Subtotal - Incremental Private Benefits | 43.9 | 53.7 | 61.1 | 75.6 | | | | | | External Benefits | , | • | • | • | | | | | | Reduction in Petroleum Market Externality | 1.4 | 1.7 | 1.9 | 2.4 | | | | | | Reduced Climate Damages, Average SCC | 39.9 | 49.1 | 55.3 | 69.9 | | | | | | Reduced Health Damages | 0.2 | 0.3 | 0.3 | 0.5 | | | | | | Subtotal - Incremental External Benefits | 41.5 | 51.1 | 57.5 | 72.9 | | | | | | Total Incremental Social Benefits, Average SCC | 55.8 | 68.4 | 77.7 | 96.6 | | | | | | | • | • | · | • | | | | | | Net Incremental Social Benefits, Average SCC | 17.4 | 21.9 | 20.6 | 26.5 | | | | | Table 212 - Incremental Benefits and Costs Over the Lifetimes of Total Fleet Produced Through 2032 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs Over the Lifetimes of Total Fleet Produced Through 2032 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | | | | | | | | | |---|--------|--------|--------|--------|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Private Costs | | | | | | | | | | Technology Costs to Increase Fuel Economy | 21.5 | 27.1 | 36.1 | 48.5 | | | | | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.1 | 0.2 | 0.8 | | | | | | Safety Costs Internalized by Drivers | 2.3 | 2.9 | 3.6 | 4.7 | | | | | | Subtotal - Incremental Private Costs | 23.8 | 30.0 | 39.8 | 54.0 | | | | | | External Costs | | | | | | | | | | Congestion and Noise Costs from Rebound-Effect Driving | 1.7 | 2.1 | 3.1 | 3.4 | | | | | | Safety Costs Not Internalized by Drivers | 1.2 | 1.4 | 3.1 | 4.3 | | | | | | Loss in Fuel Tax Revenue | 4.4 | 5.6 | 6.2 | 8.5 | | | | | | Subtotal - Incremental External Costs | 7.4 | 9.1 | 12.4 | 16.3 | | | | | | Total Incremental Social Costs | 31.2 | 39.1 | 52.2 | 70.3 | | | | | | Private Benefits | | | | | | | | | | Reduced Fuel Costs | 20.6 | 26.0 | 30.0 | 40.7 | | | | | | Benefits from Additional Driving | 4.0 | 4.9 | 6.0 | 7.6 | | | | | | Less Frequent Refueling | 1.1 | 1.5 | 1.7 | 2.5 | | | | | | Subtotal - Incremental Private Benefits | 25.6 | 32.4 | 37.6 | 50.9 | | | | | | External Benefits | | • | • | • | | | | | | Reduction in Petroleum Market Externality | 0.8 | 1.0 | 1.1 | 1.6 | | | | | | Reduced Climate Damages, Average SCC | 42.4 | 53.9 | 61.9 | 85.8 | | | | | | Reduced Health Damages | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | Subtotal - Incremental External Benefits | 43.3 | 55.0 | 63.2 | 87.5 | | | | | | Total Incremental Social Benefits, Average SCC | 37.5 | 47.5 | 54.9 | 74.8 | | | | | | | • | | | | | | | | | Net Incremental Social Benefits, Average SCC | 6.3 | 8.4 | 2.7 | 4.5 | | | | | Table 213 - Incremental Benefits and Costs Over the Lifetimes of Passenger Car Fleet Produced Through 2032 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs Over the Lifetimes of Passenger Car Fleet Produced Through 2032 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | | | | | | | | | |---|--------|--------|--------|----------|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Private Costs | | • | • | • | | | | | | Technology Costs to Increase Fuel Economy | 6.0 | 7.8 | 11.2 | 16.9 | | | | | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.0 | 0.1 | 0.2 | | | | | | Safety Costs Internalized by Drivers | 0.1 | 0.3 | 0.5 | 1.3 | | | | | | Subtotal - Incremental Private Costs | 6.2 | 8.2 | 11.8 | 18.4 | | | | | | External Costs | · | | |
<u>.</u> | | | | | | Congestion and Noise Costs from Rebound-Effect Driving | -0.1 | 0.1 | 0.9 | 1.6 | | | | | | Safety Costs Not Internalized by Drivers | 0.0 | 0.2 | 1.7 | 2.7 | | | | | | Loss in Fuel Tax Revenue | 0.2 | 0.4 | 0.5 | 1.3 | | | | | | Subtotal - Incremental External Costs | 0.1 | 0.7 | 3.2 | 5.6 | | | | | | Total Incremental Social Costs | 6.3 | 8.9 | 14.9 | 24.0 | | | | | | Private Benefits | · | | | <u> </u> | | | | | | Reduced Fuel Costs | 1.2 | 2.3 | 3.1 | 7.5 | | | | | | Benefits from Additional Driving | 0.2 | 0.5 | 0.8 | 1.9 | | | | | | Less Frequent Refueling | 0.1 | 0.2 | 0.3 | 0.6 | | | | | | Subtotal - Incremental Private Benefits | 1.5 | 3.0 | 4.2 | 10.0 | | | | | | External Benefits | | - | - | | | | | | | Reduction in Petroleum Market Externality | 0.0 | 0.1 | 0.1 | 0.2 | | | | | | Reduced Climate Damages, Average SCC | 2.5 | 4.8 | 6.6 | 15.9 | | | | | | Reduced Health Damages | 0.0 | 0.0 | -0.1 | -0.1 | | | | | | Subtotal - Incremental External Benefits | 2.5 | 4.9 | 6.7 | 16.0 | | | | | | Total Incremental Social Benefits, Average SCC | 2.2 | 4.3 | 6.0 | 14.3 | | | | | | | | | | | | | | | | Net Incremental Social Benefits, Average SCC | -4.1 | -4.5 | -8.9 | -9.7 | | | | | Table 214 - Incremental Benefits and Costs Over the Lifetimes of Light Truck Fleet Produced Through 2032 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs Over the Lifetimes of Light Truck Fleet Produced Through 2032 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | | | | | | | | | |---|----------|----------|----------|--------|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Private Costs | <u> </u> | | | • | | | | | | Technology Costs to Increase Fuel Economy | 15.5 | 19.2 | 24.9 | 31.7 | | | | | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.0 | 0.1 | 0.5 | | | | | | Safety Costs Internalized by Drivers | 2.2 | 2.6 | 3.0 | 3.4 | | | | | | Subtotal - Incremental Private Costs | 17.7 | 21.9 | 28.0 | 35.6 | | | | | | External Costs | • | | | • | | | | | | Congestion and Noise Costs from Rebound-Effect Driving | 1.8 | 2.0 | 2.2 | 1.8 | | | | | | Safety Costs Not Internalized by Drivers | 1.2 | 1.2 | 1.4 | 1.6 | | | | | | Loss in Fuel Tax Revenue | 4.2 | 5.2 | 5.7 | 7.2 | | | | | | Subtotal - Incremental External Costs | 7.3 | 8.4 | 9.2 | 10.6 | | | | | | Total Incremental Social Costs | 24.9 | 30.2 | 37.3 | 46.3 | | | | | | Private Benefits | • | | | • | | | | | | Reduced Fuel Costs | 19.4 | 23.7 | 26.8 | 33.3 | | | | | | Benefits from Additional Driving | 3.8 | 4.4 | 5.1 | 5.8 | | | | | | Less Frequent Refueling | 1.0 | 1.3 | 1.4 | 1.9 | | | | | | Subtotal - Incremental Private Benefits | 24.1 | 29.4 | 33.4 | 40.9 | | | | | | External Benefits | | <u> </u> | <u>.</u> | - | | | | | | Reduction in Petroleum Market Externality | 0.8 | 0.9 | 1.0 | 1.3 | | | | | | Reduced Climate Damages, Average SCC | 39.9 | 49.1 | 55.3 | 69.9 | | | | | | Reduced Health Damages | 0.1 | 0.1 | 0.1 | 0.2 | | | | | | Subtotal - Incremental External Benefits | 40.7 | 50.1 | 56.5 | 71.4 | | | | | | Total Incremental Social Benefits, Average SCC | 35.3 | 43.1 | 48.9 | 60.5 | | | | | | | • | • | • | | | | | | | Net Incremental Social Benefits, Average SCC | 10.4 | 12.9 | 11.6 | 14.2 | | | | | Table 215 - Incremental Benefits and Costs for Calendar Years 2022-2050 for Total Fleet Produced Through MY 2050 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs for Calendar Years 2022-2050 for Total Fleet Produced Through MY 2050 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, Average SCC | | | | | | | | | |---|--------|--------|--------|--------|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Private Costs | | | | | | | | | | Technology Costs to Increase Fuel Economy | 77.7 | 104.7 | 170.5 | 270.0 | | | | | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.1 | 0.1 | 0.5 | 1.9 | | | | | | Safety Costs Internalized by Drivers | 10.4 | 13.7 | 17.7 | 26.4 | | | | | | Subtotal - Incremental Private Costs | 88.2 | 118.5 | 188.7 | 298.2 | | | | | | External Costs | | | | | | | | | | Congestion and Noise Costs from Rebound-Effect Driving | 7.4 | 9.7 | 12.6 | 18.9 | | | | | | Safety Costs Not Internalized by Drivers | 1.0 | 1.8 | 4.1 | 7.7 | | | | | | Loss in Fuel Tax Revenue | 19.7 | 26.8 | 34.5 | 61.1 | | | | | | Subtotal - Incremental External Costs | 28.1 | 38.3 | 51.2 | 87.7 | | | | | | Total Incremental Social Costs | 116.3 | 156.8 | 239.9 | 385.9 | | | | | | Private Benefits | | | | | | | | | | Reduced Fuel Costs | 97.6 | 131.7 | 170.6 | 291.0 | | | | | | Benefits from Additional Driving | 17.6 | 22.8 | 29.2 | 41.7 | | | | | | Less Frequent Refueling | 0.6 | 1.9 | 0.0 | -2.7 | | | | | | Subtotal - Incremental Private Benefits | 115.8 | 156.4 | 199.8 | 330.1 | | | | | | External Benefits | · | | | | | | | | | Reduction in Petroleum Market Externality | 3.8 | 5.2 | 6.7 | 12.0 | | | | | | Reduced Climate Damages, Average SCC | 7.1 | 9.6 | 12.4 | 21.3 | | | | | | Reduced Health Damages | 1.5 | 2.0 | 2.7 | 5.5 | | | | | | Subtotal - Incremental External Benefits | 12.4 | 16.8 | 21.8 | 38.9 | | | | | | Total Incremental Social Benefits, Average SCC | 150.5 | 203.3 | 260.8 | 436.9 | | | | | | | | | | | | | | | | Net Incremental Social Benefits, Average SCC | 34.2 | 46.5 | 21.0 | 51.0 | | | | | Table 216 - Incremental Benefits and Costs for Calendar Years 2022-2050 for Passenger Car Fleet Produced Through MY 2050 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, Average SCC | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | |--|----------|--------|--------|----------| | Private Costs | <u>.</u> | | | | | Technology Costs to Increase Fuel Economy | 20.5 | 30.5 | 52.0 | 90.0 | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.0 | 0.1 | 0.6 | | Safety Costs Internalized by Drivers | 0.4 | 1.0 | 2.3 | 6.7 | | Subtotal - Incremental Private Costs | 20.9 | 31.6 | 54.4 | 97.2 | | External Costs | | | | <u>.</u> | | Congestion and Noise Costs from Rebound-Effect Driving | -1.4 | -2.7 | -1.1 | 1.1 | | Safety Costs Not Internalized by Drivers | -1.9 | -3.4 | 0.1 | 1.2 | | Loss in Fuel Tax Revenue | -0.4 | -0.3 | 2.0 | 12.2 | | Subtotal - Incremental External Costs | -3.7 | -6.4 | 1.0 | 14.5 | | Total Incremental Social Costs | 17.2 | 25.2 | 55.4 | 111.7 | | Private Benefits | | | | | | Reduced Fuel Costs | 0.2 | 2.7 | 13.9 | 62.4 | | Benefits from Additional Driving | 0.7 | 1.7 | 3.6 | 9.7 | | Less Frequent Refueling | 3.4 | 6.9 | 6.3 | 2.6 | | Subtotal - Incremental Private Benefits | 4.3 | 11.3 | 23.8 | 74.7 | | External Benefits | • | | • | · | | Reduction in Petroleum Market Externality | -0.1 | -0.1 | 0.4 | 2.4 | | Reduced Climate Damages, Average SCC | 0.0 | 0.1 | 1.0 | 4.5 | | Reduced Health Damages | -0.1 | -0.2 | 0.0 | 1.7 | | Subtotal - Incremental External Benefits | -0.3 | -0.2 | 1.3 | 8.6 | | Total Incremental Social Benefits, Average SCC | 3.9 | 11.5 | 28.1 | 97.8 | Table 217 - Incremental Benefits and Costs for Calendar Years 2022-2050 for Light Truck Fleet Produced Through MY 2050 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs for Calendar Years 2022-2050 for Light Truck Fleet Produced Through MY 2050 (2021\$ BILLIONS), 3% Percent Discount Rate, by Alternative, Average SCC | | | | | | | | | | | | |---|--------|----------|----------|--------------|--|--|--|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | | Private Costs | | • | - | | | | | | | | | | Technology Costs to Increase Fuel Economy | 57.2 | 74.2 | 118.5 | 180.0 | | | | | | | | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.1 | 0.3 | 1.3 | | | | | | | | | Safety Costs Internalized by Drivers | 10.0 | 12.7 | 15.4 | 19.7 | | | | | | | | | Subtotal - Incremental Private Costs | 67.3 | 87.0 | 134.2 | 201.0 | | | | | | | | | External Costs | | <u>.</u> | | | | | | | | | | | Congestion and Noise Costs from Rebound-Effect Driving | 8.8 | 12.4 | 13.7 | 17.7 | | | | | | | | | Safety Costs Not Internalized by Drivers | 2.9 | 5.2 | 4.0 | 6.5 | | | | | | | | | Loss in Fuel Tax Revenue | 20.1 | 27.1 | 32.4 | 49.0 | | | | | | | | | Subtotal - Incremental External Costs | 31.8 | 44.7 | 50.2 | 73.2 | | | | | | | | | Total Incremental Social Costs | 99.1 | 131.6 | 184.4 | 274.2 | | | | | | | | | Private Benefits | | <u>.</u> | | | | | | | | | | | Reduced Fuel Costs | 97.4 | 129.0 | 156.7 | 228.6 | | | | | | | | | Benefits from Additional Driving | 16.9 | 21.1 | 25.6 | 32.0 | | | | | | | | | Less Frequent Refueling | -2.8 | -5.0 | -6.3 | -5.3 | | | | | | | | | Subtotal - Incremental Private Benefits | 111.5 |
145.1 | 176.0 | 255.4 | | | | | | | | | External Benefits | | | | , | | | | | | | | | Reduction in Petroleum Market Externality | 3.9 | 5.3 | 6.3 | 9.6 | | | | | | | | | Reduced Climate Damages, Average SCC | 7.1 | 9.4 | 11.4 | 16.8 | | | | | | | | | Reduced Health Damages | 1.7 | 2.2 | 2.7 | 3.8 | | | | | | | | | Subtotal - Incremental External Benefits | 12.7 | 17.0 | 20.5 | 30.2 | | | | | | | | | Total Incremental Social Benefits, Average SCC | 146.6 | 191.8 | 232.8 | 339.1 | Net Incremental Social Benefits, Average SCC | 47.4 | 60.2 | 48.3 | 65.0 | | | | | | | | Table 218 - Incremental Benefits and Costs for Calendar Years 2022-2050 for Total Fleet Produced Through MY 2050 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs for Calendar Years 2022-2050 for Total Fleet Produced Through MY 2050 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | | | | | | | | | | | |---|--------|--------|--|--------|--|--|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | Private Costs | | | | | | | | | | | | Technology Costs to Increase Fuel Economy | 45.6 | 60.8 | 96.1 | 149.3 | | | | | | | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.1 | 0.3 | 1.2 | | | | | | | | Safety Costs Internalized by Drivers | 5.0 | 6.6 | 8.5 | 12.5 | | | | | | | | Subtotal - Incremental Private Costs | 50.7 | 67.5 | 104.8 | 163.1 | | | | | | | | External Costs | | | | | | | | | | | | Congestion and Noise Costs from Rebound-Effect Driving | 3.7 | 4.8 | 6.2 | 9.2 | | | | | | | | Safety Costs Not Internalized by Drivers | 0.8 | 1.3 | 2.7 | 5.0 | | | | | | | | Loss in Fuel Tax Revenue | 9.7 | 13.1 | 16.5 | 28.7 | | | | | | | | Subtotal - Incremental External Costs | 14.2 | 19.2 | 25.4 | 42.9 | | | | | | | | Total Incremental Social Costs | 64.9 | 86.7 | 130.2 | 206.0 | | | | | | | | Private Benefits | | | | | | | | | | | | Reduced Fuel Costs | 47.2 | 63.5 | 81.2 | 135.9 | | | | | | | | Benefits from Additional Driving | 8.6 | 11.1 | 14.1 | 20.0 | | | | | | | | Less Frequent Refueling | 0.7 | 1.3 | 0.6 | -0.3 | | | | | | | | Subtotal - Incremental Private Benefits | 56.5 | 75.8 | 95.9 | 155.5 | | | | | | | | External Benefits | , | • | <u>, </u> | • | | | | | | | | Reduction in Petroleum Market Externality | 1.8 | 2.5 | 3.2 | 5.6 | | | | | | | | Reduced Climate Damages, Average SCC | 7.1 | 9.6 | 12.4 | 21.3 | | | | | | | | Reduced Health Damages | 0.6 | 0.7 | 1.0 | 2.0 | | | | | | | | Subtotal - Incremental External Benefits | 9.5 | 12.8 | 16.6 | 28.9 | | | | | | | | Total Incremental Social Benefits, Average SCC | 88.3 | 118.8 | 151.6 | 252.3 | | | | | | | | | • | • | • | • | | | | | | | | Net Incremental Social Benefits, Average SCC | 23.4 | 32.1 | 21.4 | 46.4 | | | | | | | Table 219 - Incremental Benefits and Costs for Calendar Years 2022-2050 for Passenger Car Fleet Produced Through MY 2050 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs for Calendar Years 2022-2
2050 (2021\$ BILLIONS), 7% Percent Discour | | | | hrough MY | |--|----------|--------|--------|-----------| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Private Costs | <u> </u> | • | | • | | Technology Costs to Increase Fuel Economy | 12.0 | 17.4 | 29.1 | 49.9 | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.0 | 0.1 | 0.4 | | Safety Costs Internalized by Drivers | 0.2 | 0.5 | 1.1 | 3.2 | | Subtotal - Incremental Private Costs | 12.2 | 17.9 | 30.3 | 53.5 | | External Costs | | | | | | Congestion and Noise Costs from Rebound-Effect Driving | -0.6 | -1.0 | -0.1 | 1.1 | | Safety Costs Not Internalized by Drivers | -0.6 | -1.1 | 0.8 | 1.7 | | Loss in Fuel Tax Revenue | -0.1 | 0.0 | 1.0 | 5.6 | | Subtotal - Incremental External Costs | -1.3 | -2.2 | 1.7 | 8.4 | | Total Incremental Social Costs | 10.9 | 15.7 | 32.0 | 61.9 | | Private Benefits | | | | | | Reduced Fuel Costs | 0.4 | 1.7 | 6.9 | 28.8 | | Benefits from Additional Driving | 0.4 | 0.9 | 1.8 | 4.7 | | Less Frequent Refueling | 1.5 | 3.0 | 2.8 | 1.3 | | Subtotal - Incremental Private Benefits | 2.3 | 5.6 | 11.4 | 34.9 | | External Benefits | • | | | · | | Reduction in Petroleum Market Externality | 0.0 | 0.0 | 0.2 | 1.1 | | Reduced Climate Damages, Average SCC | 0.0 | 0.1 | 1.0 | 4.5 | | Reduced Health Damages | -0.1 | -0.1 | 0.0 | 0.6 | | Subtotal - Incremental External Benefits | -0.1 | 0.0 | 1.1 | 6.2 | | Total Incremental Social Benefits, Average SCC | 2.0 | 5.9 | 15.5 | 55.5 | | | | | | | | Net Incremental Social Benefits, Average SCC | -8.9 | -9.8 | -16.5 | -6.4 | Table 220 - Incremental Benefits and Costs for Calendar Years 2022-2050 for Light Truck Fleet Produced Through MY 2050 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | Incremental Benefits and Costs for Calendar Years 2022-2050 for Light Truck Fleet Produced Through MY 2050 (2021\$ BILLIONS), 7% Percent Discount Rate, by Alternative, Average SCC | | | | | | | | | | | | |---|----------|----------|--------|----------|--|--|--|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | | Private Costs | <u>.</u> | <u> </u> | | <u>.</u> | | | | | | | | | Technology Costs to Increase Fuel Economy | 33.6 | 43.4 | 67.0 | 99.5 | | | | | | | | | Increased Maintenance and Repair Costs | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | Sacrifice in Other Vehicle Attributes | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | Consumer Surplus Loss from Reduced New Vehicle Sales | 0.0 | 0.1 | 0.2 | 0.8 | | | | | | | | | Safety Costs Internalized by Drivers | 4.8 | 6.1 | 7.4 | 9.3 | | | | | | | | | Subtotal - Incremental Private Costs | 38.5 | 49.6 | 74.5 | 109.6 | | | | | | | | | External Costs | · | | | • | | | | | | | | | Congestion and Noise Costs from Rebound-Effect Driving | 4.2 | 5.8 | 6.3 | 8.1 | | | | | | | | | Safety Costs Not Internalized by Drivers | 1.5 | 2.4 | 1.9 | 3.3 | | | | | | | | | Loss in Fuel Tax Revenue | 9.8 | 13.1 | 15.5 | 23.1 | | | | | | | | | Subtotal - Incremental External Costs | 15.5 | 21.4 | 23.7 | 34.5 | | | | | | | | | Total Incremental Social Costs | 53.9 | 71.0 | 98.3 | 144.1 | | | | | | | | | Private Benefits | · | | | • | | | | | | | | | Reduced Fuel Costs | 46.8 | 61.7 | 74.3 | 107.0 | | | | | | | | | Benefits from Additional Driving | 8.2 | 10.2 | 12.3 | 15.3 | | | | | | | | | Less Frequent Refueling | -0.8 | -1.7 | -2.1 | -1.7 | | | | | | | | | Subtotal - Incremental Private Benefits | 54.2 | 70.2 | 84.5 | 120.6 | | | | | | | | | External Benefits | <u> </u> | • | | - | | | | | | | | | Reduction in Petroleum Market Externality | 1.9 | 2.5 | 3.0 | 4.5 | | | | | | | | | Reduced Climate Damages, Average SCC | 7.1 | 9.4 | 11.4 | 16.8 | | | | | | | | | Reduced Health Damages | 0.6 | 0.8 | 1.0 | 1.4 | | | | | | | | | Subtotal - Incremental External Benefits | 9.6 | 12.8 | 15.5 | 22.7 | | | | | | | | | Total Incremental Social Benefits, Average SCC | 86.2 | 112.8 | 136.2 | 196.9 | | | | | | | | | | • | • | • | | | | | | | | | | Net Incremental Social Benefits, Average SCC | 32.3 | 41.9 | 37.9 | 52.8 | | | | | | | | ### Technology Costs and Civil Penalties per Vehicle, by Model Year Table 221 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Total) | Estimated Average Per Vehic | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Total) | | | | | | | | | | | | | | |----------------------------------|---|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 138 | 599 | 1,00
9 | 1,27
7 | 1,68
4 | 1,75
8 | 1,74
5 | 1,76
9 | 1,80
0 | 1,93
1 | 1,88
9 | | | | | Alternative PC1LT3 | 138 | 599 | 1,00
9 | 1,27
7 | 1,68
4 | 2,07
0 | 2,20
0 | 2,28
7 | 2,34
5 | 2,47
5 | 2,49
0 | | | | | Alternative PC2LT4 | 138 | 599 | 1,00
9 | 1,27
7 | 1,68
4 | 2,12
7 | 2,32
2 | 2,48
5 | 2,57
7 | 2,74
1 | 2,82
1 | | | | | Alternative PC3LT5 | 138 | 599 | 1,00
9 | 1,27
7 | 1,68
4 | 2,24
8 | 2,48
8 | 2,72
6 | 2,89
7 | 3,12
5 | 3,49
2 | | | | | Alternative PC6LT8 | 138 | 599 | 1,00
9 | 1,27
7 | 1,68
4 | 2,42
5 | 2,89
3 | 3,46
5 | 4,11
5 | 4,68
4 | 5,37
5 | | | | # Table 222 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Total) | Estimated Average Per Vehicle | Techn | ology a | and Civ | il Penal
(Total) | | sts (\$), F | Passeng | jer Car I | Fleet for | Manufa | cturer | |----------------------------------|-------|---------|---------|---------------------|-------|-------------|---------|-----------|-----------|--------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 |
2031 | 2032 | | No Action Alternative (Baseline) | 203 | 383 | 791 | 947 | 1,288 | 1,323 | 1,292 | 1,271 | 1,276 | 1,279 | 1,227 | | Alternative PC1LT3 | 203 | 383 | 791 | 947 | 1,288 | 1,615 | 1,690 | 1,696 | 1,687 | 1,685 | 1,614 | | Alternative PC2LT4 | 203 | 383 | 791 | 947 | 1,288 | 1,673 | 1,789 | 1,887 | 1,867 | 1,850 | 1,784 | | Alternative PC3LT5 | 203 | 383 | 791 | 947 | 1,288 | 1,794 | 1,953 | 2,153 | 2,145 | 2,171 | 2,244 | | Alternative PC6LT8 | 203 | 383 | 791 | 947 | 1,288 | 1,998 | 2,384 | 2,860 | 3,279 | 3,542 | 3,833 | # Table 223 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Total) | Estimated Average Per Vehic | cle Tecl | nnology | y and Ci | ivil Pena
(Total) | alties Co | osts (\$), | Light T | ruck Fle | et for N | lanufac | turer | |----------------------------------|----------|---------|----------|----------------------|-----------|------------|---------|----------|----------|---------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 98 | 721 | 1,123 | 1,440 | 1,873 | 1,962 | 1,954 | 1,999 | 2,043 | 2,237 | 2,202 | | Alternative PC1LT3 | 98 | 721 | 1,123 | 1,440 | 1,873 | 2,281 | 2,434 | 2,558 | 2,649 | 2,845 | 2,904 | | Alternative PC2LT4 | 98 | 721 | 1,123 | 1,440 | 1,873 | 2,339 | 2,568 | 2,757 | 2,905 | 3,160 | 3,312 | | Alternative PC3LT5 | 98 | 721 | 1,123 | 1,440 | 1,873 | 2,459 | 2,734 | 2,988 | 3,244 | 3,572 | 4,087 | | Alternative PC6LT8 | 98 | 721 | 1,123 | 1,440 | 1,873 | 2,623 | 3,127 | 3,740 | 4,498 | 5,217 | 6,108 | # Table 224 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (BMW) | Estimated Average Per Vehic | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (BMW) | | | | | | | | | | | | | | |----------------------------------|---|------|------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 446 | 346 | 966 | 1,444 | 1,571 | 1,425 | 1,651 | 1,820 | 1,912 | 2,024 | 1,981 | | | | | Alternative PC1LT3 | 446 | 346 | 966 | 1,444 | 1,571 | 1,567 | 1,799 | 1,950 | 2,017 | 2,116 | 2,064 | | | | | Alternative PC2LT4 | 446 | 346 | 966 | 1,444 | 1,571 | 1,648 | 1,867 | 2,059 | 2,181 | 2,329 | 2,272 | | | | | Alternative PC3LT5 | 446 | 346 | 966 | 1,444 | 1,571 | 1,721 | 1,951 | 2,191 | 2,363 | 2,554 | 2,561 | | | | | Alternative PC6LT8 | 446 | 346 | 966 | 1,444 | 1,571 | 1,971 | 2,440 | 2,913 | 3,405 | 3,943 | 4,444 | | | | Table 225 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Ford) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Ford) | | | | | | | | | | | | | |--|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | No Action Alternative (Baseline) | 76 | 1,46
7 | 2,17
3 | 2,23
4 | 2,47
4 | 2,49
6 | 2,39
2 | 2,28
5 | 2,15
4 | 2,19
1 | 2,15
2 | | | Alternative PC1LT3 | 76 | 1,46
7 | 2,17
3 | 2,23
4 | 2,47
4 | 2,90
3 | 3,08
9 | 3,17
5 | 3,02
6 | 2,99
4 | 2,93
3 | | | Alternative PC2LT4 | 76 | 1,46
7 | 2,17
3 | 2,23
4 | 2,47
4 | 3,06
2 | 3,25
8 | 3,36
8 | 3,21
8 | 3,34
0 | 3,48
8 | | | Alternative PC3LT5 | 76 | 1,46
7 | 2,17
3 | 2,23
4 | 2,47
4 | 3,06
2 | 3,25
8 | 3,36
8 | 3,49
6 | 3,70
6 | 3,95
1 | | | Alternative PC6LT8 | 76 | 1,46
7 | 2,17
3 | 2,23
4 | 2,47
4 | 3,22
4 | 3,65
0 | 4,03
0 | 4,87
7 | 5,41
9 | 6,09
5 | | # Table 226 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (GM) | Estimated Average Per Vehi | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (GM) | | | | | | | | | | | | | | |----------------------------------|--|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 283 | 160 | 1,53
2 | 1,91
9 | 2,06
9 | 2,00
9 | 1,89
0 | 1,75
6 | 1,65
3 | 2,31
8 | 2,20
4 | | | | | Alternative PC1LT3 | 283 | 160 | 1,53
2 | 1,91
9 | 2,06
9 | 2,82
1 | 2,86
6 | 2,96
0 | 3,04
3 | 3,82
2 | 3,87
7 | | | | | Alternative PC2LT4 | 283 | 160 | 1,53
2 | 1,91
9 | 2,06
9 | 2,88
6 | 3,01
3 | 3,09
8 | 3,28
7 | 4,10
7 | 4,25
2 | | | | | Alternative PC3LT5 | 283 | 160 | 1,53
2 | 1,91
9 | 2,06
9 | 2,96
4 | 3,16
4 | 3,35
3 | 3,65
3 | 4,68
9 | 5,31
0 | | | | | Alternative PC6LT8 | 283 | 160 | 1,53
2 | 1,91
9 | 2,06
9 | 3,17
5 | 3,63
3 | 4,11
1 | 4,74
9 | 6,09
8 | 7,18
0 | | | | # Table 227 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Honda) | Estimated Average Per Vehicle | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Honda) | | | | | | | | | | | | | | |----------------------------------|---|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 0 | 297 | 310 | 419 | 1,037 | 1,177 | 1,249 | 1,290 | 1,340 | 1,370 | 1,325 | | | | | Alternative PC1LT3 | 0 | 297 | 310 | 419 | 1,037 | 1,332 | 1,391 | 1,421 | 1,458 | 1,477 | 1,424 | | | | | Alternative PC2LT4 | 0 | 297 | 310 | 419 | 1,037 | 1,350 | 1,423 | 1,485 | 1,565 | 1,582 | 1,559 | | | | | Alternative PC3LT5 | 0 | 297 | 310 | 419 | 1,037 | 1,670 | 1,782 | 1,839 | 1,959 | 1,960 | 1,928 | | | | | Alternative PC6LT8 | 0 | 297 | 310 | 419 | 1,037 | 1,907 | 2,194 | 2,552 | 2,708 | 3,562 | 3,826 | | | | # Table 228 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Hyundai KiH) | Estimated Average Per Vehicle | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Hyundai KiH) | | | | | | | | | | | | | | | |----------------------------------|---|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | | No Action Alternative (Baseline) | 0 | 560 | 554 | 960 | 1,497 | 1,537 | 1,536 | 1,581 | 1,632 | 1,692 | 1,652 | | | | | | Alternative PC1LT3 | 0 | 560 | 554 | 960 | 1,497 | 2,698 | 3,377 | 3,356 | 3,343 | 3,277 | 3,178 | | | | | | Alternative PC2LT4 | 0 | 560 | 554 | 960 | 1,497 | 2,779 | 3,796 | 3,751 | 3,713 | 3,661 | 3,569 | | | | | | Alternative PC3LT5 | 0 | 560 | 554 | 960 | 1,497 | 2,859 | 3,732 | 3,693 | 3,666 | 3,721 | 5,256 | | | | | | Alternative PC6LT8 | 0 | 560 | 554 | 960 | 1,497 | 3,116 | 4,077 | 4,505 | 4,976 | 5,482 | 7,499 | | | | | # Table 229 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Hyundai KiK) | Estimated Average Per Vehicle | Techn | ology a | and Civ | il Penal
KiK) | ties Co | sts (\$), 1 | Total Fle | et for N | lanufact | urer (Hy | yundai | |----------------------------------|-------|---------|---------|------------------|---------|-------------|-----------|----------|----------|----------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 78 | 564 | 566 | 1,173 | 1,084 | 1,018 | 979 | 1,053 | 1,101 | 1,087 | | Alternative PC1LT3 | 0 | 78 | 564 | 566 | 1,173 | 1,638 | 1,710 | 2,029 | 2,087 | 2,134 | 2,100 | | Alternative PC2LT4 | 0 | 78 | 564 | 566 | 1,173 | 1,708 | 1,861 | 3,142 | 3,210 | 3,394 | 3,322 | | Alternative PC3LT5 | 0 | 78 | 564 | 566 | 1,173 | 1,785 | 2,019 | 3,436 | 3,545 | 3,776 | 5,824 | | Alternative PC6LT8 | 0 | 78 | 564 | 566 | 1,173 | 2,015 | 2,587 | 4,435 | 5,270 | 5,618 | 7,792 | Table 230 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (JLR) | Estimated Average Per Vehi | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (JLR) | | | | | | | | | | | | | | |----------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 499 | 1,48
5 | 1,96
5 | 1,90
7 | 1,48
8 | 1,67
3 | 1,56
9 | 1,51
0 | 1,59
6 | 1,61
0 | 1,63
5 | | | | | Alternative PC1LT3 | 499 | 1,48
5 | 1,96
5 | 1,90
7 | 1,48
8 | 1,87
8 | 1,97
7 |
2,12
5 | 2,53
5 | 2,37
6 | 2,47
4 | | | | | Alternative PC2LT4 | 499 | 1,48
5 | 1,96
5 | 1,90
7 | 1,48
8 | 1,93
6 | 2,12
7 | 2,34
4 | 2,83
6 | 2,77
4 | 3,00
6 | | | | | Alternative PC3LT5 | 499 | 1,48
5 | 1,96
5 | 1,90
7 | 1,48
8 | 2,00
8 | 2,28
0 | 2,58
4 | 3,17
3 | 3,19
2 | 3,55
8 | | | | | Alternative PC6LT8 | 499 | 1,48
5 | 1,96
5 | 1,90
7 | 1,48
8 | 2,22
9 | 2,77
1 | 3,35
0 | 4,30
2 | 4,67
3 | 5,51
3 | | | | Table 231 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Karma) | Estimated Average Per Vehic | cle Tec | hnolog | y and (| Civil Pe | enalties (| Costs (\$ |), Total I | leet for | Manufa | cturer (k | (arma) | |----------------------------------|----------|----------|----------|----------|------------|------------|------------|------------|------------|------------|------------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | # Table 232 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Lucid) | Estimated Average Per Vehicle | Techno | ology ar | nd Civil | Penalti | es Cos | ts (\$), T | otal Fle | et for I | Manufa | cturer (| Lucid) | |----------------------------------|--------|----------|----------|---------|--------|------------|----------|----------|--------|----------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | ## Table 233 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Mazda) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Mazda) | | | | | | | | | | | | | | |---|----------|----------|----------|----------|-----------|-----------|-----------|-----------|------------|------------|------------|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 613 | 616 | 618 | 1,49
6 | 1,67
6 | 1,81
6 | 1,91
0 | 2,006 | 2,072 | 2,044 | | | | Alternative PC1LT3 | 0 | 613 | 616 | 618 | 1,49
6 | 1,71
2 | 1,85
0 | 1,94
3 | 2,036 | 2,101 | 2,071 | | | | Alternative PC2LT4 | 0 | 613 | 616 | 618 | 1,49
6 | 1,73
8 | 1,86
4 | 1,97
3 | 2,076 | 2,138 | 2,106 | | | | Alternative PC3LT5 | 0 | 613 | 616 | 618 | 1,49
6 | 5,61
3 | 5,63
4 | 7,57
4 | 7,513 | 7,271 | 7,007 | | | | Alternative PC6LT8 | 0 | 613 | 616 | 618 | 1,49
6 | 6,04
9 | 6,09
1 | 9,44
5 | 12,19
9 | 11,66
7 | 11,53
9 | | | # Table 234 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Mercedes-Benz) | Estimated Average Per V | ehicle 1 | Technol | | d Civil F
cedes-E | | s Costs | (\$), Tota | al Fleet | for Man | ufacture | er | |----------------------------------|----------|---------|------|----------------------|-------|---------|------------|----------|---------|----------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 638 | 767 | 774 | 1,101 | 1,983 | 1,901 | 1,578 | 1,750 | 1,934 | 2,066 | 2,084 | | Alternative PC1LT3 | 638 | 767 | 774 | 1,101 | 1,983 | 2,052 | 1,885 | 1,974 | 2,152 | 2,263 | 2,267 | | Alternative PC2LT4 | 638 | 767 | 774 | 1,101 | 1,983 | 2,133 | 2,044 | 2,157 | 2,232 | 2,371 | 2,450 | | Alternative PC3LT5 | 638 | 767 | 774 | 1,101 | 1,983 | 2,213 | 2,210 | 2,417 | 2,553 | 2,721 | 2,862 | | Alternative PC6LT8 | 638 | 767 | 774 | 1,101 | 1,983 | 2,454 | 2,745 | 3,238 | 3,754 | 4,287 | 4,877 | Table 235 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Mitsubishi) | Estimated Average Per V | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Mitsubishi) | | | | | | | | | | | | | | |----------------------------------|--|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 226 | 253 | 1,29
6 | 1,42
4 | 1,97
6 | 1,84
6 | 1,74
5 | 1,63
5 | 1,54
1 | 1,40
0 | 1,35
6 | | | | | Alternative PC1LT3 | 226 | 253 | 1,29
6 | 1,42
4 | 1,97
6 | 1,95
1 | 2,00
2 | 2,06
0 | 2,15
7 | 1,93
7 | 1,90
4 | | | | | Alternative PC2LT4 | 226 | 253 | 1,29
6 | 1,42
4 | 1,97
6 | 2,01
8 | 2,18
6 | 2,33
6 | 2,55
0 | 2,04
1 | 1,99
2 | | | | | Alternative PC3LT5 | 226 | 253 | 1,29
6 | 1,42
4 | 1,97
6 | 2,10
6 | 2,37
6 | 2,62
0 | 2,95
8 | 3,24
2 | 3,13
6 | | | | | Alternative PC6LT8 | 226 | 253 | 1,29
6 | 1,42
4 | 1,97
6 | 2,38
7 | 2,98
7 | 3,55
9 | 4,32
0 | 4,30
8 | 5,02
2 | | | | Table 236 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Nissan) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Nissan) | | | | | | | | | | | | | | | |--|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 34 | 1,29
2 | 1,41
0 | 1,76
0 | 1,87
3 | 2,29
5 | 2,19
6 | 2,23
2 | 2,25
8 | 2,24
5 | 2,17
4 | | | | | Alternative PC1LT3 | 34 | 1,29
2 | 1,41
0 | 1,76
0 | 1,87
3 | 2,39
0 | 2,45
0 | 2,47
0 | 2,48
2 | 2,45
2 | 2,37
0 | | | | | Alternative PC2LT4 | 34 | 1,29
2 | 1,41
0 | 1,76
0 | 1,87
3 | 2,42
9 | 2,69
1 | 2,75
2 | 2,81
0 | 2,76
6 | 2,71
4 | | | | | Alternative PC3LT5 | 34 | 1,29
2 | 1,41
0 | 1,76
0 | 1,87
3 | 2,50
3 | 2,83
9 | 2,97
4 | 3,05
5 | 3,01
9 | 3,01
5 | | | | | Alternative PC6LT8 | 34 | 1,29
2 | 1,41
0 | 1,76
0 | 1,87
3 | 2,71
6 | 3,39
2 | 3,77
9 | 3,94
7 | 4,32
1 | 4,82
2 | | | | Table 237 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Stellantis) | Estimated Average Per V | 'ehicle ⁻ | Гесhnol | | l Civil P
tellantis | | Costs | (\$), Tota | al Fleet | for Man | ufacture | er | |----------------------------------|----------------------|-----------|-----------|------------------------|-----------|-----------|------------|-----------|-----------|-----------|-----------| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 465 | 1,06
0 | 1,69
8 | 2,58
8 | 2,56
2 | 2,62
8 | 2,50
8 | 2,63
0 | 2,72
7 | 2,76
8 | 2,73
6 | | Alternative PC1LT3 | 465 | 1,06
0 | 1,69
8 | 2,58
8 | 2,56
2 | 2,84
2 | 2,90
1 | 3,01
6 | 3,15
1 | 3,23
8 | 3,58
6 | | Alternative PC2LT4 | 465 | 1,06
0 | 1,69
8 | 2,58
8 | 2,56
2 | 2,91
7 | 3,05
5 | 3,38
0 | 3,59
0 | 3,73
9 | 4,16
7 | | Alternative PC3LT5 | 465 | 1,06
0 | 1,69
8 | 2,58
8 | 2,56
2 | 2,97
8 | 3,19
8 | 3,61
0 | 3,92
1 | 4,13
4 | 4,67
2 | | Alternative PC6LT8 | 465 | 1,06
0 | 1,69
8 | 2,58
8 | 2,56
2 | 3,19
5 | 3,67
3 | 4,38
5 | 5,77
7 | 6,27
1 | 7,23
8 | # Table 238 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Subaru) | Estimated Average Per Vehicle | Techn | ology a | nd Civ | il Pena | Ities Co | sts (\$), ⁻ | Total Fle | et for N | lanufac | turer (S | ubaru) | |----------------------------------|-------|---------|--------|---------|----------|------------------------|-----------|----------|---------|----------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 383 | 326 | 373 | 1,418 | 1,658 | 1,838 | 1,959 | 2,101 | 2,192 | 2,175 | | Alternative PC1LT3 | 0 | 383 | 326 | 373 | 1,418 | 1,659 | 1,839 | 1,960 | 2,101 | 2,193 | 2,175 | | Alternative PC2LT4 | 0 | 383 | 326 | 373 | 1,418 | 1,661 | 1,839 | 1,960 | 2,101 | 2,193 | 2,175 | | Alternative PC3LT5 | 0 | 383 | 326 | 373 | 1,418 | 1,676 | 1,847 |
1,969 | 2,109 | 2,200 | 2,180 | | Alternative PC6LT8 | 0 | 383 | 326 | 373 | 1,418 | 1,712 | 1,909 | 2,683 | 3,137 | 3,141 | 3,082 | ## Table 239 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Tesla) | Estimated Average Per Vehicle | Techno | ology a | nd Civil | Penalt | ies Cos | ts (\$), 1 | Total Flo | eet for l | Manufa | cturer (| Tesla) | |----------------------------------|--------|---------|----------|--------|---------|------------|-----------|-----------|--------|----------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | # Table 240 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Toyota) | Estimated Average Per Vehicle | Techn | ology a | and Civ | il Pena | Ities Co | sts (\$), | Total Flo | eet for N | /lanufac | turer (T | oyota) | |----------------------------------|-------|---------|---------|---------|----------|-----------|-----------|-----------|----------|----------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 163 | 235 | 254 | 1,100 | 1,177 | 1,327 | 1,414 | 1,516 | 1,597 | 1,586 | | Alternative PC1LT3 | 0 | 163 | 235 | 254 | 1,100 | 1,178 | 1,328 | 1,415 | 1,516 | 1,597 | 1,586 | | Alternative PC2LT4 | 0 | 163 | 235 | 254 | 1,100 | 1,181 | 1,331 | 1,419 | 1,524 | 1,606 | 1,659 | | Alternative PC3LT5 | 0 | 163 | 235 | 254 | 1,100 | 1,187 | 1,444 | 1,589 | 1,727 | 1,831 | 1,958 | | Alternative PC6LT8 | 0 | 163 | 235 | 254 | 1,100 | 1,239 | 1,790 | 2,261 | 2,761 | 3,261 | 3,471 | ## Table 241 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (Volvo) | Estimated Average Per Vehicle | e Techr | nology | and Civ | il Pena | Ities Co | osts (\$), | Total F | leet for | Manufa | cturer (| Volvo) | |----------------------------------|---------|--------|---------|---------|----------|------------|---------|----------|--------|----------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 86 | 55 | 913 | 850 | 758 | 686 | 553 | 781 | 1,023 | 1,052 | | Alternative PC1LT3 | 0 | 86 | 55 | 913 | 850 | 941 | 1,036 | 1,067 | 1,120 | 1,310 | 1,368 | | Alternative PC2LT4 | 0 | 86 | 55 | 913 | 850 | 991 | 1,163 | 1,265 | 1,309 | 1,531 | 1,618 | | Alternative PC3LT5 | 0 | 86 | 55 | 913 | 850 | 1,053 | 1,290 | 1,463 | 1,599 | 1,876 | 2,023 | | Alternative PC6LT8 | 0 | 86 | 55 | 913 | 850 | 1,248 | 1,800 | 2,265 | 2,791 | 3,430 | 3,919 | Table 242 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (VWA) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Total Fleet for Manufacturer (VWA) | | | | | | | | | | | | | | |---|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 295 | 1,07
8 | 1,29
1 | 1,57
1 | 1,73
3 | 1,92
1 | 1,83
6 | 1,98
2 | 2,06
5 | 2,12
2 | 2,08
0 | | | | Alternative PC1LT3 | 295 | 1,07
8 | 1,29
1 | 1,57
1 | 1,73
3 | 2,09 | 2,10
9 | 2,24
2 | 2,49
2 | 2,53
3 | 2,46
6 | | | | Alternative PC2LT4 | 295 | 1,07
8 | 1,29
1 | 1,57
1 | 1,73
3 | 2,16
7 | 2,25
2 | 2,42
6 | 2,77
5 | 2,76
5 | 2,74
5 | | | | Alternative PC3LT5 | 295 | 1,07
8 | 1,29
1 | 1,57
1 | 1,73
3 | 2,24
9 | 2,39
6 | 2,66
4 | 3,08
1 | 3,10
8 | 3,19
1 | | | | Alternative PC6LT8 | 295 | 1,07
8 | 1,29
1 | 1,57
1 | 1,73
3 | 2,49
8 | 2,90
2 | 3,44
9 | 4,24
2 | 4,60
0 | 5,17
7 | | | # Table 243 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (BMW) | Estimated Average Per Vehicle | e Techi | nology | and Civ | il Penal
(BMW) | ties Cos | sts (\$), P | asseng | er Car F | leet for | Manufa | cturer | |----------------------------------|---------|--------|---------|-------------------|----------|-------------|--------|----------|----------|--------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 821 | 592 | 1,842 | 2,016 | 1,987 | 1,781 | 1,894 | 1,924 | 1,886 | 1,893 | 1,781 | | Alternative PC1LT3 | 821 | 592 | 1,842 | 2,016 | 1,987 | 1,870 | 1,897 | 1,926 | 1,887 | 1,893 | 1,780 | | Alternative PC2LT4 | 821 | 592 | 1,842 | 2,016 | 1,987 | 1,959 | 1,886 | 1,903 | 1,887 | 1,894 | 1,780 | | Alternative PC3LT5 | 821 | 592 | 1,842 | 2,016 | 1,987 | 2,048 | 1,893 | 1,910 | 1,894 | 1,900 | 1,785 | | Alternative PC6LT8 | 821 | 592 | 1,842 | 2,016 | 1,987 | 2,328 | 2,381 | 2,583 | 2,835 | 3,187 | 3,491 | # Table 244 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Ford) | Estimated Average Per Vehicle | e Techr | nology | and Civ | il Penali
(Ford) | ies Cos | sts (\$), P | asseng | er Car F | leet for | Manufa | cturer | |----------------------------------|---------|--------|---------|---------------------|---------|-------------|--------|----------|----------|--------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 6 | 1,393 | 1,645 | 1,497 | 1,337 | 1,233 | 1,105 | 934 | 950 | 916 | | Alternative PC1LT3 | 0 | 6 | 1,393 | 1,645 | 1,497 | 1,419 | 1,313 | 1,183 | 1,031 | 1,083 | 1,081 | | Alternative PC2LT4 | 0 | 6 | 1,393 | 1,645 | 1,497 | 2,067 | 1,944 | 1,800 | 1,660 | 1,647 | 1,627 | | Alternative PC3LT5 | 0 | 6 | 1,393 | 1,645 | 1,497 | 2,067 | 1,944 | 1,800 | 1,633 | 1,609 | 1,641 | | Alternative PC6LT8 | 0 | 6 | 1,393 | 1,645 | 1,497 | 2,225 | 2,100 | 2,313 | 6,217 | 6,560 | 6,900 | # Table 245 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (GM) | Estimated Average Per Vehicle | e Techr | nology | and Civ | il Penali
(GM) | ties Cos | sts (\$), P | asseng | er Car F | leet for | Manufa | cturer | |----------------------------------|---------|--------|---------|-------------------|----------|-------------|--------|----------|----------|--------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 473 | 8 | 1,557 | 1,700 | 1,933 | 1,772 | 1,675 | 1,568 | 1,504 | 1,433 | 1,363 | | Alternative PC1LT3 | 473 | 8 | 1,557 | 1,700 | 1,933 | 2,860 | 2,817 | 3,154 | 3,052 | 3,106 | 2,973 | | Alternative PC2LT4 | 473 | 8 | 1,557 | 1,700 | 1,933 | 2,949 | 3,005 | 3,062 | 3,011 | 2,999 | 2,912 | | Alternative PC3LT5 | 473 | 8 | 1,557 | 1,700 | 1,933 | 3,041 | 3,208 | 3,507 | 3,607 | 4,310 | 5,805 | | Alternative PC6LT8 | 473 | 8 | 1,557 | 1,700 | 1,933 | 3,326 | 3,843 | 4,491 | 5,027 | 6,037 | 8,134 | # Table 246 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Honda) | Estimated Average Per Vehicle | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Honda) | | | | | | | | | | | | | | |----------------------------------|---|------|------|------|------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 1 | 305 | 309 | 429 | 881 | 970 | 961 | 950 | 948 | 940 | 881 | | | | | Alternative PC1LT3 | 1 | 305 | 309 | 429 | 881 | 1,059 | 1,043 | 1,026 | 1,017 | 1,002 | 939 | | | | | Alternative PC2LT4 | 1 | 305 | 309 | 429 | 881 | 1,060 | 1,044 | 1,026 | 1,017 | 1,003 | 939 | | | | | Alternative PC3LT5 | 1 | 305 | 309 | 429 | 881 | 1,556 | 1,539 | 1,505 | 1,477 | 1,441 | 1,356 | | | | | Alternative PC6LT8 | 1 | 305 | 309 | 429 | 881 | 1,836 | 1,912 | 2,140 | 2,060 | 2,272 | 2,240 | | | | # Table 247 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Hyundai KiH) | Estimated Average Per Vehicl | e Techi | nology | | vil Penal
yundai k | | sts (\$), F | Passeng | jer Car I | Fleet for | Manufa | cturer | | | |----------------------------------|---------|--------|-----|-----------------------|-------|-------------|---------|-----------|-----------|--------|--------|--|--| | Model Year | | | | | | | | | | | | | | | No Action Alternative (Baseline) | 0 | 882 | 866 | 1,146 | 1,646 | 1,703 | 1,710 | 1,717 | 1,730 | 1,752 | 1,685 | | | | Alternative PC1LT3 | 0 | 882 | 866 | 1,146 | 1,646 | 2,841 | 3,797 | 3,736 | 3,680 | 3,563 | 3,390 | | | | Alternative PC2LT4 | 0 | 882 | 866 | 1,146 | 1,646 | 2,927 | 3,902 | 3,834 | 3,772 | 3,705 | 3,526 | | | | Alternative PC3LT5 | 0 | 882 | 866 | 1,146 | 1,646 | 3,013 | 4,122 | 4,042 | 3,967 | 3,856 | 3,739 | | | | Alternative PC6LT8 | 0 | 882 | 866 | 1,146 | 1,646 | 3,299 | 4,587 | 4,939 | 5,302 | 5,717 | 6,074 | | | # Table 248 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer
(Hyundai KiK) | Estimated Average Per Vehicle | e Techn | ology a | | il Penal
⁄undai l | | sts (\$), | Passenç | ger Car I | Fleet for | Manufa | acturer | |----------------------------------|---------|---------|------|----------------------|------|-----------|---------|-----------|-----------|--------|---------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 42 | 853 | 820 | 914 | 838 | 783 | 755 | 788 | 811 | 787 | | Alternative PC1LT3 | 0 | 42 | 853 | 820 | 914 | 1,721 | 1,712 | 1,701 | 1,701 | 1,718 | 1,648 | | Alternative PC2LT4 | 0 | 42 | 853 | 820 | 914 | 1,788 | 1,863 | 3,600 | 3,522 | 3,440 | 3,272 | | Alternative PC3LT5 | 0 | 42 | 853 | 820 | 914 | 1,867 | 2,024 | 3,948 | 3,839 | 3,756 | 3,610 | | Alternative PC6LT8 | 0 | 42 | 853 | 820 | 914 | 2,105 | 2,655 | 4,971 | 5,948 | 5,762 | 5,387 | Table 249 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (JLR) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (JLR) | | | | | | | | | | | | | | |---|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 4,39
2 | 4,10
8 | 3,90
2 | 3,73
9 | 3,39
4 | 3,14
2 | 2,93
9 | 2,87
6 | 2,84
9 | 2,69
4 | | | | Alternative PC1LT3 | 0 | 4,39
2 | 4,10
8 | 3,90
2 | 3,73
9 | 3,39
5 | 3,14
8 | 2,95
5 | 2,89
0 | 2,85
6 | 2,69
8 | | | | Alternative PC2LT4 | 0 | 4,39
2 | 4,10
8 | 3,90
2 | 3,73
9 | 3,39
7 | 3,15
0 | 2,95
4 | 2,89
0 | 2,85
6 | 2,69
5 | | | | Alternative PC3LT5 | 0 | 4,39
2 | 4,10
8 | 3,90
2 | 3,73
9 | 3,39
3 | 3,30
0 | 3,22
2 | 3,07
7 | 3,11
0 | 3,01
8 | | | | Alternative PC6LT8 | 0 | 4,39
2 | 4,10
8 | 3,90
2 | 3,73
9 | 3,55
8 | 3,91
2 | 4,17
2 | 4,42
2 | 4,81
6 | 5,23
5 | | | Table 250 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Karma) | Estimated Average Per Ve | hicle Tec | hnolog | y and C | Civil Pe
(Kar | | Costs (\$) | , Passeı | nger Car | Fleet fo | r Manuf | acturer | |----------------------------------|-----------|----------|----------|------------------|------------|------------|------------|------------|------------|------------|------------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | # Table 251 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Lucid) | Estimated Average Per Vehicle | Techno | logy an | | Penaltie
.ucid) | es Cost | s (\$), Pa | ssenge | er Car F | leet for | Manufa | cturer | | | |----------------------------------|---|---------|---|--------------------|---------|------------|--------|----------|----------|--------|--------|--|--| | Model Year | Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | | Table 252 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Mazda) | Estimated Average Per Veh | nicle Tecl | hnolog | y and C | ivil Pe
(Maz | | Costs (|), Pass | enger Ca | ar Fleet f | or Manuf | acturer | |----------------------------------|------------|----------|----------|-----------------|-----------|-----------|-----------|------------|------------|------------|------------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 773 | 688 | 750 | 1,29
9 | 1,50
3 | 1,54
9 | 1,546 | 1,561 | 1,570 | 1,497 | | Alternative PC1LT3 | 0 | 773 | 688 | 750 | 1,29
9 | 1,58
7 | 1,63
1 | 1,623 | 1,633 | 1,639 | 1,562 | | Alternative PC2LT4 | 0 | 773 | 688 | 750 | 1,29
9 | 1,67
5 | 1,63
0 | 1,623 | 1,634 | 1,639 | 1,563 | | Alternative PC3LT5 | 0 | 773 | 688 | 750 | 1,29
9 | 1,77
9 | 1,84
8 | 12,45
3 | 12,09
7 | 11,52
4 | 10,90
0 | | Alternative PC6LT8 | 0 | 773 | 688 | 750 | 1,29
9 | 2,07
4 | 2,52
0 | 14,53
6 | 14,02
7 | 13,30
5 | 12,94
3 | #### Table 253 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Mercedes-Benz) | Estimated Average Per Vehic | le Tech | nology | | il Penal
cedes-E | | sts (\$), F | asseng | er Car F | leet for | Manufa | cturer | | | |----------------------------------|---------|--------|-------|---------------------|-------|-------------|--------|----------|----------|--------|--------|--|--| | Model Year | | | | | | | | | | | | | | | No Action Alternative (Baseline) | 909 | 1,271 | 1,254 | 1,286 | 1,979 | 1,764 | 1,612 | 1,716 | 1,821 | 1,899 | 1,885 | | | | Alternative PC1LT3 | 909 | 1,271 | 1,254 | 1,286 | 1,979 | 1,861 | 1,802 | 1,766 | 1,867 | 1,941 | 1,925 | | | | Alternative PC2LT4 | 909 | 1,271 | 1,254 | 1,286 | 1,979 | 1,950 | 1,970 | 1,892 | 1,914 | 1,984 | 1,965 | | | | Alternative PC3LT5 | 909 | 1,271 | 1,254 | 1,286 | 1,979 | 2,038 | 2,154 | 2,177 | 2,192 | 2,222 | 2,177 | | | | Alternative PC6LT8 | 909 | 1,271 | 1,254 | 1,286 | 1,979 | 2,305 | 2,749 | 3,074 | 3,489 | 3,880 | 4,279 | | | # Table 254 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Mitsubishi) | Estimated Average Per Vehicl | e Techi | nology | | il Penal
litsubis | | sts (\$), F | asseng | er Car F | leet for | Manufa | cturer | | |---|---------|--------|-------|----------------------|-------|-------------|--------|----------|----------|--------|--------|--| | Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | No Action Alternative (Baseline) | 403 | 358 | 1,189 | 1,337 | 2,131 | 1,974 | 1,853 | 1,719 | 1,605 | 1,450 | 1,388 | | | Alternative PC1LT3 | 403 | 358 | 1,189 | 1,337 | 2,131 | 1,975 | 1,900 | 1,870 | 1,852 | 1,638 | 1,614 | | | Alternative PC2LT4 | 403 | 358 | 1,189 | 1,337 | 2,131 | 2,019 | 2,099 | 2,169 | 2,268 | 1,652 | 1,608 | | | Alternative PC3LT5 | 403 | 358 | 1,189 | 1,337 | 2,131 | 2,122 | 2,313 | 2,467 | 2,715 | 1,986 | 1,928 | | | Alternative PC6LT8 | 403 | 358 | 1,189 | 1,337 | 2,131 | 2,433 | 2,970 | 3,483 | 4,164 | 3,104 | 3,775 | | # Table 255 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Nissan) | Estimated Average Per Vehicle | e Techr | nology | and Civ | ril Penal
(Nissan | | sts (\$), F | Passeng | er Car F | leet for | Manufa | cturer | |----------------------------------|---------|--------|---------|----------------------|-------|-------------|---------|----------|----------|--------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 58 | 684 | 838 | 1,108 | 1,288 | 1,390 | 1,314 | 1,324 | 1,379 | 1,383 | 1,336 | | Alternative PC1LT3 | 58 | 684 | 838 | 1,108 | 1,288 | 1,391 | 1,315 | 1,325 | 1,379 | 1,384 | 1,336 | | Alternative PC2LT4 | 58 | 684 | 838 | 1,108 | 1,288 | 1,396 | 1,517 | 1,533 | 1,490 | 1,498 | 1,527 | | Alternative PC3LT5 | 58 | 684 | 838 | 1,108 | 1,288 | 1,471 | 1,661 | 1,749 | 1,700 | 1,731 | 1,754 | | Alternative PC6LT8 | 58 | 684 | 838 | 1,108 | 1,288 | 1,674 | 2,270 | 2,575 | 2,813 | 3,046 | 3,387 | Table 256 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Stellantis) | Estimated Average Per Vehic | le Techr | nology | | il Penali
Stellanti: | | ts (\$), P | asseng | er Car F | leet for | Manufa | cturer | |----------------------------------|-----------|--------|-------|-------------------------|-------|------------|--------|----------|----------|--------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 1,70
7 | 883 | 3,107 | 3,545 | 3,679 | 3,706 | 3,526 | 3,286 | 3,283 | 3,269 | 3,177 | | Alternative PC1LT3 | 1,70
7 | 883 | 3,107 | 3,545 | 3,679 | 3,785 | 3,696 | 3,433 | 3,416 | 3,395 | 3,299 | | Alternative PC2LT4 | 1,70
7 | 883 | 3,107 | 3,545 | 3,679 | 3,869 | 3,868 | 3,682 | 3,652 | 3,606 | 3,538 | | Alternative PC3LT5 | 1,70
7 | 883 | 3,107 | 3,545 | 3,679 | 3,945 | 4,051 | 3,955 | 4,041 | 3,907 | 3,890 | | Alternative PC6LT8 | 1,70
7 |
883 | 3,107 | 3,545 | 3,679 | 4,227 | 4,638 | 4,860 | 5,334 | 5,566 | 5,907 | # Table 257 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Subaru) | Estimated Average Per Vehicle | e Techr | nology | | ril Penal
(Subaru | | sts (\$), F | Passeng | er Car F | leet for | Manufa | cturer | |----------------------------------|---------|--------|------|----------------------|-------|-------------|---------|----------|----------|--------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 942 | 885 | 1,252 | 1,646 | 1,627 | 1,620 | 1,556 | 1,512 | 1,470 | 1,351 | | Alternative PC1LT3 | 0 | 942 | 885 | 1,252 | 1,646 | 1,627 | 1,620 | 1,556 | 1,513 | 1,470 | 1,351 | | Alternative PC2LT4 | 0 | 942 | 885 | 1,252 | 1,646 | 1,642 | 1,620 | 1,557 | 1,513 | 1,470 | 1,351 | | Alternative PC3LT5 | 0 | 942 | 885 | 1,252 | 1,646 | 1,760 | 1,690 | 1,621 | 1,571 | 1,524 | 1,402 | | Alternative PC6LT8 | 0 | 942 | 885 | 1,252 | 1,646 | 2,041 | 2,056 | 2,156 | 2,539 | 2,410 | 2,414 | # Table 258 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Tesla) | Estimated Average Per Vehicle | Techno | logy an | | Penaltie
Tesla) | s Cost | s (\$), Pa | ssenge | er Car F | leet for | Manufa | cturer | | | | |----------------------------------|---|---------|---|--------------------|--------|------------|--------|----------|----------|--------|--------|--|--|--| | Model Year | Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | # Table 259 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Toyota) | Estimated Average Per Vehicle | Techn | ology a | | il Penal
Toyota | | sts (\$), | Passeng | jer Car I | Fleet for | Manufa | octurer | |----------------------------------|-------|---------|------|--------------------|------|-----------|---------|-----------|-----------|--------|---------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 118 | 149 | 247 | 907 | 988 | 1,084 | 1,109 | 1,146 | 1,169 | 1,124 | | Alternative PC1LT3 | 0 | 118 | 149 | 247 | 907 | 989 | 1,085 | 1,109 | 1,146 | 1,170 | 1,124 | | Alternative PC2LT4 | 0 | 118 | 149 | 247 | 907 | 989 | 1,085 | 1,109 | 1,146 | 1,170 | 1,124 | | Alternative PC3LT5 | 0 | 118 | 149 | 247 | 907 | 1,007 | 1,108 | 1,143 | 1,195 | 1,222 | 1,174 | | Alternative PC6LT8 | 0 | 118 | 149 | 247 | 907 | 1,093 | 1,465 | 1,754 | 2,035 | 2,341 | 2,328 | # Table 260 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Volvo) | Estimated Average Per Vehicle | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (Volvo) | | | | | | | | | | | | | |----------------------------------|---|----|-----|-----|-----|-----|-------|-------|-------|-------|-------|--|--| | Model Year | Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | No Action Alternative (Baseline) | 0 | 25 | -22 | 317 | 344 | 340 | 316 | 156 | 279 | 423 | 428 | | | | Alternative PC1LT3 | 0 | 25 | -22 | 317 | 344 | 362 | 367 | 233 | 342 | 464 | 500 | | | | Alternative PC2LT4 | 0 | 25 | -22 | 317 | 344 | 389 | 423 | 314 | 427 | 542 | 643 | | | | Alternative PC3LT5 | 0 | 25 | -22 | 317 | 344 | 416 | 478 | 396 | 523 | 630 | 863 | | | | Alternative PC6LT8 | 0 | 25 | -22 | 317 | 344 | 496 | 1,000 | 1,265 | 1,801 | 2,307 | 2,486 | | | # Table 261 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Passenger Car Fleet for Manufacturer (VWA) | Estimated Average Per Vehicle | e Techr | nology | and Civ | il Penali
(VWA) | ties Cos | sts (\$), P | asseng | er Car F | leet for | Manufa | cturer | |----------------------------------|---------|--------|---------|--------------------|----------|-------------|--------|----------|----------|--------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 686 | 697 | 1,046 | 1,224 | 1,731 | 2,340 | 2,001 | 1,998 | 2,000 | 2,040 | 1,955 | | Alternative PC1LT3 | 686 | 697 | 1,046 | 1,224 | 1,731 | 2,422 | 2,088 | 2,076 | 2,071 | 2,085 | 1,996 | | Alternative PC2LT4 | 686 | 697 | 1,046 | 1,224 | 1,731 | 2,504 | 2,212 | 2,180 | 2,168 | 2,177 | 2,087 | | Alternative PC3LT5 | 686 | 697 | 1,046 | 1,224 | 1,731 | 2,600 | 2,341 | 2,385 | 2,385 | 2,332 | 2,307 | | Alternative PC6LT8 | 686 | 697 | 1,046 | 1,224 | 1,731 | 2,875 | 2,818 | 3,156 | 3,516 | 3,737 | 4,216 | # Table 262 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (BMW) | Estimated Average Per Vehic | le Tech | nology | and C | ivil Pen
(BMW) | | osts (\$) | , Light T | ruck Fle | eet for N | lanufac | turer | |----------------------------------|---------|--------|-------|-------------------|-------|-----------|-----------|----------|-----------|---------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 78 | 76 | 899 | 1,188 | 1,103 | 1,433 | 1,727 | 1,936 | 2,144 | 2,163 | | Alternative PC1LT3 | 0 | 78 | 76 | 899 | 1,188 | 1,295 | 1,712 | 1,971 | 2,133 | 2,318 | 2,323 | | Alternative PC2LT4 | 0 | 78 | 76 | 899 | 1,188 | 1,369 | 1,850 | 2,197 | 2,442 | 2,725 | 2,722 | | Alternative PC3LT5 | 0 | 78 | 76 | 899 | 1,188 | 1,428 | 2,002 | 2,437 | 2,781 | 3,147 | 3,276 | | Alternative PC6LT8 | 0 | 78 | 76 | 899 | 1,188 | 1,649 | 2,494 | 3,201 | 3,909 | 4,624 | 5,321 | Table 263 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Ford) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Ford) | | | | | | | | | | | | | |--|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | No Action Alternative (Baseline) | 86 | 1,64
3 | 2,26
1 | 2,29
6 | 2,57
4 | 2,61
2 | 2,50
7 | 2,40
1 | 2,27
6 | 2,31
6 | 2,27
7 | | | Alternative PC1LT3 | 86 | 1,64
3 | 2,26
1 | 2,29
6 | 2,57
4 | 3,05
2 | 3,26
4 | 3,37
1 | 3,22
4 | 3,18
6 | 3,12
0 | | | Alternative PC2LT4 | 86 | 1,64
3 | 2,26
1 | 2,29
6 | 2,57
4 | 3,16
1 | 3,38
8 | 3,52
1 | 3,37
2 | 3,51
0 | 3,67
7 | | | Alternative PC3LT5 | 86 | 1,64
3 | 2,26
1 | 2,29
6 | 2,57
4 | 3,16
1 | 3,38
9 | 3,52
1 | 3,68
0 | 3,91
7 | 4,18
7 | | | Alternative PC6LT8 | 86 | 1,64
3 | 2,26
1 | 2,29
6 | 2,57
4 | 3,32
4 | 3,80
3 | 4,19
7 | 4,74
6 | 5,30
5 | 6,01
3 | | Table 264 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (GM) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (GM) | | | | | | | | | | | | | |--|------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | No Action Alternative (Baseline) | 220 | 206 | 1,52
5 | 1,97
7 | 2,10
4 | 2,06
8 | 1,94
3 | 1,80
3 | 1,69
1 | 2,54
2 | 2,41
8 | | | Alternative PC1LT3 | 220 | 206 | 1,52
5 | 1,97
7 | 2,10
4 | 2,81
1 | 2,87
8 | 2,91
2 | 3,04
1 | 4,00
3 | 4,10
7 | | | Alternative PC2LT4 | 220 | 206 | 1,52
5 | 1,97
7 | 2,10
4 | 2,87
1 | 3,01
5 | 3,10
7 | 3,35
6 | 4,38
7 | 4,59
3 | | | Alternative PC3LT5 | 220 | 206 | 1,52
5 | 1,97
7 | 2,10
4 | 2,94
5 | 3,15
3 | 3,31
6 | 3,66
4 | 4,78
5 | 5,18
3 | | | Alternative PC6LT8 | 220 | 206 | 1,52
5 | 1,97
7 | 2,10
4 | 3,13
7 | 3,58
1 | 4,01
8 | 4,68
1 | 6,11
4 | 6,93
6 | | # Table 265 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Honda) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Honda) | | | | | | | | | | | | | | |---|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 288 | 312 | 410 | 1,180 | 1,363 | 1,504 | 1,590 | 1,688 | 1,757 | 1,726 | | | | Alternative PC1LT3 | 0 | 288 | 312 | 410 | 1,180 | 1,575 | 1,698 | 1,768 | 1,848 | 1,903 | 1,862 | | | | Alternative PC2LT4 | 0 | 288 | 312 | 410 | 1,180 | 1,610 | 1,758 |
1,885 | 2,049 | 2,103 | 2,121 | | | | Alternative PC3LT5 | 0 | 288 | 312 | 410 | 1,180 | 1,773 | 1,996 | 2,131 | 2,384 | 2,425 | 2,450 | | | | Alternative PC6LT8 | 0 | 288 | 312 | 410 | 1,180 | 1,969 | 2,443 | 2,910 | 3,276 | 4,714 | 5,270 | | | # Table 266 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Hyundai KiH) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Hyundai KiH) | | | | | | | | | | | | | | |---|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 94 | 132 | 724 | 1,315 | 1,338 | 1,330 | 1,422 | 1,516 | 1,619 | 1,613 | | | | Alternative PC1LT3 | 0 | 94 | 132 | 724 | 1,315 | 2,528 | 2,878 | 2,909 | 2,943 | 2,932 | 2,922 | | | | Alternative PC2LT4 | 0 | 94 | 132 | 724 | 1,315 | 2,601 | 3,671 | 3,653 | 3,643 | 3,609 | 3,622 | | | | Alternative PC3LT5 | 0 | 94 | 132 | 724 | 1,315 | 2,675 | 3,271 | 3,283 | 3,310 | 3,559 | 7,114 | | | | Alternative PC6LT8 | 0 | 94 | 132 | 724 | 1,315 | 2,897 | 3,474 | 3,999 | 4,593 | 5,199 | 9,240 | | | # Table 267 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Hyundai KiK) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Hyundai KiK) | | | | | | | | | | | | | | |---|------|------|------|------|-------|-------|-------|-------|-------|-------|--------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 124 | 223 | 284 | 1,451 | 1,344 | 1,264 | 1,211 | 1,329 | 1,409 | 1,407 | | | | Alternative PC1LT3 | 0 | 124 | 223 | 284 | 1,451 | 1,551 | 1,707 | 2,368 | 2,488 | 2,574 | 2,582 | | | | Alternative PC2LT4 | 0 | 124 | 223 | 284 | 1,451 | 1,625 | 1,860 | 2,671 | 2,886 | 3,346 | 3,376 | | | | Alternative PC3LT5 | 0 | 124 | 223 | 284 | 1,451 | 1,699 | 2,013 | 2,910 | 3,240 | 3,797 | 8,203 | | | | Alternative PC6LT8 | 0 | 124 | 223 | 284 | 1,451 | 1,920 | 2,518 | 3,887 | 4,571 | 5,467 | 10,370 | | | Table 268 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (JLR) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (JLR) | | | | | | | | | | | | | |---|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | No Action Alternative (Baseline) | 513 | 1,41
1 | 1,91
4 | 1,86
2 | 1,44
0 | 1,63
7 | 1,53
6 | 1,48
1 | 1,56
9 | 1,58
3 | 1,61
3 | | | Alternative PC1LT3 | 513 | 1,41
1 | 1,91
4 | 1,86
2 | 1,44
0 | 1,84
6 | 1,95
2 | 2,10
7 | 2,52
7 | 2,36
6 | 2,46
9 | | | Alternative PC2LT4 | 513 | 1,41
1 | 1,91
4 | 1,86
2 | 1,44
0 | 1,90
5 | 2,10
5 | 2,33
1 | 2,83
5 | 2,77
2 | 3,01
2 | | | Alternative PC3LT5 | 513 | 1,41
1 | 1,91
4 | 1,86
2 | 1,44
0 | 1,97
9 | 2,25
8 | 2,57
1 | 3,17
5 | 3,19
4 | 3,56
9 | | | Alternative PC6LT8 | 513 | 1,41
1 | 1,91
4 | 1,86
2 | 1,44
0 | 2,20
1 | 2,74
8 | 3,33
3 | 4,30
0 | 4,67
0 | 5,52
0 | | # Table 269 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Karma) | Estimated Average Per Vehicle | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Karma) | | | | | | | | | | | | | | |----------------------------------|---|------|------|------|------|------|------|------|------|------|------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | # Table 270 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Lucid) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Lucid) | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Table 271 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Mazda) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Mazda) | | | | | | | | | | | | | | |---|----------|----------|----------|----------|-----------|-----------|-----------|-----------|------------|------------|------------|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 586 | 604 | 598 | 1,52
4 | 1,70
1 | 1,85
3 | 1,96
1 | 2,068 | 2,143 | 2,121 | | | | Alternative PC1LT3 | 0 | 586 | 604 | 598 | 1,52
4 | 1,72
9 | 1,88
0 | 1,98
6 | 2,092 | 2,166 | 2,142 | | | | Alternative PC2LT4 | 0 | 586 | 604 | 598 | 1,52
4 | 1,74
6 | 1,89
6 | 2,02
0 | 2,137 | 2,208 | 2,183 | | | | Alternative PC3LT5 | 0 | 586 | 604 | 598 | 1,52
4 | 6,14
7 | 6,15
6 | 6,91
1 | 6,881 | 6,676 | 6,452 | | | | Alternative PC6LT8 | 0 | 586 | 604 | 598 | 1,52
4 | 6,60
2 | 6,58
1 | 8,75
5 | 11,94
9 | 11,43
9 | 11,33
9 | | | #### Table 272 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Mercedes-Benz) | Estimated Average Per Vehic | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Mercedes-Benz) | | | | | | | | | | | | | | |----------------------------------|---|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 367 | 304 | 363 | 953 | 1,987 | 2,006 | 1,553 | 1,775 | 2,019 | 2,194 | 2,238 | | | | | Alternative PC1LT3 | 367 | 304 | 363 | 953 | 1,987 | 2,198 | 1,947 | 2,129 | 2,366 | 2,509 | 2,531 | | | | | Alternative PC2LT4 | 367 | 304 | 363 | 953 | 1,987 | 2,272 | 2,100 | 2,354 | 2,471 | 2,666 | 2,824 | | | | | Alternative PC3LT5 | 367 | 304 | 363 | 953 | 1,987 | 2,346 | 2,253 | 2,594 | 2,824 | 3,103 | 3,395 | | | | | Alternative PC6LT8 | 367 | 304 | 363 | 953 | 1,987 | 2,567 | 2,742 | 3,359 | 3,952 | 4,596 | 5,340 | | | | # Table 273 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Mitsubishi) | Estimated Average Per Vehic | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Mitsubishi) | | | | | | | | | | | | | | |----------------------------------|--|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 0 | 131 | 1,412 | 1,513 | 1,822 | 1,720 | 1,641 | 1,553 | 1,479 | 1,350 | 1,325 | | | | | Alternative PC1LT3 | 0 | 131 | 1,412 | 1,513 | 1,822 | 1,928 | 2,100 | 2,242 | 2,451 | 2,229 | 2,190 | | | | | Alternative PC2LT4 | 0 | 131 | 1,412 | 1,513 | 1,822 | 2,017 | 2,269 | 2,496 | 2,821 | 2,422 | 2,371 | | | | | Alternative PC3LT5 | 0 | 131 | 1,412 | 1,513 | 1,822 | 2,091 | 2,437 | 2,765 | 3,191 | 4,470 | 4,337 | | | | | Alternative PC6LT8 | 0 | 131 | 1,412 | 1,513 | 1,822 | 2,342 | 3,003 | 3,631 | 4,470 | 5,480 | 6,260 | | | | Table 274 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Nissan) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Nissan) | | | | | | | | | | | | |
--|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | No Action Alternative (Baseline) | 0 | 2,08
2 | 2,10
3 | 2,50
3 | 2,51
7 | 3,27
4 | 3,14
1 | 3,19
7 | 3,19
9 | 3,18
1 | 3,09
0 | | | Alternative PC1LT3 | 0 | 2,08
2 | 2,10
3 | 2,50
3 | 2,51
7 | 3,46
6 | 3,65
9 | 3,68
3 | 3,65
8 | 3,61
1 | 3,49
8 | | | Alternative PC2LT4 | 0 | 2,08
2 | 2,10
3 | 2,50
3 | 2,51
7 | 3,54
0 | 3,94
1 | 4,03
9 | 4,21
6 | 4,14
2 | 4,01
3 | | | Alternative PC3LT5 | 0 | 2,08
2 | 2,10
3 | 2,50
3 | 2,51
7 | 3,61
4 | 4,09
4 | 4,26
4 | 4,49
7 | 4,41
4 | 4,40
3 | | | Alternative PC6LT8 | 0 | 2,08
2 | 2,10
3 | 2,50
3 | 2,51
7 | 3,83
5 | 4,58
4 | 5,04
1 | 5,14
6 | 5,69
4 | 6,39
9 | | Table 275 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Stellantis) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Stellantis) | | | | | | | | | | | | | | |--|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 264 | 1,08
6 | 1,50
3 | 2,46
4 | 2,42 | 2,49
5 | 2,38
3 | 2,55
0 | 2,65
9 | 2,70
7 | 2,68
1 | | | | Alternative PC1LT3 | 264 | 1,08
6 | 1,50
3 | 2,46
4 | 2,42
2 | 2,72
6 | 2,80
4 | 2,96
6 | 3,11
8 | 3,21
8 | 3,62
2 | | | | Alternative PC2LT4 | 264 | 1,08
6 | 1,50
3 | 2,46
4 | 2,42
2 | 2,80
0 | 2,95
7 | 3,34
4 | 3,58
3 | 3,75
5 | 4,24
6 | | | | Alternative PC3LT5 | 264 | 1,08
6 | 1,50
3 | 2,46
4 | 2,42
2 | 2,85
9 | 3,09
4 | 3,56
8 | 3,90
6 | 4,16
2 | 4,77
0 | | | | Alternative PC6LT8 | 264 | 1,08
6 | 1,50
3 | 2,46
4 | 2,42 | 3,06
9 | 3,55
6 | 4,32
8 | 5,83
0 | 6,35
8 | 7,40
5 | | | # Table 276 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Subaru) | Estimated Average Per Vehic | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Subaru) | | | | | | | | | | | | | | |----------------------------------|--|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 0 | 284 | 234 | 237 | 1,384 | 1,663 | 1,870 | 2,018 | 2,186 | 2,299 | 2,298 | | | | | Alternative PC1LT3 | 0 | 284 | 234 | 237 | 1,384 | 1,663 | 1,870 | 2,018 | 2,187 | 2,300 | 2,298 | | | | | Alternative PC2LT4 | 0 | 284 | 234 | 237 | 1,384 | 1,663 | 1,870 | 2,018 | 2,187 | 2,300 | 2,297 | | | | | Alternative PC3LT5 | 0 | 284 | 234 | 237 | 1,384 | 1,663 | 1,870 | 2,019 | 2,187 | 2,300 | 2,297 | | | | | Alternative PC6LT8 | 0 | 284 | 234 | 237 | 1,384 | 1,664 | 1,887 | 2,758 | 3,223 | 3,248 | 3,182 | | | | # Table 277 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Tesla) | Estimated Average Per Vehicle | e Techn | ology a | | l Penalt
esla) | ies Cos | sts (\$), L | ₋ight Tr | uck Fle | et for M | anufact | turer | |----------------------------------|---------|---------|------|-------------------|---------|-------------|----------|---------|----------|---------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | #### Table 278 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Toyota) | Estimated Average Per Vehic | le Tech | nology | | ivil Pen
(Toyota | | osts (\$) | , Light T | ruck Flo | eet for N | lanufac | turer | |----------------------------------|---------|--------|------|---------------------|-------|-----------|-----------|----------|-----------|---------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 193 | 289 | 259 | 1,208 | 1,280 | 1,458 | 1,578 | 1,716 | 1,831 | 1,841 | | Alternative PC1LT3 | 0 | 193 | 289 | 259 | 1,208 | 1,280 | 1,459 | 1,578 | 1,716 | 1,831 | 1,841 | | Alternative PC2LT4 | 0 | 193 | 289 | 259 | 1,208 | 1,285 | 1,463 | 1,585 | 1,727 | 1,844 | 1,955 | | Alternative PC3LT5 | 0 | 193 | 289 | 259 | 1,208 | 1,285 | 1,625 | 1,826 | 2,014 | 2,165 | 2,395 | | Alternative PC6LT8 | 0 | 193 | 289 | 259 | 1,208 | 1,319 | 1,965 | 2,529 | 3,148 | 3,762 | 4,106 | # Table 279 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (Volvo) | Estimated Average Per Vehic | le Tecl | nology | / and C | ivil Pena
(Volvo) | | osts (\$), | Light T | ruck Fle | eet for N | lanufac | turer | |----------------------------------|---------|--------|---------|----------------------|-------|------------|---------|----------|-----------|---------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 113 | 86 | 1,142 | 1,038 | 910 | 819 | 696 | 962 | 1,243 | 1,283 | | Alternative PC1LT3 | 0 | 113 | 86 | 1,142 | 1,038 | 1,151 | 1,277 | 1,364 | 1,400 | 1,620 | 1,688 | | Alternative PC2LT4 | 0 | 113 | 86 | 1,142 | 1,038 | 1,211 | 1,430 | 1,603 | 1,627 | 1,893 | 1,979 | | Alternative PC3LT5 | 0 | 113 | 86 | 1,142 | 1,038 | 1,284 | 1,582 | 1,842 | 1,986 | 2,331 | 2,454 | | Alternative PC6LT8 | 0 | 113 | 86 | 1,142 | 1,038 | 1,521 | 2,087 | 2,619 | 3,145 | 3,839 | 4,451 | Table 280 - Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (VWA) | Estimated Average Per Vehicle Technology and Civil Penalties Costs (\$), Light Truck Fleet for Manufacturer (VWA) | | | | | | | | | | | | | |---|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | No Action Alternative (Baseline) | 15 | 1,32
8 | 1,44
1 | 1,76
9 | 1,73
4 | 1,69
3 | 1,74
7 | 1,97
4 | 2,10
0 | 2,16
8 | 2,14
9 | | | Alternative PC1LT3 | 15 | 1,32
8 | 1,44
1 | 1,76
9 | 1,73
4 | 1,91
0 | 2,12
0 | 2,33
1 | 2,71
9 | 2,77
8 | 2,72
5 | | | Alternative PC2LT4 | 15 | 1,32
8 | 1,44
1 | 1,76
9 | 1,73
4 | 1,98
4 | 2,27
3 | 2,55
6 | 3,10
1 | 3,08
7 | 3,10
7 | | | Alternative PC3LT5 | 15 | 1,32
8 | 1,44
1 | 1,76
9 | 1,73
4 | 2,05
8 | 2,42
6 | 2,81
1 | 3,45
5 | 3,53
1 | 3,68
2 | | | Alternative PC6LT8 | 15 | 1,32
8 | 1,44
1 | 1,76
9 | 1,73
4 | 2,29
4 | 2,94
7 | 3,60
4 | 4,62
8 | 5,06
8 | 5,71
0 | | #### Regulatory Costs and Civil Penalties per Vehicle, by Model Year Table 281 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Total) | Estimated Average | Per Ve | hicle R | egulato | ry Cost | s (\$), To | tal Flee | t for Ma | nufactu | rer (Tot | al) | | |----------------------------------|--------|---------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 138 | 744 | 1,19
5 | 1,50
0 | 1,92
0 | 1,99
8 | 1,97
7 | 1,99
3 | 2,01
2 | 2,13
2 | 2,07
7 | | Alternative PC1LT3 | 138 | 744 | 1,19
5 | 1,50
0 | 1,92
0 | 2,30
9 | 2,43
2 | 2,51
0 | 2,55
8 | 2,67
6 | 2,67
8 | | Alternative PC2LT4 | 138 | 744 | 1,19
5 | 1,50
0 | 1,92
0 | 2,36
7 | 2,55
5 | 2,70
8 | 2,79
0 | 2,94
2 | 3,00
8 | | Alternative PC3LT5 | 138 | 744 | 1,19
5 | 1,50
0 | 1,92
0 | 2,48
8 | 2,72
0 | 2,95
0 | 3,11
0 | 3,32
6 | 3,67
9 | | Alternative PC6LT8 | 138 | 744 | 1,19
5 | 1,50
0 | 1,92
0 | 2,66
4 | 3,12
6 | 3,68
9 | 4,32
8 | 4,88
6 | 5,56
2 | # Table 282 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Total) | Estimated Average Per \ | /ehicle | Regula | tory C | osts (\$), | Passer | nger Car | Fleet fo | or Manu | facture | r (Total) | | |----------------------------------|---------|--------|--------|------------|--------|----------|----------|---------|---------|-----------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 159 | 436 | 868 | 1,078 | 1,417 | 1,462 | 1,412 | 1,389 | 1,386 | 1,383 | 1,312 | | Alternative PC1LT3 | 159 | 436 | 868 | 1,078 |
1,417 | 1,782 | 1,861 | 1,867 | 1,847 | 1,817 | 1,731 | | Alternative PC2LT4 | 159 | 436 | 868 | 1,078 | 1,417 | 1,847 | 1,966 | 2,087 | 2,069 | 2,033 | 1,966 | | Alternative PC3LT5 | 159 | 436 | 868 | 1,078 | 1,417 | 1,964 | 2,136 | 2,373 | 2,391 | 2,441 | 2,517 | | Alternative PC6LT8 | 159 | 436 | 868 | 1,078 | 1,417 | 2,166 | 2,616 | 3,175 | 3,671 | 4,039 | 4,393 | #### Table 283 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Total) | Estimated Average Pe | r Vehic | le Regu | ılatory (| Costs (\$ |), Light | Truck F | leet for | Manufa | cturer (| Total) | | |----------------------------------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 125 | 918 | 1,36
7 | 1,70
8 | 2,15
9 | 2,24
8 | 2,23
9 | 2,27
0 | 2,30
2 | 2,48
4 | 2,43
8 | | Alternative PC1LT3 | 125 | 918 | 1,36
7 | 1,70
8 | 2,15
9 | 2,55
5 | 2,69
6 | 2,80
5 | 2,88
6 | 3,07
8 | 3,12
5 | | Alternative PC2LT4 | 125 | 918 | 1,36
7 | 1,70
8 | 2,15
9 | 2,60
9 | 2,82
6 | 2,99
2 | 3,12
2 | 3,36
9 | 3,50
2 | | Alternative PC3LT5 | 125 | 918 | 1,36
7 | 1,70
8 | 2,15
9 | 2,73
2 | 2,99
0 | 3,21
3 | 3,44
1 | 3,74
0 | 4,23
2 | | Alternative PC6LT8 | 125 | 918 | 1,36
7 | 1,70
8 | 2,15
9 | 2,89
6 | 3,36
0 | 3,92
2 | 4,62
8 | 5,28
1 | 6,11
8 | #### Table 284 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (BMW) | Estimated Average | Per Ve | hicle R | egulato | ry Cost | s (\$), To | tal Flee | t for Ma | nufactu | rer (BM | W) | | |----------------------------------|--------|---------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 446 | 491 | 1,12
7 | 1,61
3 | 1,70
3 | 1,57
7 | 1,78
1 | 1,94
8 | 2,03
0 | 2,12
4 | 2,06
6 | | Alternative PC1LT3 | 446 | 491 | 1,12
7 | 1,61
3 | 1,70
3 | 1,71
9 | 1,92
9 | 2,07
8 | 2,13
5 | 2,21
6 | 2,15
0 | | Alternative PC2LT4 | 446 | 491 | 1,12
7 | 1,61
3 | 1,70
3 | 1,80
0 | 1,99
7 | 2,18
8 | 2,29
9 | 2,42
9 | 2,35
7 | | Alternative PC3LT5 | 446 | 491 | 1,12
7 | 1,61
3 | 1,70
3 | 1,87
3 | 2,08
1 | 2,32
0 | 2,48
2 | 2,65
4 | 2,64
6 | | Alternative PC6LT8 | 446 | 491 | 1,12
7 | 1,61
3 | 1,70
3 | 2,12
3 | 2,57
1 | 3,04
2 | 3,52
4 | 4,04
3 | 4,52
9 | #### Table 285 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Ford) | Estimated Average | Per Ve | ehicle R | egulato | ry Cost | s (\$), To | tal Flee | t for Ma | nufactu | rer (For | d) | | |----------------------------------|----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 76 | 1,73
7 | 2,47
0 | 2,52
6 | 2,74
1 | 2,75
9 | 2,65
2 | 2,54
1 | 2,40
7 | 2,43
4 | 2,38
4 | | Alternative PC1LT3 | 76 | 1,73
7 | 2,47
0 | 2,52
6 | 2,74
1 | 3,16
7 | 3,34
9 | 3,43
2 | 3,27
8 | 3,23
7 | 3,16
5 | | Alternative PC2LT4 | 76 | 1,73
7 | 2,47 | 2,52
6 | 2,74
1 | 3,32
5 | 3,51
9 | 3,62
4 | 3,47
0 | 3,58
3 | 3,72
0 | | Alternative PC3LT5 | 76 | 1,73
7 | 2,47
0 | 2,52
6 | 2,74
1 | 3,32
5 | 3,51
8 | 3,62
5 | 3,74
8 | 3,94
9 | 4,18
3 | | Alternative PC6LT8 | 76 | 1,73
7 | 2,47
0 | 2,52
6 | 2,74
1 | 3,48
8 | 3,91
0 | 4,28
7 | 5,13
0 | 5,66
2 | 6,32
7 | #### Table 286 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (GM) | Estimated Average | e Per V | ehicle F | Regulate | ory Cos | ts (\$), T | otal Fle | et for M | anufact | urer (GI | VI) | | |----------------------------------|---------|----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 283 | 355 | 1,72
8 | 2,17
1 | 2,31
3 | 2,25
0 | 2,12
8 | 1,99
1 | 1,88
4 | 2,54
5 | 2,42
2 | | Alternative PC1LT3 | 283 | 355 | 1,72
8 | 2,17
1 | 2,31
3 | 3,06
3 | 3,10
4 | 3,19
5 | 3,27
5 | 4,04
9 | 4,09
5 | | Alternative PC2LT4 | 283 | 355 | 1,72
8 | 2,17
1 | 2,31
3 | 3,12
8 | 3,25
2 | 3,33
3 | 3,51
8 | 4,33
4 | 4,46
9 | | Alternative PC3LT5 | 283 | 355 | 1,72
8 | 2,17
1 | 2,31
3 | 3,20
5 | 3,40
2 | 3,58
9 | 3,88
4 | 4,91
6 | 5,52
8 | | Alternative PC6LT8 | 283 | 355 | 1,72
8 | 2,17
1 | 2,31
3 | 3,41
6 | 3,87
2 | 4,34
6 | 4,98
1 | 6,32
6 | 7,39
8 | #### Table 287 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Honda) | Estimated Average F | Per Veh | icle Re | gulator | y Cost | s (\$), To | tal Flee | t for Ma | nufactu | rer (Hor | nda) | | |----------------------------------|---------|---------|---------|--------|------------|----------|----------|---------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 464 | 536 | 736 | 1,307 | 1,437 | 1,498 | 1,522 | 1,552 | 1,564 | 1,467 | | Alternative PC1LT3 | 0 | 464 | 536 | 736 | 1,307 | 1,591 | 1,641 | 1,653 | 1,670 | 1,671 | 1,565 | | Alternative PC2LT4 | 0 | 464 | 536 | 736 | 1,307 | 1,610 | 1,673 | 1,716 | 1,777 | 1,777 | 1,701 | | Alternative PC3LT5 | 0 | 464 | 536 | 736 | 1,307 | 1,930 | 2,031 | 2,071 | 2,171 | 2,154 | 2,069 | | Alternative PC6LT8 | 0 | 464 | 536 | 736 | 1,307 | 2,166 | 2,444 | 2,783 | 2,920 | 3,757 | 3,967 | #### Table 288 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Hyundai KiH) | Estimated Average Per | Vehicle | e Regu | latory (| Costs (\$ |), Total | Fleet fo | r Manuf | acturer | (Hyunda | ai KiH) | | |----------------------------------|---------|--------|----------|-----------|----------|----------|---------|---------|---------|---------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 597 | 592 | 1,049 | 1,632 | 1,702 | 1,696 | 1,734 | 1,778 | 1,830 | 1,786 | | Alternative PC1LT3 | 0 | 597 | 592 | 1,049 | 1,632 | 2,863 | 3,536 | 3,508 | 3,489 | 3,416 | 3,312 | | Alternative PC2LT4 | 0 | 597 | 592 | 1,049 | 1,632 | 2,944 | 3,956 | 3,904 | 3,859 | 3,800 | 3,703 | | Alternative PC3LT5 | 0 | 597 | 592 | 1,049 | 1,632 | 3,024 | 3,892 | 3,845 | 3,812 | 3,860 | 5,390 | | Alternative PC6LT8 | 0 | 597 | 592 | 1,049 | 1,632 | 3,281 | 4,236 | 4,658 | 5,122 | 5,621 | 7,632 | #### Table 289 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Hyundai KiK) | Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Hyundai KiK) | | | | | | | | | | | | | | |---|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 122 | 579 | 564 | 1,219 | 1,159 | 1,092 | 1,051 | 1,123 | 1,168 | 1,151 | | | | Alternative PC1LT3 | 0 | 122 | 579 | 564 | 1,219 | 1,713 | 1,783 | 2,102 | 2,156 | 2,201 | 2,165 | | | | Alternative PC2LT4 | 0 | 122 | 579 | 564 | 1,219 | 1,783 | 1,935 | 3,214 | 3,280 | 3,461 | 3,387 | | | | Alternative PC3LT5 | 0 | 122 | 579 | 564 | 1,219 | 1,860 | 2,093 | 3,508 | 3,615 | 3,843 | 5,888 | | | | Alternative PC6LT8 | 0 | 122 | 579 | 564 | 1,219 | 2,090 | 2,661 | 4,508 | 5,339 | 5,685 | 7,856 | | | #### Table 290 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (JLR) | Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (JLR) | | | | | | | | | | | | | | | |---|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 499 | 1,59
9 | 2,11
8 | 2,11
5 | 1,71
8 | 1,90
1 | 1,79
3 | 1,73
1 | 1,81
3 | 1,80
8 | 1,81
9 | | | | | Alternative PC1LT3 | 499 | 1,59
9 | 2,11
8 | 2,11
5 | 1,71
8 | 2,10
5 | 2,20
1 | 2,34
5 | 2,75
2 | 2,57
5 | 2,65
7 | | | | | Alternative PC2LT4 | 499 | 1,59
9 | 2,11
8 | 2,11
5 | 1,71
8 | 2,16
3 | 2,35
1 | 2,56
5 | 3,05
4 | 2,97
3 | 3,18
9 | | | | | Alternative PC3LT5 | 499 | 1,59
9 | 2,11
8 | 2,11
5 | 1,71
8 | 2,23
5 | 2,50
4 | 2,80
5 | 3,39
0 | 3,39
1 | 3,74
1 | | | | | Alternative PC6LT8 | 499 | 1,59
9 | 2,11
8 | 2,11
5 | 1,71
8 | 2,45
6 | 2,99
6 | 3,57
1 | 4,52
0 | 4,87
1 | 5,69
7 | | | | #### Table 291 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Karma) | Estimated Average | e Per V | ehicle l | Regula | tory Co | osts (\$), | Total Fle | et for M | anufactı | urer (Ka | rma) | | |----------------------------------|----------|----------
----------|----------|------------|------------|------------|------------|------------|------------|------------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | ### Table 292 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Lucid) | Estimated Average Pe | r Vehic | le Regi | ulatory | Costs | (\$), Tota | al Fleet | for Ma | nufactı | ırer (Lu | ıcid) | | |----------------------------------|---------|---------|---------|-------|------------|----------|--------|---------|----------|-------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | #### Table 293 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Mazda) | Estimated Average | Per Ve | hicle F | Regulat | ory Co | sts (\$), | Total Fl | eet for I | Manufac | cturer (M | azda) | | |----------------------------------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|------------|------------|------------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 736 | 807 | 872 | 1,79
7 | 1,97
4 | 2,10
9 | 2,19
8 | 2,283 | 2,340 | 2,303 | | Alternative PC1LT3 | 0 | 736 | 807 | 872 | 1,79
7 | 2,01
0 | 2,14
3 | 2,23
0 | 2,314 | 2,369 | 2,330 | | Alternative PC2LT4 | 0 | 736 | 807 | 872 | 1,79
7 | 2,03
6 | 2,15
7 | 2,26
0 | 2,354 | 2,406 | 2,366 | | Alternative PC3LT5 | 0 | 736 | 807 | 872 | 1,79
7 | 5,91
1 | 5,92
7 | 7,86
2 | 7,790 | 7,539 | 7,266 | | Alternative PC6LT8 | 0 | 736 | 807 | 872 | 1,79
7 | 6,34
7 | 6,38
4 | 9,73
3 | 12,47
6 | 11,93
5 | 11,79
8 | # Table 294 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Mercedes-Benz) | Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Mercedes-Benz) | | | | | | | | | | | | | | |---|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 638 | 853 | 893 | 1,309 | 2,271 | 2,271 | 1,960 | 2,162 | 2,338 | 2,460 | 2,470 | | | | Alternative PC1LT3 | 638 | 853 | 893 | 1,309 | 2,271 | 2,422 | 2,267 | 2,387 | 2,556 | 2,658 | 2,653 | | | | Alternative PC2LT4 | 638 | 853 | 893 | 1,309 | 2,271 | 2,503 | 2,427 | 2,570 | 2,636 | 2,765 | 2,836 | | | | Alternative PC3LT5 | 638 | 853 | 893 | 1,309 | 2,271 | 2,583 | 2,593 | 2,830 | 2,958 | 3,116 | 3,247 | | | | Alternative PC6LT8 | 638 | 853 | 893 | 1,309 | 2,271 | 2,824 | 3,127 | 3,651 | 4,159 | 4,682 | 5,262 | | | #### Table 295 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Mitsubishi) | Estimated Average Pe | er Vehic | le Reg | ulatory | Costs (| \$), Total | Fleet fo | or Manu | facturer | r (Mitsul | oishi) | | |----------------------------------|----------|--------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 226 | 261 | 1,33
3 | 1,47
1 | 2,03
9 | 1,90
8 | 1,80
6 | 1,69
5 | 1,60
0 | 1,46
2 | 1,42
1 | | Alternative PC1LT3 | 226 | 261 | 1,33
3 | 1,47
1 | 2,03
9 | 2,01
3 | 2,06
3 | 2,12
0 | 2,21
7 | 2,00
0 | 1,96
9 | | Alternative PC2LT4 | 226 | 261 | 1,33
3 | 1,47
1 | 2,03
9 | 2,08
0 | 2,24
6 | 2,39
6 | 2,60
9 | 2,10
4 | 2,05
7 | | Alternative PC3LT5 | 226 | 261 | 1,33
3 | 1,47
1 | 2,03
9 | 2,16
8 | 2,43
7 | 2,68
0 | 3,01
7 | 3,30
5 | 3,20
1 | | Alternative PC6LT8 | 226 | 261 | 1,33
3 | 1,47
1 | 2,03
9 | 2,44
9 | 3,04
8 | 3,61
9 | 4,38
0 | 4,37
1 | 5,08
8 | #### Table 296 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Nissan) | Estimated Average | Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Nissan) | | | | | | | | | | | | | | | |----------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | | No Action Alternative (Baseline) | 34 | 1,36
1 | 1,51
5 | 1,93
2 | 2,08
9 | 2,50
8 | 2,40
7 | 2,43
7 | 2,45
7 | 2,43
8 | 2,36
3 | | | | | | Alternative PC1LT3 | 34 | 1,36
1 | 1,51
5 | 1,93
2 | 2,08
9 | 2,60
3 | 2,66
1 | 2,67
6 | 2,68
1 | 2,64
6 | 2,55
8 | | | | | | Alternative PC2LT4 | 34 | 1,36
1 | 1,51
5 | 1,93
2 | 2,08
9 | 2,64
2 | 2,90
1 | 2,95
8 | 3,00
9 | 2,96
0 | 2,90
2 | | | | | | Alternative PC3LT5 | 34 | 1,36
1 | 1,51
5 | 1,93
2 | 2,08
9 | 2,71
6 | 3,04
9 | 3,18
0 | 3,25
4 | 3,21
2 | 3,20
3 | | | | | | Alternative PC6LT8 | 34 | 1,36
1 | 1,51
5 | 1,93
2 | 2,08
9 | 2,92
9 | 3,60
3 | 3,98
5 | 4,14
6 | 4,51
4 | 5,01
0 | | | | | #### Table 297 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Stellantis) | Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Stellantis) | | | | | | | | | | | | | | | |--|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 465 | 1,39
4 | 2,03
1 | 2,89
8 | 2,86
7 | 2,92
0 | 2,78
5 | 2,89
2 | 2,97
3 | 3,00
0 | 2,95
6 | | | | | Alternative PC1LT3 | 465 | 1,39
4 | 2,03
1 | 2,89
8 | 2,86
7 | 3,13
4 | 3,17
8 | 3,27
8 | 3,39
7 | 3,47
0 | 3,80
7 | | | | | Alternative PC2LT4 | 465 | 1,39
4 | 2,03
1 | 2,89
8 | 2,86
7 | 3,20
9 | 3,33
3 | 3,64
3 | 3,83
7 | 3,97
1 | 4,38
8 | | | | | Alternative PC3LT5 | 465 | 1,39
4 | 2,03
1 | 2,89
8 | 2,86
7 | 3,27
0 | 3,47
5 | 3,87
2 | 4,16
7 | 4,36
6 | 4,89
2 | | | | | Alternative PC6LT8 | 465 | 1,39
4 | 2,03
1 | 2,89
8 | 2,86
7 | 3,48
8 | 3,95
0 | 4,64
8 | 6,02
4 | 6,50
3 | 7,45
9 | | | | ### Table 298 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Subaru) | Estimated Average P | er Vehi | icle Re | gulator | y Costs | (\$), To | tal Fleet | for Mai | nufactui | er (Sub | aru) | | |----------------------------------|---------|---------|---------|---------|----------|-----------|---------|----------|---------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 439 | 450 | 563 | 1,644 | 1,934 | 2,104 | 2,210 | 2,335 | 2,413 | 2,384 | | Alternative PC1LT3 | 0 | 439 | 450 | 563 | 1,644 | 1,934 | 2,105 | 2,211 | 2,336 | 2,413 | 2,384 | | Alternative PC2LT4 | 0 | 439 | 450 | 563 | 1,644 | 1,936 | 2,105 | 2,211 | 2,336 | 2,413 | 2,384 | | Alternative PC3LT5 | 0 | 439 | 450 | 563 | 1,644 | 1,951 | 2,113 | 2,220 | 2,344 | 2,420 | 2,389 | | Alternative PC6LT8 | 0 | 439 | 450 | 563 | 1,644 | 1,987 | 2,175 | 2,934 | 3,372 | 3,361 | 3,292 | #### Table 299 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Tesla) | Estimated Average Pe | Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Tesla) | | | | | | | | | | | | | | |----------------------------------|---|------|------|------|------|------|------|------|------|------|------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 0 | 5 | 9 | 14 | 15 | 15 | 14 | 14 | 14 | 14 | 13 | | | | | Alternative PC1LT3 | 0 | 5 | 9 | 14 | 15 | 15 | 15 | 14 | 14 | 14 | 13 | | | | | Alternative PC2LT4 | 0 | 5 | 9 | 14 | 15 | 15 | 15 | 14 | 14 | 14 | 13 | | | | | Alternative PC3LT5 | 0 | 5 | 9 | 14 | 15 | 15 | 15 | 14 | 14 | 14 | 13 | | | | | Alternative PC6LT8 | 0 | 5 | 9 | 14 | 15 | 15 | 15 | 15 | 14 | 14 | 13 | | | | ### Table 300 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for
Manufacturer (Toyota) | Estimated Average F | er Veh | icle Re | gulator | y Costs | s (\$), To | tal Fleet | for Ma | nufactu | rer (Toy | ota) | | |----------------------------------|--------|---------|---------|---------|------------|-----------|--------|---------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 211 | 416 | 482 | 1,390 | 1,462 | 1,602 | 1,671 | 1,754 | 1,818 | 1,794 | | Alternative PC1LT3 | 0 | 211 | 416 | 482 | 1,390 | 1,463 | 1,603 | 1,672 | 1,755 | 1,818 | 1,794 | | Alternative PC2LT4 | 0 | 211 | 416 | 482 | 1,390 | 1,466 | 1,606 | 1,677 | 1,762 | 1,827 | 1,867 | | Alternative PC3LT5 | 0 | 211 | 416 | 482 | 1,390 | 1,473 | 1,720 | 1,847 | 1,966 | 2,052 | 2,166 | | Alternative PC6LT8 | 0 | 211 | 416 | 482 | 1,390 | 1,525 | 2,066 | 2,518 | 2,999 | 3,483 | 3,679 | ### Table 301 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (Volvo) | Estimated Average | Per Vel | nicle Re | gulato | ry Cost | s (\$), To | tal Flee | t for Ma | nufactu | rer (Vol | vo) | | |----------------------------------|---------|----------|--------|---------|------------|----------|----------|---------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 131 | 167 | 1,051 | 1,020 | 926 | 852 | 717 | 942 | 1,181 | 1,202 | | Alternative PC1LT3 | 0 | 131 | 167 | 1,051 | 1,020 | 1,109 | 1,202 | 1,230 | 1,281 | 1,469 | 1,517 | | Alternative PC2LT4 | 0 | 131 | 167 | 1,051 | 1,020 | 1,160 | 1,330 | 1,429 | 1,471 | 1,689 | 1,768 | | Alternative PC3LT5 | 0 | 131 | 167 | 1,051 | 1,020 | 1,221 | 1,456 | 1,627 | 1,761 | 2,034 | 2,172 | | Alternative PC6LT8 | 0 | 131 | 167 | 1,051 | 1,020 | 1,416 | 1,966 | 2,429 | 2,953 | 3,589 | 4,068 | #### Table 302 - Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (VWA) | Estimated Average | Estimated Average Per Vehicle Regulatory Costs (\$), Total Fleet for Manufacturer (VWA) | | | | | | | | | | | | | | | |----------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | | No Action Alternative (Baseline) | 295 | 1,24
2 | 1,48
3 | 1,79
0 | 1,97
2 | 2,15
7 | 2,06
6 | 2,19
6 | 2,26
1 | 2,30
3 | 2,24
9 | | | | | | Alternative PC1LT3 | 295 | 1,24
2 | 1,48
3 | 1,79
0 | 1,97
2 | 2,32
7 | 2,33
9 | 2,45
7 | 2,68
9 | 2,71
4 | 2,63
5 | | | | | | Alternative PC2LT4 | 295 | 1,24
2 | 1,48
3 | 1,79
0 | 1,97
2 | 2,40
4 | 2,48
2 | 2,64
0 | 2,97
2 | 2,94
6 | 2,91
3 | | | | | | Alternative PC3LT5 | 295 | 1,24
2 | 1,48
3 | 1,79
0 | 1,97
2 | 2,48
5 | 2,62
6 | 2,87
8 | 3,27
8 | 3,28
9 | 3,36
0 | | | | | | Alternative PC6LT8 | 295 | 1,24
2 | 1,48
3 | 1,79
0 | 1,97
2 | 2,73
5 | 3,13
2 | 3,66
4 | 4,43
8 | 4,78
1 | 5,34
6 | | | | | # Table 303 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (BMW) | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (BMW) | | | | | | | | | | | | | | |---|------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 631 | 622 | 1,86
0 | 2,02
4 | 1,95
1 | 1,78
9 | 1,85
9 | 1,88
9 | 1,84
5 | 1,84
2 | 1,72
2 | | | | Alternative PC1LT3 | 631 | 622 | 1,86
0 | 2,02
4 | 1,95
1 | 1,96
8 | 2,02
2 | 1,99
0 | 1,91
9 | 1,90
2 | 1,72
2 | | | | Alternative PC2LT4 | 631 | 622 | 1,86
0 | 2,02
4 | 1,95
1 | 2,06
6 | 2,08
9 | 2,08
8 | 2,07
9 | 2,10 | 1,87
1 | | | | Alternative PC3LT5 | 631 | 622 | 1,86
0 | 2,02
4 | 1,95
1 | 2,15
4 | 2,18
0 | 2,22 | 2,25
6 | 2,31
2 | 2,15
0 | | | | Alternative PC6LT8 | 631 | 622 | 1,86
0 | 2,02
4 | 1,95
1 | 2,44
1 | 2,71
3 | 2,96
9 | 3,31
4 | 3,66
8 | 3,91
8 | | | Table 304 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Ford) | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Ford) | | | | | | | | | | | | | | |--|------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 133 | 74 | 1,39
4 | 1,61
1 | 1,46
4 | 1,30
4 | 1,20
1 | 1,07
3 | 902 | 916 | 878 | | | | Alternative PC1LT3 | 133 | 74 | 1,39
4 | 1,61
1 | 1,46
4 | 1,38
6 | 1,28
1 | 1,15
2 | 1,00
0 | 1,04
9 | 1,04
3 | | | | Alternative PC2LT4 | 133 | 74 | 1,39
4 | 1,61
1 | 1,46
4 | 2,03
4 | 1,91
2 | 1,76
9 | 1,62
9 | 1,77
6 | 1,93
7 | | | | Alternative PC3LT5 | 133 | 74 | 1,39
4 | 1,61
1 | 1,46
4 | 2,03
4 | 1,91
1 | 1,76
8 | 1,90
1 | 2,10
7 | 2,37
9 | | | | Alternative PC6LT8 | 133 | 74 | 1,39
4 | 1,61
1 | 1,46
4 | 2,32
6 | 2,44
5 | 2,58
7 | 6,58
8 | 6,87
3 | 7,27
7 | | | #### Table 305 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (GM) | Estimated Average Per | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (GM) | | | | | | | | | | | | | | | |----------------------------------|--|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | | No Action Alternative (Baseline) | 411 | 280 | 1,57
0 | 1,74
1 | 1,94
2 | 1,78
1 | 1,68
4 | 1,57
7 | 1,51
3 | 1,44
2 | 1,36
8 | | | | | | Alternative PC1LT3 | 411 | 280 | 1,57
0 | 1,74
1 | 1,94
2 | 2,94
9 | 2,97
9 | 3,52
6 | 3,54
0 | 3,39
6 | 3,34
2 | | | | | | Alternative PC2LT4 | 411 | 280 | 1,57
0 | 1,74
1 | 1,94
2 | 3,03
5 | 3,16
4 | 3,57
4 | 3,68
2 | 3,55
3 | 3,61
3 | | | | | | Alternative PC3LT5 | 411 | 280 | 1,57
0 | 1,74
1 | 1,94
2 | 3,13
6 | 3,35
6 | 4,13
5 | 4,35
0 | 5,06
3 | 6,72
0 | | | | | | Alternative PC6LT8 | 411 | 280 | 1,57
0 | 1,74
1 | 1,94
2 | 3,41
3 | 3,95
4 | 4,96
3 | 5,54
0 | 6,55
6 | 8,68
8 | | | | | # Table 306 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Honda) | Estimated Average Per V | ehicle F | Regulat | ory Co | sts (\$), | Passen | ger Car | Fleet fo | r Manut | facturer | (Honda | 1) | |----------------------------------|----------|---------|--------|-----------|--------|---------|----------|---------|----------|--------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 339 | 380 | 710 | 1,132 | 1,204 | 1,179 | 1,152 | 1,133 | 1,109 | 955 | | Alternative PC1LT3 | 0 | 339 | 380 | 710 | 1,132 | 1,293 | 1,261 | 1,227 | 1,201 | 1,171 | 1,013 | | Alternative PC2LT4 | 0 | 339 | 380 | 710 | 1,132 | 1,294 | 1,262 | 1,228 | 1,201 | 1,171 | 1,013 | | Alternative PC3LT5 | 0 | 339 | 380 | 710 | 1,132 | 1,770 | 1,757 | 1,706 | 1,661 | 1,610 | 1,430 | | Alternative PC6LT8 | 0 | 339 | 380 | 710 | 1,132 | 2,045 | 2,337 | 2,670 | 2,599 | 3,048 | 3,157 | # Table 307 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Hyundai KiH) | Estimated Average Per Vehi | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Hyundai KiH) | | | | | | | | | | | | | | |----------------------------------|---|------|------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 0 | 911 | 897 | 1,210 | 1,734 | 1,847 | 1,849 | 1,850 | 1,857 | 1,873 | 1,802 | | | | | Alternative PC1LT3 | 0 | 911 | 897 | 1,210 | 1,734 | 2,957 | 3,937 | 3,869 | 3,808 | 3,685 | 3,507 | | | | | Alternative PC2LT4 | 0 | 911 | 897 | 1,210 | 1,734 | 3,045 | 4,042 | 3,968 | 3,899 | 3,826 | 3,642 | | | | | Alternative PC3LT5 | 0 | 911 | 897 | 1,210 | 1,734 | 3,133 | 4,261 | 4,176 | 4,102 | 4,070 | 3,940 | | | | | Alternative PC6LT8 | 0 | 911 | 897 | 1,210 | 1,734 | 3,415 | 4,615 | 5,046 | 5,458 | 5,963 | 6,645 | | | | # Table 308 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Hyundai KiK) | Estimated Average Per Vehic | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Hyundai KiK) | | | | | | | | | | | | | | |----------------------------------|---|------|------|------|------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 |
2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 0 | 60 | 872 | 806 | 933 | 913 | 857 | 828 | 858 | 878 | 851 | | | | | Alternative PC1LT3 | 0 | 60 | 872 | 806 | 933 | 1,877 | 1,944 | 1,773 | 1,803 | 1,785 | 1,712 | | | | | Alternative PC2LT4 | 0 | 60 | 872 | 806 | 933 | 1,951 | 2,099 | 3,785 | 3,784 | 3,546 | 3,337 | | | | | Alternative PC3LT5 | 0 | 60 | 872 | 806 | 933 | 2,033 | 2,260 | 4,137 | 4,251 | 4,074 | 3,756 | | | | | Alternative PC6LT8 | 0 | 60 | 872 | 806 | 933 | 2,276 | 2,842 | 5,082 | 6,232 | 6,216 | 6,094 | | | | #### Table 309 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (JLR) | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (JLR) | | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 1,16 | 4,31 | 4,07 | 3,86 | 3,70 | 3,67 | 3,43 | 3,10 | 2,91 | 2,87 | 2,71 | | | | | | 2 | 5 | 2 | 6 | 4 | 9 | 5 | 3 | 6 | 8 | 5 | | | | | Alternative PC1LT3 | 1,16 | 4,31 | 4,07 | 3,86 | 3,70 | 3,83 | 3,73 | 3,55 | 3,44 | 3,18 | 2,89 | | | | | | 2 | 5 | 2 | 6 | 4 | 6 | 5 | 9 | 9 | 3 | 0 | | | | | Alternative PC2LT4 | 1,16 | 4,31 | 4,07 | 3,86 | 3,70 | 3,89 | 3,85 | 3,72 | 3,68 | 3,48 | 3,27 | | | | | | 2 | 5 | 2 | 6 | 4 | 0 | 8 | 8 | 1 | 4 | 3 | | | | | Alternative PC3LT5 | 1,16 | 4,31 | 4,07 | 3,86 | 3,70 | 3,94 | 3,98 | 3,91 | 4,02 | 3,90 | 3,82 | | | | | | 2 | 5 | 2 | 6 | 4 | 9 | 0 | 4 | 7 | 1 | 1 | | | | | Alternative PC6LT8 | 1,16 | 4,31 | 4,07 | 3,86 | 3,70 | 4,14 | 4,38 | 4,52 | 4,87 | 5,06 | 5,39 | | | | | | 2 | 5 | 2 | 6 | 4 | 0 | 6 | 5 | 8 | 1 | 3 | | | | # Table 310 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Karma) | Estimated Average Per | Vehicle | e Regu | latory | Costs (| \$), Pass | enger C | ar Fleet | for Manu | ufacture | r (Karma | 1) | |----------------------------------|----------|----------|----------|----------|------------|------------|------------|------------|------------|------------|------------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | -
2,171 | -
2,499 | -
2,671 | -
2,960 | -
3,214 | -
3,343 | -
3,543 | # Table 311 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Lucid) | Estimated Average Per Veh | nicle Re | gulato | ry Cost | s (\$), P | asseng | er Car | Fleet fo | r Manu | ıfacture | er (Luci | d) | |----------------------------------|----------|--------|---------|-----------|--------|--------|----------|--------|----------|----------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -62 | # Table 312 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Mazda) | Estimated Average Per | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Mazda) | | | | | | | | | | | | | | |----------------------------------|---|----------|----------|----------|-----------|-----------|-----------|------------|------------|------------|------------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 0 | 858 | 813 | 889 | 1,45
0 | 1,65
1 | 1,69
5 | 1,688 | 1,700 | 1,705 | 1,629 | | | | | Alternative PC1LT3 | 0 | 858 | 813 | 889 | 1,45
0 | 1,73
5 | 1,77
6 | 1,766 | 1,772 | 1,774 | 1,694 | | | | | Alternative PC2LT4 | 0 | 858 | 813 | 889 | 1,45
0 | 1,75
0 | 1,77
6 | 1,766 | 1,772 | 1,774 | 1,694 | | | | | Alternative PC3LT5 | 0 | 858 | 813 | 889 | 1,45
0 | 1,77
1 | 1,90
3 | 12,59
6 | 12,23
6 | 11,66
0 | 11,03
2 | | | | | Alternative PC6LT8 | 0 | 858 | 813 | 889 | 1,45
0 | 1,83
7 | 2,02
7 | 14,67
9 | 14,16
5 | 13,44
0 | 13,34
0 | | | | Table 313 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Mercedes-Benz) | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Mercedes-Benz) | | | | | | | | | | | | | | |---|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 904 | 1,37
5 | 1,43
3 | 1,92
6 | 2,45
2 | 2,30
4 | 1,87
6 | 1,97
6 | 2,07
6 | 2,14
8 | 2,12
9 | | | | Alternative PC1LT3 | 904 | 1,37
5 | 1,43
3 | 1,92
6 | 2,45
2 | 2,47
4 | 2,17
5 | 2,16
9 | 2,12
2 | 2,19
1 | 2,16
9 | | | | Alternative PC2LT4 | 904 | 1,37
5 | 1,43
3 | 1,92
6 | 2,45
2 | 2,55
4 | 2,34
9 | 2,38
1 | 2,17
9 | 2,27
8 | 2,32
6 | | | | Alternative PC3LT5 | 904 | 1,37
5 | 1,43
3 | 1,92
6 | 2,45
2 | 2,63
4 | 2,52
6 | 2,63
7 | 2,56
8 | 2,73
7 | 2,81
6 | | | | Alternative PC6LT8 | 904 | 1,37
5 | 1,43
3 | 1,92
6 | 2,45
2 | 2,87
0 | 3,07
6 | 3,43
5 | 3,75
5 | 4,21
1 | 4,67
5 | | | # Table 314 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Mitsubishi) | Estimated Average Per Ve | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Mitsubishi) | | | | | | | | | | | | | | | |----------------------------------|--|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | | No Action Alternative (Baseline) | 345 | 312 | 1,24
9 | 1,41
8 | 2,22
2 | 2,06
4 | 1,94
2 | 1,80
6 | 1,69
1 | 1,53
7 | 1,47
5 | | | | | | Alternative PC1LT3 | 345 | 312 | 1,24
9 | 1,41
8 | 2,22 | 2,18
2 | 2,21
5 | 2,23
6 | 2,28
1 | 1,72
5 | 1,70
2 | | | | | | Alternative PC2LT4 | 345 | 312 | 1,24
9 | 1,41
8 | 2,22 | 2,25
5 | 2,40
2 | 2,50
1 | 2,63
6 | 1,73
9 | 1,69
5 | | | | | | Alternative PC3LT5 | 345 | 312 | 1,24
9 | 1,41
8 | 2,22 | 2,35
2 | 2,59
3 | 2,76
3 | 3,00
1 | 2,07
3 | 2,01
6 | | | | | | Alternative PC6LT8 | 345 | 312 | 1,24
9 | 1,41
8 | 2,22
2 | 2,64
6 | 3,17
2 | 3,63
4 | 4,27
9 | 3,50
8 | 4,25
6 | | | | | # Table 315 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Nissan) | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Nissan) | | | | | | | | | | | | | | |--|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 31 | 743 | 932 | 1,267 | 1,473 | 1,795 | 1,493 | 1,499 | 1,549 | 1,550 | 1,498 | | | | Alternative PC1LT3 | 31 | 743 | 932 | 1,267 | 1,473 | 1,882 | 1,494 | 1,500 | 1,550 | 1,550 | 1,499 | | | | Alternative PC2LT4 | 31 | 743 | 932 | 1,267 | 1,473 | 1,926 | 1,675 | 1,667 | 1,660 | 1,664 | 1,689 | | | | Alternative PC3LT5 | 31 | 743 | 932 | 1,267 | 1,473 | 2,005 | 1,852 | 1,936 | 1,870 | 1,897 | 1,975 | | | | Alternative PC6LT8 | 31 | 743 | 932 | 1,267 | 1,473 | 2,230 | 2,545 | 2,934 | 3,012 | 3,482 | 4,288 | | | # Table 316 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Stellantis) | Estimated Average Per Ve | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Stellantis) | | | | | | | | | | | | | | |----------------------------------|--|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 202
3 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 1,19
4 | 881 | 3,22
8 | 3,61
4 | 3,74
7 | 3,55
8 | 3,44
1 | 3,33
9 | 3,33
1 | 3,31
2 | 3,21
7 | | | | | Alternative PC1LT3 | 1,19
4 | 881 | 3,22
8 |
3,61
4 | 3,74
7 | 3,59
8 | 3,74
6 | 3,50
0 | 3,46
4 | 3,51
9 | 3,37
2 | | | | | Alternative PC2LT4 | 1,19
4 | 881 | 3,22
8 | 3,61
4 | 3,74
7 | 3,72
5 | 3,96
3 | 3,77
0 | 3,86
9 | 4,04
6 | 4,03
1 | | | | | Alternative PC3LT5 | 1,19
4 | 881 | 3,22
8 | 3,61
4 | 3,74
7 | 3,82
5 | 4,15
7 | 4,06
9 | 4,26
6 | 4,56
9 | 4,68
7 | | | | | Alternative PC6LT8 | 1,19
4 | 881 | 3,22
8 | 3,61
4 | 3,74
7 | 4,15
5 | 4,75
1 | 4,94
8 | 5,47
1 | 5,97
3 | 6,46
5 | | | | # Table 317 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Subaru) | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Subaru) | | | | | | | | | | | | | | |--|------|-----------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 1,01
4 | 976 | 1,40
9 | 1,82
0 | 1,79
8 | 1,78
7 | 1,71
8 | 1,66
9 | 1,62
2 | 1,50
0 | | | | Alternative PC1LT3 | 0 | 1,01
4 | 976 | 1,40
9 | 1,82
0 | 1,79
8 | 1,78
8 | 1,71
9 | 1,67
0 | 1,62
3 | 1,50
0 | | | | Alternative PC2LT4 | 0 | 1,01
4 | 976 | 1,40
9 | 1,82
0 | 1,80
2 | 1,78
8 | 1,71
9 | 1,67
0 | 1,62
3 | 1,50
0 | | | | Alternative PC3LT5 | 0 | 1,01
4 | 976 | 1,40
9 | 1,82
0 | 1,82
7 | 1,85
7 | 1,78
3 | 1,72
9 | 1,67
7 | 1,55
0 | | | | Alternative PC6LT8 | 0 | 1,01
4 | 976 | 1,40
9 | 1,82
0 | 1,88
2 | 2,22
4 | 2,31
8 | 2,69
6 | 2,56
3 | 2,56
3 | | | # Table 318 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Tesla) | Estimated Average Per Vel | nicle Re | gulato | ry Cost | s (\$), P | asseng | jer Car | Fleet fo | or Manu | ıfacture | er (Tesl | a) | |----------------------------------|----------|--------|---------|-----------|--------|---------|----------|---------|----------|----------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | # Table 319 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Toyota) | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Toyota) | | | | | | | | | | | | | | |--|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 206 | 340 | 455 | 1,135 | 1,213 | 1,300 | 1,310 | 1,331 | 1,341 | 1,285 | | | | Alternative PC1LT3 | 0 | 206 | 340 | 455 | 1,135 | 1,213 | 1,301 | 1,310 | 1,332 | 1,341 | 1,285 | | | | Alternative PC2LT4 | 0 | 206 | 340 | 455 | 1,135 | 1,213 | 1,301 | 1,310 | 1,332 | 1,341 | 1,285 | | | | Alternative PC3LT5 | 0 | 206 | 340 | 455 | 1,135 | 1,221 | 1,310 | 1,329 | 1,380 | 1,394 | 1,335 | | | | Alternative PC6LT8 | 0 | 206 | 340 | 455 | 1,135 | 1,284 | 1,715 | 2,151 | 2,861 | 3,230 | 2,847 | | | # Table 320 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Volvo) | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (Volvo) | | | | | | | | | | | | | | |---|------|------|------|------|------|------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 45 | 45 | 399 | 407 | 387 | 363 | 202 | 339 | 481 | 484 | | | | Alternative PC1LT3 | 0 | 45 | 45 | 399 | 407 | 468 | 593 | 515 | 388 | 522 | 557 | | | | Alternative PC2LT4 | 0 | 45 | 45 | 399 | 407 | 518 | 708 | 689 | 473 | 641 | 699 | | | | Alternative PC3LT5 | 0 | 45 | 45 | 399 | 407 | 578 | 824 | 861 | 673 | 866 | 909 | | | | Alternative PC6LT8 | 0 | 45 | 45 | 399 | 407 | 762 | 1,279 | 1,555 | 1,766 | 2,230 | 2,594 | | | Table 321 - Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (VWA) | Estimated Average Per Vehicle Regulatory Costs (\$), Passenger Car Fleet for Manufacturer (VWA) | | | | | | | | | | | | | | |---|------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 424 | 529 | 1,10
0 | 1,30
3 | 1,81
1 | 2,09
7 | 2,07
8 | 2,06
7 | 2,06
1 | 2,09
4 | 2,00
4 | | | | Alternative PC1LT3 | 424 | 529 | 1,10
0 | 1,30
3 | 1,81
1 | 2,26
3 | 2,37
9 | 2,35
3 | 2,13
2 | 2,14
0 | 2,04
5 | | | | Alternative PC2LT4 | 424 | 529 | 1,10
0 | 1,30
3 | 1,81
1 | 2,36
2 | 2,58
3 | 2,58
8 | 2,34
5 | 2,23
2 | 2,13
6 | | | | Alternative PC3LT5 | 424 | 529 | 1,10
0 | 1,30
3 | 1,81
1 | 2,46
6 | 2,78
0 | 2,86
1 | 2,71
2 | 2,63
0 | 2,56
6 | | | | Alternative PC6LT8 | 424 | 529 | 1,10
0 | 1,30
3 | 1,81
1 | 2,76
9 | 3,43
5 | 3,73
5 | 3,95
5 | 4,15
9 | 4,53
9 | | | ### Table 322 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (BMW) | Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (BMW) | | | | | | | | | | | | | | |---|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 226 | 349 | 382 | 1,221 | 1,474 | 1,385 | 1,711 | 2,001 | 2,196 | 2,380 | 2,380 | | | | Alternative PC1LT3 | 226 | 349 | 382 | 1,221 | 1,474 | 1,495 | 1,847 | 2,156 | 2,328 | 2,500 | 2,540 | | | | Alternative PC2LT4 | 226 | 349 | 382 | 1,221 | 1,474 | 1,561 | 1,915 | 2,276 | 2,495 | 2,726 | 2,802 | | | | Alternative PC3LT5 | 226 | 349 | 382 | 1,221 | 1,474 | 1,621 | 1,993 | 2,406 | 2,682 | 2,963 | 3,103 | | | | Alternative PC6LT8 | 226 | 349 | 382 | 1,221 | 1,474 | 1,837 | 2,444 | 3,106 | 3,710 | 4,381 | 5,091 | | | ### Table 323 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Ford) | Estimated Average Pe | Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Ford) | | | | | | | | | | | | | | |----------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 69 | 1,93
8 | 2,59
2 | 2,62
2 | 2,87
2 | 2,90
5 | 2,79
6 | 2,68
6 | 2,55
6 | 2,58
7 | 2,53
6 | | | | | Alternative PC1LT3 | 69 | 1,93
8 | 2,59
2 | 2,62
2 | 2,87
2 | 3,34
5 | 3,55
3 | 3,65
6 | 3,50
4 | 3,45
7 | 3,38
0 | | | | | Alternative PC2LT4 | 69 | 1,93
8 | 2,59
2 | 2,62
2 | 2,87
2 | 3,45
4 | 3,67
8 | 3,80
6 | 3,65
2 | 3,76
5 | 3,90
1 | | | | | Alternative PC3LT5 | 69 | 1,93
8 | 2,59
2 | 2,62
2 | 2,87
2 | 3,45
4 | 3,67
8 | 3,80
6 | 3,93
1 | 4,13
4 | 4,36
7 | | | | | Alternative PC6LT8 | 69 | 1,93
8 | 2,59
2 | 2,62
2 | 2,87
2 | 3,60
4 | 4,05
4 | 4,45
2 | 4,98
7 | 5,54
1 | 6,23
0 | | | | #### Table 324 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (GM) | Estimated Average Po | Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (GM) | | | | | | | | | | | | | | |----------------------------------|--|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 240 | 377 | 1,77
3 | 2,28
6 | 2,40
8 | 2,36
8 | 2,23
9 | 2,09
4 | 1,97
7 | 2,82
4 | 2,69
0 | | | | | Alternative PC1LT3 | 240 | 377 | 1,77
3 | 2,28
6 | 2,40
8 | 3,09
1 | 3,13
5 | 3,11
4 | 3,20
9 | 4,21
4 | 4,28
6 | | | | | Alternative PC2LT4 | 240 | 377 | 1,77
3 | 2,28
6 | 2,40
8 | 3,15
1 | 3,27
3 | 3,27
4 | 3,47
8 | 4,53
2 | 4,68
8 | | | | | Alternative PC3LT5 | 240 | 377 | 1,77
3 | 2,28
6 | 2,40
8 | 3,22
3 | 3,41
4 | 3,45
5 | 3,76
8 | 4,87
9 | 5,22
2 | | | | | Alternative PC6LT8 | 240 | 377 | 1,77
3 | 2,28
6 | 2,40
8 | 3,41
7 | 3,85
1 | 4,19
6 | 4,84
3 | 6,26
8 | 7,06
7 | | | | ### Table 325 - Estimated Average Per Vehicle Regulatory
Costs (\$), Light Truck Fleet for Manufacturer (Honda) | Estimated Average Per | Vehicle | Regul | atory C | osts (\$ |), Light | Truck F | leet for | Manufa | cturer (l | Honda) | | |----------------------------------|---------|-------|---------|----------|----------|---------|----------|--------|-----------|--------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 598 | 692 | 761 | 1,466 | 1,645 | 1,782 | 1,848 | 1,924 | 1,974 | 1,929 | | Alternative PC1LT3 | 0 | 598 | 692 | 761 | 1,466 | 1,857 | 1,976 | 2,026 | 2,085 | 2,120 | 2,064 | | Alternative PC2LT4 | 0 | 598 | 692 | 761 | 1,466 | 1,892 | 2,036 | 2,143 | 2,285 | 2,321 | 2,324 | | Alternative PC3LT5 | 0 | 598 | 692 | 761 | 1,466 | 2,073 | 2,274 | 2,389 | 2,621 | 2,643 | 2,652 | | Alternative PC6LT8 | 0 | 598 | 692 | 761 | 1,466 | 2,274 | 2,539 | 2,882 | 3,202 | 4,389 | 4,705 | # Table 326 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Hyundai KiH) | Estimated Average Per Vel | Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Hyundai KiH) | | | | | | | | | | | | | | |----------------------------------|---|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 0 | 142 | 181 | 845 | 1,506 | 1,527 | 1,513 | 1,597 | 1,683 | 1,779 | 1,767 | | | | | Alternative PC1LT3 | 0 | 142 | 181 | 845 | 1,506 | 2,751 | 3,061 | 3,084 | 3,111 | 3,092 | 3,076 | | | | | Alternative PC2LT4 | 0 | 142 | 181 | 845 | 1,506 | 2,823 | 3,854 | 3,828 | 3,810 | 3,769 | 3,776 | | | | | Alternative PC3LT5 | 0 | 142 | 181 | 845 | 1,506 | 2,894 | 3,454 | 3,459 | 3,468 | 3,608 | 7,165 | | | | | Alternative PC6LT8 | 0 | 142 | 181 | 845 | 1,506 | 3,120 | 3,789 | 4,206 | 4,726 | 5,211 | 8,839 | | | | # Table 327 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Hyundai KiK) | Estimated Average Per Vel | Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Hyundai KiK) | | | | | | | | | | | | | | |----------------------------------|---|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 0 | 200 | 233 | 294 | 1,527 | 1,419 | 1,338 | 1,283 | 1,399 | 1,475 | 1,471 | | | | | Alternative PC1LT3 | 0 | 200 | 233 | 294 | 1,527 | 1,541 | 1,617 | 2,441 | 2,524 | 2,640 | 2,646 | | | | | Alternative PC2LT4 | 0 | 200 | 233 | 294 | 1,527 | 1,607 | 1,765 | 2,627 | 2,756 | 3,371 | 3,440 | | | | | Alternative PC3LT5 | 0 | 200 | 233 | 294 | 1,527 | 1,678 | 1,919 | 2,863 | 2,954 | 3,599 | 8,179 | | | | | Alternative PC6LT8 | 0 | 200 | 233 | 294 | 1,527 | 1,895 | 2,474 | 3,920 | 4,419 | 5,126 | 9,746 | | | | ### Table 328 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (JLR) | Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (JLR) | | | | | | | | | | | | | | |---|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 481 | 1,53
0 | 2,07
2 | 2,07
6 | 1,67
5 | 1,86
3 | 1,75
9 | 1,70
3 | 1,79
0 | 1,78
5 | 1,80
0 | | | | Alternative PC1LT3 | 481 | 1,53
0 | 2,07
2 | 2,07
6 | 1,67
5 | 2,06
9 | 2,16
9 | 2,32
0 | 2,73
8 | 2,56
2 | 2,65
2 | | | | Alternative PC2LT4 | 481 | 1,53
0 | 2,07
2 | 2,07
6 | 1,67
5 | 2,12
7 | 2,31
9 | 2,54
1 | 3,04
1 | 2,96
2 | 3,18
7 | | | | Alternative PC3LT5 | 481 | 1,53
0 | 2,07
2 | 2,07
6 | 1,67
5 | 2,19
9 | 2,47
3 | 2,78
2 | 3,37
7 | 3,38
0 | 3,73
9 | | | | Alternative PC6LT8 | 481 | 1,53
0 | 2,07
2 | 2,07
6 | 1,67
5 | 2,42
1 | 2,96
7 | 3,55
1 | 4,51
2 | 4,86
7 | 5,70
4 | | | ### Table 329 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Karma) | Estimated Average Per Ve | hicle R | egulate | ory Cos | sts (\$), | Light T | ruck Fl | eet for | Manufa | cturer | (Karma |) | |----------------------------------|---------|---------|---------|-----------|---------|---------|---------|--------|--------|--------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ### Table 330 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Lucid) | Estimated Average Per V | ehicle F | Regulat | ory Co | sts (\$), | Light T | ruck F | eet for | Manufa | acturer | (Lucid) | | |----------------------------------|----------|---------|--------|-----------|---------|--------|---------|--------|---------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC1LT3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC2LT4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC3LT5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alternative PC6LT8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ### Table 331 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Mazda) | Estimated Average Pe | Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Mazda) | | | | | | | | | | | | | |----------------------------------|---|----------|----------|----------|-----------|-----------|-----------|-----------|------------|------------|------------|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 715 | 806 | 870 | 1,84
7 | 2,01
9 | 2,16
6 | 2,26
8 | 2,364 | 2,429 | 2,398 | | | | Alternative PC1LT3 | 0 | 715 | 806 | 870 | 1,84
7 | 2,04
8 | 2,19
4 | 2,29
4 | 2,388 | 2,452 | 2,420 | | | | Alternative PC2LT4 | 0 | 715 | 806 | 870 | 1,84
7 | 2,07
5 | 2,20
9 | 2,32
8 | 2,434 | 2,494 | 2,461 | | | | Alternative PC3LT5 | 0 | 715 | 806 | 870 | 1,84
7 | 6,48
7 | 6,48
2 | 7,21
8 | 7,178 | 6,962 | 6,730 | | | | Alternative PC6LT8 | 0 | 715 | 806 | 870 | 1,84
7 | 6,97
4 | 6,98
3 | 9,06
3 | 12,24
5 | 11,72
6 | 11,57
9 | | | # Table 332 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Mercedes-Benz) | Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Mercedes-Benz) | | | | | | | | | | | | | |---|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | No Action Alternative (Baseline) | 371 | 374 | 430 | 814 | 2,131 | 2,245 | 2,024 | 2,302 | 2,536 | 2,699 | 2,733 | | | Alternative PC1LT3 | 371 | 374 | 430 | 814 | 2,131 | 2,383 | 2,336 | 2,549 | 2,883 | 3,015 | 3,026 | | | Alternative PC2LT4 | 371 | 374 | 430 | 814 | 2,131 | 2,463 | 2,485 | 2,712 | 2,980 | 3,138 | 3,229 | | | Alternative PC3LT5 | 371 | 374 | 430 | 814 | 2,131 | 2,544 | 2,643 | 2,973 | 3,250 | 3,406 | 3,583 | | | Alternative PC6LT8 | 371 | 374 | 430 | 814 | 2,131 | 2,789 | 3,166 | 3,811 | 4,461 | 5,040 | 5,718 | | # Table 333 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Mitsubishi) | Estimated Average Per V | ehicle l | Regula | tory Cos | sts (\$), L | ight Tr | uck Flee | et for Ma | anufacti | urer (Mit | subishi | i) | |----------------------------------|----------|--------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 74 | 201 | 1,42
5 | 1,52
5 | 1,85
8 | 1,75
5 | 1,67
5 | 1,58
7 | 1,51
3 | 1,39
0 | 1,36
8 | | Alternative PC1LT3 | 74 | 201 | 1,42
5 | 1,52
5 | 1,85
8 | 1,84
9 | 1,91
7 | 2,00
9 | 2,15
5 | 2,26
9 | 2,23
3 | | Alternative PC2LT4 | 74 | 201 | 1,42
5 | 1,52
5 | 1,85
8 | 1,91
0 | 2,09
6 | 2,29
6 | 2,58
4 | 2,46
1 | 2,41
4 | | Alternative PC3LT5 | 74 | 201 | 1,42
5 | 1,52
5 | 1,85
8 | 1,99
0 | 2,28
7 | 2,60
1 | 3,03
2 | 4,50
9 | 4,38
0 | | Alternative PC6LT8 | 74 | 201 | 1,42
5 | 1,52
5 | 1,85
8 | 2,25
7 | 2,92
8 | 3,60
5 | 4,47
6 | 5,21
0 | 5,91
3 | Table 334 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Nissan) | Estimated Average Per | Estimated Average Per Vehicle
Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Nissan) | | | | | | | | | | | | | | |----------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 39 | 2,16
5 | 2,22 | 2,68
9 | 2,76
9 | 3,28
1 | 3,38
5 | 3,43
4 | 3,42
9 | 3,40
4 | 3,30
6 | | | | | Alternative PC1LT3 | 39 | 2,16
5 | 2,22
2 | 2,68
9 | 2,76
9 | 3,38
0 | 3,90
3 | 3,92
0 | 3,88
8 | 3,83
3 | 3,71
4 | | | | | Alternative PC2LT4 | 39 | 2,16
5 | 2,22 | 2,68
9 | 2,76
9 | 3,41
3 | 4,20
8 | 4,31
9 | 4,44
5 | 4,36
5 | 4,22
9 | | | | | Alternative PC3LT5 | 39 | 2,16
5 | 2,22
2 | 2,68
9 | 2,76
9 | 3,48
3 | 4,32
5 | 4,48
9 | 4,72
7 | 4,63
6 | 4,55
5 | | | | | Alternative PC6LT8 | 39 | 2,16
5 | 2,22 | 2,68
9 | 2,76
9 | 3,68
1 | 4,72
6 | 5,08
6 | 5,34
5 | 5,62
6 | 5,80
3 | | | | # Table 335 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Stellantis) | Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Stellantis) | | | | | | | | | | | | | | | |--|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | No Action Alternative (Baseline) | 347 | 1,47
0 | 1,86
5 | 2,80
5 | 2,75
6 | 2,84
2 | 2,70
5 | 2,83
8 | 2,92
9 | 2,96
2 | 2,92
4 | | | | | Alternative PC1LT3 | 347 | 1,47
0 | 1,86
5 | 2,80
5 | 2,75
6 | 3,07
7 | 3,10
9 | 3,25
2 | 3,38
9 | 3,46
3 | 3,86
1 | | | | | Alternative PC2LT4 | 347 | 1,47
0 | 1,86
5 | 2,80
5 | 2,75
6 | 3,14
6 | 3,25
6 | 3,62
7 | 3,83
3 | 3,96
1 | 4,43
3 | | | | | Alternative PC3LT5 | 347 | 1,47
0 | 1,86
5 | 2,80
5 | 2,75
6 | 3,20
2 | 3,39
2 | 3,84
9 | 4,15
5 | 4,34
1 | 4,91
8 | | | | | Alternative PC6LT8 | 347 | 1,47
0 | 1,86
5 | 2,80
5 | 2,75
6 | 3,40
6 | 3,85
3 | 4,61
2 | 6,09
0 | 6,56
9 | 7,58
3 | | | | ### Table 336 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Subaru) | Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Subaru) | | | | | | | | | | | | | | |--|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | No Action Alternative (Baseline) | 0 | 338 | 363 | 432 | 1,618 | 1,954 | 2,150 | 2,281 | 2,433 | 2,530 | 2,516 | | | | Alternative PC1LT3 | 0 | 338 | 363 | 432 | 1,618 | 1,954 | 2,151 | 2,282 | 2,433 | 2,530 | 2,516 | | | | Alternative PC2LT4 | 0 | 338 | 363 | 432 | 1,618 | 1,956 | 2,151 | 2,282 | 2,433 | 2,530 | 2,516 | | | | Alternative PC3LT5 | 0 | 338 | 363 | 432 | 1,618 | 1,969 | 2,151 | 2,282 | 2,433 | 2,530 | 2,515 | | | | Alternative PC6LT8 | 0 | 338 | 363 | 432 | 1,618 | 2,003 | 2,168 | 3,022 | 3,469 | 3,478 | 3,401 | | | ### Table 337 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Tesla) | Estimated Average Per V | ehicle l | Regulat | ory Co | sts (\$), | Light T | ruck F | leet for | Manufa | acturer | (Tesla) | | |----------------------------------|----------|---------|--------|-----------|---------|--------|----------|--------|---------|---------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 100 | 177 | 252 | 248 | 244 | 240 | 237 | 233 | 229 | 226 | | Alternative PC1LT3 | 0 | 100 | 177 | 252 | 248 | 244 | 240 | 237 | 233 | 229 | 226 | | Alternative PC2LT4 | 0 | 100 | 177 | 252 | 248 | 244 | 240 | 237 | 233 | 229 | 226 | | Alternative PC3LT5 | 0 | 100 | 177 | 252 | 248 | 244 | 240 | 237 | 233 | 229 | 226 | | Alternative PC6LT8 | 0 | 100 | 177 | 252 | 248 | 244 | 240 | 237 | 233 | 229 | 226 | ### Table 338 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Toyota) | Estimated Average Per | Vehicle | Regula | atory C | osts (\$ |), Light | Truck F | leet for | Manufa | cturer (7 | Γoyota) | | |----------------------------------|---------|--------|---------|----------|----------|---------|----------|--------|-----------|---------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 214 | 463 | 499 | 1,532 | 1,599 | 1,766 | 1,865 | 1,982 | 2,079 | 2,075 | | Alternative PC1LT3 | 0 | 214 | 463 | 499 | 1,532 | 1,599 | 1,766 | 1,866 | 1,983 | 2,079 | 2,074 | | Alternative PC2LT4 | 0 | 214 | 463 | 499 | 1,532 | 1,604 | 1,771 | 1,872 | 1,994 | 2,092 | 2,188 | | Alternative PC3LT5 | 0 | 214 | 463 | 499 | 1,532 | 1,610 | 1,940 | 2,122 | 2,281 | 2,413 | 2,628 | | Alternative PC6LT8 | 0 | 214 | 463 | 499 | 1,532 | 1,656 | 2,254 | 2,713 | 3,073 | 3,620 | 4,141 | ### Table 339 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (Volvo) | Estimated Average Per | Vehicl | e Regu | latory (| Costs (\$ |), Light | Truck F | leet for | Manufa | cturer (| Volvo) | | |----------------------------------|--------|--------|----------|-----------|----------|---------|----------|--------|----------|--------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 0 | 170 | 217 | 1,302 | 1,248 | 1,123 | 1,029 | 902 | 1,160 | 1,438 | 1,466 | | Alternative PC1LT3 | 0 | 170 | 217 | 1,302 | 1,248 | 1,343 | 1,422 | 1,486 | 1,602 | 1,815 | 1,871 | | Alternative PC2LT4 | 0 | 170 | 217 | 1,302 | 1,248 | 1,393 | 1,553 | 1,692 | 1,829 | 2,073 | 2,163 | | Alternative PC3LT5 | 0 | 170 | 217 | 1,302 | 1,248 | 1,455 | 1,684 | 1,899 | 2,152 | 2,461 | 2,641 | | Alternative PC6LT8 | 0 | 170 | 217 | 1,302 | 1,248 | 1,654 | 2,213 | 2,739 | 3,377 | 4,083 | 4,616 | ### Table 340 - Estimated Average Per Vehicle Regulatory Costs (\$), Light Truck Fleet for Manufacturer (VWA) | Estimated Average Pe | er Vehic | le Regu | latory (| Costs (\$ |), Light | Truck F | leet for | Manufa | cturer (| VWA) | | |----------------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 202
2 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | No Action Alternative (Baseline) | 202 | 1,70
9 | 1,71
8 | 2,06
9 | 2,06
1 | 2,19
0 | 2,06
0 | 2,26
6 | 2,36
9 | 2,41
7 | 2,38
3 | | Alternative PC1LT3 | 202 | 1,70
9 | 1,71
8 | 2,06
9 | 2,06
1 | 2,36
1 | 2,31
8 | 2,51
2 | 2,98
8 | 3,02
7 | 2,95
9 | | Alternative PC2LT4 | 202 | 1,70
9 | 1,71
8 | 2,06
9 | 2,06
1 | 2,42
6 | 2,42
8 | 2,66
8 | 3,30
8 | 3,33
6 | 3,34
1 | | Alternative PC3LT5 | 202 | 1,70
9 | 1,71
8 | 2,06
9 | 2,06
1 | 2,49
5 | 2,54
4 | 2,88
7 | 3,58
1 | 3,64
8 | 3,80
0 | | Alternative PC6LT8 | 202 | 1,70
9 | 1,71
8 | 2,06
9 | 2,06
1 | 2,71
6 | 2,97
1 | 3,62
7 | 4,69
6 | 5,11
8 | 5,79
2 | ### **Incremental Societal Impacts** Table 341 - Incremental Total Societal Costs (\$b) by Year and Alternative for Total Fleet, Discounted at 3% | Incremental | Total Societa | al Costs | s (\$b) b | y Year | and Alt | ernativ | e for To | otal Fle | et, Disc | counted | d at 3% | | |--------------------|---------------|----------|-----------|--------|---------|---------|----------|----------|----------|---------|---------|-------| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Alternative PC1LT3 | 5.8 | 0.4 | 0.4 | 0.4 | 0.5 | 4.1 | 5.5 | 6.9 | 7.0 | 7.6 | 8.3 | 46.8 | | Alternative PC2LT4 | 8.1 | 0.6 | 0.6 | 0.6 | 0.6 | 4.5 | 6.3 | 8.6 | 9.0 | 9.5 | 10.4 | 58.6 | | Alternative PC3LT5 | 14.0 | 1.1 | 1.1 | 1.1 | 1.2 | 5.4 | 7.6 | 10.2 | 10.9 | 11.8 | 14.2 | 78.7 | | Alternative PC6LT8 | 27.7 | 2.0 | 2.0 | 2.1 | 2.2 | 5.7 | 7.8 | 10.7 | 12.9 | 13.8 | 17.7 | 104.5 | ### Table 342 - Incremental Total Societal Costs (\$b) by Year and Alternative for Passenger Car Fleet, Discounted at 3% | Incremental Total | Incremental Total Societal Costs (\$b) by Year and Alternative for Passenger Car Fleet, Discounted at 3% | | | | | | | | | | | | | | |--------------------|--|------|------|------|------|------|------|------|------|------|------|-------|--|--| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | | Alternative PC1LT3 | 3.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.4 | 0.7 | 0.9 | 1.1 | 1.2 | 8.4 | | | | Alternative PC2LT4 | 4.6 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.6 | 0.9 | 1.2 | 1.6 | 2.1 | 12.1 | | | | Alternative PC3LT5 | 7.9 | 0.4 | 0.4 | 0.4 | 0.4 | 0.6 | 1.2 | 1.3 | 2.2 | 2.7 | 4.2 | 21.6 | | | | Alternative PC6LT8 | 15.6 | 8.0 | 0.7 | 0.6 | 0.6 | 0.4 | 1.2 | 1.5 | 2.6 | 3.7 | 6.6 | 34.5 | | | ### Table 343 - Incremental Total Societal Costs (\$b) by Year and Alternative for Light Truck Fleet, Discounted at 3% | Incremental Total | Incremental Total Societal Costs
(\$b) by Year and Alternative for Light Truck Fleet, Discounted at 3% | | | | | | | | | | | | | | | |--------------------|--|------|------|------|------|------|------|------|------|------|------|-------|--|--|--| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | | | Alternative PC1LT3 | 2.5 | 0.2 | 0.3 | 0.3 | 0.3 | 3.8 | 5.1 | 6.2 | 6.2 | 6.5 | 7.1 | 38.5 | | | | | Alternative PC2LT4 | 3.4 | 0.3 | 0.4 | 0.4 | 0.4 | 4.1 | 5.7 | 7.7 | 7.7 | 7.9 | 8.3 | 46.5 | | | | | Alternative PC3LT5 | 6.1 | 0.6 | 0.7 | 0.8 | 0.8 | 4.8 | 6.4 | 8.9 | 8.7 | 9.1 | 10.0 | 57.1 | | | | | Alternative PC6LT8 | 12.1 | 1.2 | 1.3 | 1.4 | 1.6 | 5.3 | 6.6 | 9.2 | 10.3 | 10.1 | 11.1 | 70.1 | | | | #### Table 344 - Incremental Total Societal Costs (\$b) by Year and Alternative for Total Fleet, Discounted at 7% | Incremental ⁻ | Total Societa | I Costs | s (\$b) b | y Year | and Alt | ernativ | e for To | otal Fle | et, Disc | ounted | at 7% | | |--------------------------|---------------|---------|-----------|--------|---------|---------|----------|----------|----------|--------|-------|-------| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Alternative PC1LT3 | 3.7 | 0.2 | 0.2 | 0.2 | 0.2 | 3.1 | 4.0 | 4.8 | 4.7 | 4.8 | 5.1 | 31.2 | | Alternative PC2LT4 | 5.1 | 0.3 | 0.3 | 0.3 | 0.3 | 3.4 | 4.6 | 6.0 | 6.1 | 6.2 | 6.5 | 39.1 | | Alternative PC3LT5 | 8.7 | 0.6 | 0.6 | 0.6 | 0.6 | 4.1 | 5.5 | 7.2 | 7.4 | 7.7 | 9.1 | 52.2 | | Alternative PC6LT8 | 17.3 | 1.1 | 1.1 | 1.1 | 1.2 | 4.2 | 5.8 | 7.7 | 9.2 | 9.6 | 12.0 | 70.3 | ### Table 345 - Incremental Total Societal Costs (\$b) by Year and Alternative for Passenger Car Fleet, Discounted at 7% | Incremental Total | Incremental Total Societal Costs (\$b) by Year and Alternative for Passenger Car Fleet, Discounted at 7% | | | | | | | | | | | | | | |--------------------|--|------|------|------|------|------|------|------|------|------|------|-------|--|--| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | | Alternative PC1LT3 | 2.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | 0.5 | 0.7 | 0.7 | 0.8 | 0.8 | 6.3 | | | | Alternative PC2LT4 | 3.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | 0.6 | 0.9 | 1.0 | 1.2 | 1.4 | 8.9 | | | | Alternative PC3LT5 | 5.0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.6 | 1.0 | 1.2 | 1.7 | 1.9 | 2.7 | 14.9 | | | | Alternative PC6LT8 | 10.0 | 0.5 | 0.4 | 0.4 | 0.4 | 0.5 | 1.1 | 1.4 | 2.2 | 2.8 | 4.4 | 24.0 | | | ### Table 346 - Incremental Total Societal Costs (\$b) by Year and Alternative for Light Truck Fleet, Discounted at 7% | Incremental Total | Incremental Total Societal Costs (\$b) by Year and Alternative for Light Truck Fleet, Discounted at 7% | | | | | | | | | | | | | | |--------------------|--|------|------|------|------|------|------|------|------|------|------|-------|--|--| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | | Alternative PC1LT3 | 1.5 | 0.1 | 0.1 | 0.2 | 0.2 | 2.8 | 3.6 | 4.2 | 4.0 | 4.1 | 4.3 | 24.9 | | | | Alternative PC2LT4 | 2.1 | 0.2 | 0.2 | 0.2 | 0.2 | 3.0 | 4.0 | 5.2 | 5.1 | 5.0 | 5.1 | 30.2 | | | | Alternative PC3LT5 | 3.7 | 0.4 | 0.4 | 0.4 | 0.4 | 3.5 | 4.5 | 6.0 | 5.8 | 5.8 | 6.5 | 37.3 | | | | Alternative PC6LT8 | 7.3 | 0.7 | 0.7 | 8.0 | 8.0 | 3.7 | 4.6 | 6.3 | 7.0 | 6.8 | 7.6 | 46.3 | | | # Table 347 - Incremental Total Societal Benefits (\$b) by Year and Alternative for Total Fleet, Average SCC Level, Discounted at 3% | Incremental Total S | ocietal Benef | its (\$b) | by Yea | | Iternati
t 3% | ve for T | Total Fle | eet, Ave | rage S | CC Leve | el, Disc | ounted | |--|---------------|-----------|--------|------|------------------|----------|-----------|----------|--------|---------|----------|--------| | Model Year 1983-2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 Total | | | | | | | | | | | | | | Alternative PC1LT3 | -3.4 | -0.2 | -0.2 | -0.2 | -0.2 | 5.5 | 8.6 | 11.0 | 11.6 | 12.7 | 14.1 | 59.5 | | Alternative PC2LT4 | -4.7 | -0.3 | -0.3 | -0.3 | -0.3 | 6.1 | 10.4 | 13.8 | 15.2 | 16.7 | 18.9 | 75.5 | | Alternative PC3LT5 | -8.3 | -0.5 | -0.5 | -0.5 | -0.5 | 6.5 | 11.9 | 15.9 | 18.6 | 20.7 | 24.3 | 87.5 | | Alternative PC6LT8 | -16.3 | -1.0 | -0.9 | -0.9 | -0.9 | 6.6 | 14.3 | 21.3 | 27.6 | 31.4 | 38.8 | 120.1 | ### Table 348 - Incremental Total Societal Benefits (\$b) by Year and Alternative for Passenger Car Fleet, Average SCC Level, Discounted at 3% | Incremental Total | Incremental Total Societal Benefits (\$b) by Year and Alternative for Passenger Car Fleet, Average SCC Level, Discounted at 3% | | | | | | | | | | | | | | | |--------------------|--|------|------|------|------|------|------|------|------|------|------|-------|--|--|--| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | | | Alternative PC1LT3 | -1.8 | -0.1 | 0.0 | 0.0 | 0.0 | 0.5 | 0.8 | 1.2 | 1.0 | 1.1 | 1.0 | 3.6 | | | | | Alternative PC2LT4 | -2.5 | -0.1 | -0.1 | -0.1 | -0.1 | 0.8 | 1.3 | 2.0 | 1.9 | 1.9 | 1.9 | 7.1 | | | | | Alternative PC3LT5 | -4.3 | -0.2 | -0.1 | -0.1 | -0.1 | 0.9 | 1.7 | 2.7 | 2.9 | 3.2 | 3.2 | 9.8 | | | | | Alternative PC6LT8 | -8.6 | -0.3 | -0.2 | -0.2 | -0.2 | 1.0 | 3.5 | 5.4 | 6.6 | 7.6 | 8.9 | 23.5 | | | | # Table 349 - Incremental Total Societal Benefits (\$b) by Year and Alternative for Light Truck Fleet, Average SCC Level, Discounted at 3% | Incremental Tota | I Societal Be | nefits (| . , . | | d Altern
nted at | | r Light | Truck F | Fleet, A | verage : | SCC Le | vel, | |--------------------|--|----------|-------|------|---------------------|------|---------|---------|----------|----------|--------|-------| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Alternative PC1LT3 | -1.6 | -0.1 | -0.1 | -0.1 | -0.1 | 5.0 | 7.9 | 9.9 | 10.6 | 11.6 | 13.1 | 55.8 | | Alternative PC2LT4 | -2.2 | -0.2 | -0.2 | -0.2 | -0.2 | 5.3 | 9.1 | 11.8 | 13.3 | 14.8 | 17.1 | 68.4 | | Alternative PC3LT5 | Alternative PC3LT5 -4.0 -0.4 -0.4 -0.4 5.6 10.2 13.2 15.7 17.4 21.1 77.7 | | | | | | | | | | | | | Alternative PC6LT8 | -7.7 | -0.7 | -0.7 | -0.7 | -0.7 | 5.6 | 10.8 | 15.9 | 21.1 | 23.8 | 30.0 | 96.6 | ### Table 350 - Incremental Total Societal Benefits (\$b) by Year and Alternative for Total Fleet, Average SCC Level, Discounted at 7% | Incremental Total S | Incremental Total Societal Benefits (\$b) by Year and Alternative for Total Fleet, Average SCC Level, Discounted at 7% | | | | | | | | | | | | |--|--|------|------|------|------|-----|-----|------|------|------|------|------| | Model Year 1983-2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 Total | | | | | | | | | | | | | | Alternative PC1LT3 | -2.3 | -0.1 | -0.1 | -0.1 | -0.1 | 3.8 | 5.7 | 7.1 | 7.3 | 7.8 | 8.5 | 37.5 | | Alternative PC2LT4 | -3.2 | -0.2 | -0.2 | -0.2 | -0.2 | 4.2 | 6.9 | 9.0 | 9.6 | 10.3 | 11.4 | 47.5 | | Alternative PC3LT5 | Alternative PC3LT5 -5.6 -0.3 -0.3 -0.3 -0.3 4.4 7.9 10.3 11.8 12.7 14.6 54.9 | | | | | | | | | | | | | Alternative PC6LT8 | -11.1 | -0.6 | -0.6 | -0.6 | -0.6 | 4.6 | 9.6 | 13.9 | 17.5 | 19.4 | 23.4 | 74.8 | # Table 351 - Incremental Total Societal Benefits (\$b) by Year and Alternative for Passenger Car Fleet, Average SCC Level, Discounted at 7% | Incremental Total | Societal Ben | efits (\$k | | ar and
Discou | | | Passen | ger Ca | Fleet, | Average | SCC L | .evel, | |--------------------|---|------------|------|------------------|------|------|--------|--------|--------|---------|-------|--------| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Alternative PC1LT3 | -1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.5 | 0.8 | 0.7 | 0.7 | 0.6 | 2.2 | | Alternative PC2LT4 | -1.8 | -0.1 | 0.0 | 0.0 | 0.0 | 0.6 | 0.9 | 1.3 | 1.2 | 1.2 | 1.1 | 4.3 | | Alternative PC3LT5 | Alternative PC3LT5 -3.0 -0.1 -0.1 -0.1 -0.1 0.6 1.2 1.8 1.8 2.0 1.9 6.0 | | | | | | | | | | | | | Alternative PC6LT8 | -5.9 | -0.2 | -0.2 | -0.1 | -0.1 | 0.7 | 2.3 | 3.5 | 4.2 | 4.7 | 5.3 | 14.3 | # Table 352 - Incremental Total Societal Benefits (\$b) by Year and Alternative for Light Truck Fleet, Average SCC Level, Discounted at 7% | Incremental Tota | Incremental Total Societal Benefits (\$b) by Year and Alternative for Light Truck Fleet, Average SCC Level, Discounted at 7% | | | | | | | | | | | | |--|--|------|------|------|------|-----|-----|------|------|------|------|------| | Model Year 1983-2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 Total | | | | | | | | | | | | | | Alternative PC1LT3 | -1.1 | -0.1 | -0.1 | -0.1 | -0.1 | 3.4 | 5.2 | 6.4 | 6.7 | 7.2 | 7.9 | 35.3 | | Alternative PC2LT4 | -1.5 | -0.1 | -0.1 | -0.1 | -0.1 | 3.6 | 6.1 | 7.6 | 8.4 | 9.1 | 10.3 | 43.1 | | Alternative PC3LT5 | Alternative PC3LT5 -2.6 -0.2 -0.2 -0.2 3.8 6.8 8.6 9.9 10.7 12.7 48.9 | | | | |
 | | | | | | | Alternative PC6LT8 | -5.2 | -0.5 | -0.4 | -0.4 | -0.5 | 3.9 | 7.2 | 10.3 | 13.3 | 14.7 | 18.0 | 60.5 | ### Table 353 - Incremental Total Societal Net Benefits (\$b) by Year and Alternative for Total Fleet, Average SCC Level, Discounted at 3% | Incremental Tot | Incremental Total Societal Net Benefits (\$b) by Year and Alternative for Total Fleet, Average SCC Level, Discounted at 3% | | | | | | | | | | | | |--------------------|--|------|------|------|------|------|------|------|------|------|------|-------| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Alternative PC1LT3 | -9.1 | -0.6 | -0.6 | -0.6 | -0.6 | 1.4 | 3.1 | 4.1 | 4.6 | 5.2 | 5.8 | 12.7 | | Alternative PC2LT4 | -12.8 | -0.8 | -0.8 | -0.8 | -0.9 | 1.7 | 4.1 | 5.2 | 6.3 | 7.2 | 8.5 | 16.8 | | Alternative PC3LT5 | -22.3 | -1.6 | -1.6 | -1.6 | -1.7 | 1.0 | 4.3 | 5.7 | 7.7 | 8.8 | 10.1 | 8.8 | | Alternative PC6LT8 | -44.0 | -3.0 | -2.9 | -3.0 | -3.1 | 0.9 | 6.5 | 10.6 | 14.8 | 17.6 | 21.1 | 15.6 | # Table 354 - Incremental Total Societal Net Benefits (\$b) by Year and Alternative for Passenger Car Fleet, Average SCC Level, Discounted at 3% | Incremental Tota | l Societal Ne | t Benefi | | by Year
/el, Disc | | | e for Pa | assenge | er Car F | leet, Av | erage S | SCC | |--------------------|---------------|----------|------|----------------------|------|------|----------|---------|----------|----------|---------|-------| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Alternative PC1LT3 | -5.1 | -0.2 | -0.2 | -0.2 | -0.2 | 0.3 | 0.4 | 0.4 | 0.2 | 0.1 | -0.2 | -4.7 | | Alternative PC2LT4 | -7.1 | -0.3 | -0.3 | -0.2 | -0.2 | 0.5 | 0.7 | 1.2 | 0.7 | 0.3 | -0.2 | -5.1 | | Alternative PC3LT5 | -12.2 | -0.6 | -0.5 | -0.5 | -0.5 | 0.3 | 0.6 | 1.4 | 0.7 | 0.5 | -1.0 | -11.7 | | Alternative PC6LT8 | -24.2 | -1.1 | -0.9 | -0.9 | -0.8 | 0.6 | 2.3 | 3.9 | 4.0 | 3.9 | 2.3 | -10.9 | # Table 355 - Incremental Total Societal Net Benefits (\$b) by Year and Alternative for Light Truck Fleet, Average SCC Level, Discounted at 3% | Incremental Total S | Incremental Total Societal Net Benefits (\$b) by Year and Alternative for Light Truck Fleet, Average SCC Level, Discounted at 3% | | | | | | | | | | | _evel, | |---------------------|--|------|------|------|------|------|------|------|------|------|------|--------| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Alternative PC1LT3 | -4.0 | -0.4 | -0.4 | -0.4 | -0.5 | 1.1 | 2.7 | 3.7 | 4.4 | 5.1 | 6.0 | 17.4 | | Alternative PC2LT4 | -5.6 | -0.5 | -0.6 | -0.6 | -0.6 | 1.2 | 3.4 | 4.1 | 5.6 | 6.9 | 8.7 | 21.9 | | Alternative PC3LT5 | -10.1 | -1.0 | -1.1 | -1.1 | -1.2 | 0.7 | 3.7 | 4.3 | 7.0 | 8.3 | 11.1 | 20.6 | | Alternative PC6LT8 | -19.8 | -1.9 | -2.0 | -2.1 | -2.3 | 0.3 | 4.3 | 6.7 | 10.8 | 13.7 | 18.9 | 26.5 | ### Table 356 - Incremental Total Societal Net Benefits (\$b) by Year and Alternative for Total Fleet, Average SCC Level, Discounted at 7% | Incremental Tot | Incremental Total Societal Net Benefits (\$b) by Year and Alternative for Total Fleet, Average SCC Level, Discounted at 7% | | | | | | | | | | | | |--|--|------|------|------|------|-----|-----|-----|-----|-----|------|-----| | Model Year 1983-2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 Total | | | | | | | | | | | | | | Alternative PC1LT3 | -6.0 | -0.4 | -0.3 | -0.3 | -0.4 | 0.7 | 1.7 | 2.3 | 2.6 | 3.0 | 3.4 | 6.3 | | Alternative PC2LT4 | -8.3 | -0.5 | -0.5 | -0.5 | -0.5 | 0.8 | 2.3 | 2.9 | 3.6 | 4.1 | 4.9 | 8.4 | | Alternative PC3LT5 | Alternative PC3LT5 -14.3 -0.9 -0.9 -0.9 -1.0 0.4 2.4 3.1 4.3 5.0 5.5 2.7 | | | | | | | | | | | | | Alternative PC6LT8 | -28.4 | -1.8 | -1.7 | -1.7 | -1.8 | 0.4 | 3.8 | 6.1 | 8.3 | 9.8 | 11.4 | 4.5 | ### Table 357 - Incremental Total Societal Net Benefits (\$b) by Year and Alternative for Passenger Car Fleet, Average SCC Level, Discounted at 7% | Incremental Tota | l Societal Ne | t Benefi | | by Year
/el, Disc | | | e for Pa | assenge | er Car F | leet, Av | erage S | SCC | |--------------------|---------------|----------|------|----------------------|------|------|----------|---------|----------|----------|---------|-------| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Alternative PC1LT3 | -3.4 | -0.1 | -0.1 | -0.1 | -0.1 | 0.0 | 0.0 | 0.1 | -0.1 | -0.1 | -0.2 | -4.1 | | Alternative PC2LT4 | -4.7 | -0.2 | -0.2 | -0.1 | -0.1 | 0.2 | 0.2 | 0.5 | 0.2 | 0.0 | -0.2 | -4.5 | | Alternative PC3LT5 | -8.0 | -0.3 | -0.3 | -0.3 | -0.3 | 0.0 | 0.2 | 0.6 | 0.2 | 0.1 | -0.7 | -8.9 | | Alternative PC6LT8 | -15.9 | -0.7 | -0.6 | -0.5 | -0.5 | 0.2 | 1.2 | 2.1 | 2.0 | 1.9 | 1.0 | -9.7 | # Table 358 - Incremental Total Societal Net Benefits (\$b) by Year and Alternative for Light Truck Fleet, Average SCC Level, Discounted at 7% | Incremental Total S | Incremental Total Societal Net Benefits (\$b) by Year and Alternative for Light Truck Fleet, Average SCC Level, Discounted at 7% | | | | | | | | | | | | |---------------------|--|------|------|------|------|------|------|------|------|------|------|-------| | Model Year | 1983-2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Alternative PC1LT3 | -2.6 | -0.2 | -0.2 | -0.2 | -0.3 | 0.6 | 1.7 | 2.2 | 2.7 | 3.1 | 3.6 | 10.4 | | Alternative PC2LT4 | -3.6 | -0.3 | -0.3 | -0.3 | -0.4 | 0.7 | 2.1 | 2.5 | 3.4 | 4.1 | 5.1 | 12.9 | | Alternative PC3LT5 | -6.3 | -0.6 | -0.6 | -0.6 | -0.7 | 0.3 | 2.2 | 2.6 | 4.2 | 4.9 | 6.2 | 11.6 | | Alternative PC6LT8 | -12.5 | -1.1 | -1.2 | -1.2 | -1.3 | 0.2 | 2.6 | 4.0 | 6.4 | 7.9 | 10.5 | 14.2 | ### **Labor Impacts** Table 359 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Total) | Estimated La | bor Utilization (1000s o | f Person-Yea | rs), Total Flee | et for Manufa | cturer(Total) | |--------------|--------------------------|--------------|-----------------|---------------|---------------| | Madal Vaar | Regulatory Alternative | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | 2022 | 889,223 | 889,223 | 889,223 | 889,223 | 889,223 | | 2023 | 958,999 | 958,999 | 958,999 | 958,999 | 958,999 | | 2024 | 954,900 | 954,900 | 954,900 | 954,900 | 954,900 | | 2025 | 961,923 | 961,923 | 961,923 | 961,923 | 961,923 | | 2026 | 997,446 | 997,446 | 997,446 | 997,446 | 997,446 | | 2027 | 1,027,684 | 1,030,450 | 1,030,492 | 1,030,632 | 1,029,130 | | 2028 | 1,039,834 | 1,043,156 | 1,043,030 | 1,043,175 | 1,040,830 | | 2029 | 1,027,165 | 1,031,898 | 1,032,627 | 1,032,452 | 1,028,081 | | 2030 | 1,006,042 | 1,011,125 | 1,011,966 | 1,011,814 | 1,009,092 | | 2031 | 991,822 | 997,489 | 998,005 | 998,438 | 996,318 | | 2032 | 986,394 | 992,635 | 993,167 | 995,593 | 992,190 | Table 360 - Estimated Labor Utilization (1000s of Person-Years), Passenger Car Fleet for Manufacturer(Total) | Estimated Labo | r Utilization (1000s of Perso | n-Years), Pass | senger Car Fle | et for Manufa | cturer(Total) | |----------------|-------------------------------|----------------|----------------|---------------|---------------| | Model Year | Regulatory Alternative | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | 2022 | 301,378 | 301,378 | 301,378 | 301,378 | 301,378 | | 2023 | 302,997 | 302,997 | 302,997 | 302,997 | 302,997 | | 2024 | 288,178 | 288,178 | 288,178 | 288,178 | 288,178 | | 2025 | 276,848 | 276,848 | 276,848 | 276,848 | 276,848 | | 2026 | 279,603 | 279,603 | 279,603 | 279,603 | 279,603 | | 2027 | 283,588 | 282,347 | 282,276 | 282,801 | 282,073 | | 2028 | 284,617 | 282,968 | 282,962 | 283,563 | 282,749 | | 2029 | 279,447 | 278,232 | 277,354 | 277,260 | 275,877 | | 2030 | 274,463 | 273,568 | 272,968 | 273,518 | 271,804 | | 2031 | 272,493 | 271,930 | 271,700 | 272,602 | 271,582 | | 2032 | 271,586 | 271,370 | 271,516 | 274,611 | 274,056 | Table 361 - Estimated Labor Utilization (1000s of Person-Years), Light Truck Fleet for Manufacturer(Total) | Estimated Labor Utilization (1000s of Person-Years), Light Truck Fleet for Manufacturer(Total) | | | | | | | | |--|------------------------|---------|---------|---------|---------|--|--| | Madal Vaar | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 587,845 | 587,845 | 587,845 | 587,845 | 587,845 | | | | 2023 | 656,003 | 656,003 | 656,003 | 656,003 | 656,003 | | | | 2024 | 666,722 | 666,722 | 666,722 | 666,722 | 666,722 | | | | 2025 | 685,075 | 685,075 | 685,075 | 685,075 | 685,075 | | | | 2026 | 717,843 | 717,843 | 717,843 | 717,843 | 717,843 | | | | 2027 | 744,096 | 748,103 | 748,216 | 747,831 | 747,057 | | | | 2028 | 755,217 | 760,188 | 760,067 | 759,612 | 758,081 | | | | 2029 | 747,718 | 753,666 | 755,273 | 755,192 | 752,204 | | | | 2030 | 731,579 | 737,557 | 738,997 | 738,296 | 737,289 | | | | 2031 | 719,328 | 725,560 | 726,305 | 725,837 | 724,736 | | | | 2032 | 714,808 | 721,265 | 721,651 | 720,983 | 718,134 | | | Table 362 - Estimated Labor Utilization (1000s of Person-Years), Domestic Car Fleet for Manufacturer(Total) | Estimated Labor Utilization (1000s of Person-Years), Domestic Car Fleet for
Manufacturer(Total) | | | | | | | | |---|------------------------|---------|---------|---------|---------|--|--| | Madal Vaar | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 192,782 | 192,782 | 192,782 | 192,782 | 192,782 | | | | 2023 | 193,909 | 193,909 | 193,909 | 193,909 | 193,909 | | | | 2024 | 185,436 | 185,436 | 185,436 | 185,436 | 185,436 | | | | 2025 | 178,443 | 178,443 | 178,443 | 178,443 | 178,443 | | | | 2026 | 179,698 | 179,698 | 179,698 | 179,698 | 179,698 | | | | 2027 | 182,188 | 181,449 | 181,459 | 182,082 | 181,627 | | | | 2028 | 182,623 | 181,592 | 181,610 | 182,278 | 181,859 | | | | 2029 | 179,143 | 178,530 | 177,944 | 178,118 | 177,349 | | | | 2030 | 175,796 | 175,382 | 174,990 | 175,593 | 174,668 | | | | 2031 | 174,394 | 174,203 | 174,035 | 175,137 | 174,570 | | | | 2032 | 173,665 | 173,697 | 173,794 | 176,793 | 176,325 | | | Table 363 - Estimated Labor Utilization (1000s of Person-Years), Imported Car Fleet for Manufacturer(Total) | Estimated Labor Utilization (1000s of Person-Years), Imported Car Fleet for Manufacturer(Total) | | | | | | | | |---|------------------------|---------|---------|---------|---------|--|--| | Model Veer | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 108,595 | 108,595 | 108,595 | 108,595 | 108,595 | | | | 2023 | 109,088 | 109,088 | 109,088 | 109,088 | 109,088 | | | | 2024 | 102,743 | 102,743 | 102,743 | 102,743 | 102,743 | | | | 2025 | 98,405 | 98,405 | 98,405 | 98,405 | 98,405 | | | | 2026 | 99,905 | 99,905 | 99,905 | 99,905 | 99,905 | | | | 2027 | 101,400 | 100,898 | 100,816 | 100,719 | 100,445 | | | | 2028 | 101,994 | 101,377 | 101,352 | 101,285 | 100,890 | | | | 2029 | 100,304 | 99,703 | 99,410 | 99,141 | 98,527 | | | | 2030 | 98,667 | 98,186 | 97,978 | 97,925 | 97,136 | | | | 2031 | 98,100 | 97,727 | 97,665 | 97,465 | 97,012 | | | | 2032 | 97,921 | 97,673 | 97,722 | 97,818 | 97,730 | | | Table 364 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(BMW) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(BMW) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Model Veer | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 17,028 | 17,028 | 17,028 | 17,028 | 17,028 | | | | 2023 | 18,359 | 18,359 | 18,359 | 18,359 | 18,359 | | | | 2024 | 18,278 | 18,278 | 18,278 | 18,278 | 18,278 | | | | 2025 | 18,649 | 18,649 | 18,649 | 18,649 | 18,649 | | | | 2026 | 19,258 | 19,258 | 19,258 | 19,258 | 19,258 | | | | 2027 | 19,815 | 19,786 | 19,779 | 19,757 | 19,730 | | | | 2028 | 20,146 | 20,102 | 20,084 | 20,052 | 19,993 | | | | 2029 | 19,975 | 19,943 | 19,927 | 19,892 | 19,786 | | | | 2030 | 19,572 | 19,532 | 19,507 | 19,453 | 19,289 | | | | 2031 | 19,230 | 19,190 | 19,155 | 19,098 | 18,875 | | | | 2032 | 19,116 | 19,093 | 19,068 | 18,941 | 18,732 | | | Table 365 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Ford) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Ford) | | | | | | | | |---|------------------------|---------|---------|---------|---------|--|--| | Model Veer | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 145,816 | 145,816 | 145,816 | 145,816 | 145,816 | | | | 2023 | 163,378 | 163,378 | 163,378 | 163,378 | 163,378 | | | | 2024 | 165,192 | 165,192 | 165,192 | 165,192 | 165,192 | | | | 2025 | 167,248 | 167,248 | 167,248 | 167,248 | 167,248 | | | | 2026 | 173,266 | 173,266 | 173,266 | 173,266 | 173,266 | | | | 2027 | 178,931 | 180,103 | 180,456 | 180,253 | 180,072 | | | | 2028 | 180,815 | 182,665 | 182,938 | 182,625 | 182,163 | | | | 2029 | 178,260 | 180,652 | 181,027 | 180,730 | 179,928 | | | | 2030 | 173,675 | 175,865 | 176,136 | 175,618 | 174,646 | | | | 2031 | 170,048 | 171,986 | 172,086 | 171,569 | 170,019 | | | | 2032 | 168,846 | 170,593 | 170,504 | 169,279 | 167,178 | | | Table 366 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(GM) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(GM) | | | | | | | | |---|------------------------|---------|---------|---------|---------|--|--| | Madal Vaar | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 124,843 | 124,843 | 124,843 | 124,843 | 124,843 | | | | 2023 | 135,268 | 135,268 | 135,268 | 135,268 | 135,268 | | | | 2024 | 138,583 | 138,583 | 138,583 | 138,583 | 138,583 | | | | 2025 | 141,336 | 141,336 | 141,336 | 141,336 | 141,336 | | | | 2026 | 145,637 | 145,637 | 145,637 | 145,637 | 145,637 | | | | 2027 | 150,193 | 151,769 | 151,716 | 151,546 | 151,354 | | | | 2028 | 151,729 | 153,358 | 153,221 | 152,962 | 152,524 | | | | 2029 | 149,508 | 151,391 | 151,210 | 150,959 | 150,140 | | | | 2030 | 145,759 | 147,676 | 147,491 | 147,073 | 145,848 | | | | 2031 | 145,106 | 147,885 | 147,565 | 147,844 | 146,127 | | | | 2032 | 143,936 | 146,938 | 146,512 | 147,827 | 145,642 | | | ### Table 367 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Honda) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Honda) | | | | | | | | |--|------------------------|---------|---------|---------|---------|--|--| | Madal Vaar | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 129,568 | 129,568 | 129,568 | 129,568 | 129,568 | | | | 2023 | 137,597 | 137,597 | 137,597 | 137,597 | 137,597 | | | | 2024 | 134,768 | 134,768 | 134,768 | 134,768 | 134,768 | | | | 2025 | 134,223 | 134,223 | 134,223 | 134,223 | 134,223 | | | | 2026 | 139,089 | 139,089 | 139,089 | 139,089 | 139,089 | | | | 2027 | 143,169 | 143,393 | 143,392 | 144,359 | 144,117 | | | | 2028 | 144,766 | 144,795 | 144,791 | 145,904 | 146,050 | | | | 2029 | 142,802 | 142,768 | 142,783 | 143,747 | 143,604 | | | | 2030 | 139,829 | 139,757 | 139,930 | 140,981 | 140,458 | | | | 2031 | 137,562 | 137,487 | 137,641 | 138,536 | 139,500 | | | | 2032 | 136,601 | 136,506 | 136,737 | 137,354 | 138,101 | | | Table 368 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Hyundai KiH) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Hyundai KiH) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Model Veer | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 23,989 | 23,989 | 23,989 | 23,989 | 23,989 | | | | 2023 | 25,219 | 25,219 | 25,219 | 25,219 | 25,219 | | | | 2024 | 24,631 | 24,631 | 24,631 | 24,631 | 24,631 | | | | 2025 | 24,865 | 24,865 | 24,865 | 24,865 | 24,865 | | | | 2026 | 25,573 | 25,573 | 25,573 | 25,573 | 25,573 | | | | 2027 | 26,192 | 26,179 | 26,166 | 26,138 | 26,092 | | | | 2028 | 26,412 | 26,470 | 26,449 | 26,437 | 26,346 | | | | 2029 | 26,041 | 26,089 | 26,048 | 26,012 | 25,853 | | | | 2030 | 25,488 | 25,533 | 25,491 | 25,445 | 25,190 | | | | 2031 | 25,090 | 25,119 | 25,106 | 25,110 | 24,855 | | | | 2032 | 24,951 | 24,976 | 24,956 | 24,935 | 24,794 | | | ### Table 369 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Hyundai KiK) | Estimated Lab | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Hyundai KiK) | | | | | | | | |---------------|--|------------------------|--------|--------|--------|--|--|--| | Model Veer | Regulatory Alternative | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 28,944 | 28,944 | 28,944 | 28,944 | 28,944 | | | | | 2023 | 30,450 | 30,450 | 30,450 | 30,450 | 30,450 | | | | | 2024 | 29,915 | 29,915 | 29,915 | 29,915 | 29,915 | | | | | 2025 | 29,669 | 29,669 | 29,669 | 29,669 | 29,669 | | | | | 2026 | 30,915 | 30,915 | 30,915 | 30,915 | 30,915 | | | | | 2027 | 31,695 | 31,620 | 31,605 | 31,570 | 31,516 | | | | | 2028 | 31,967 | 31,859 | 31,832 | 31,784 | 31,665 | | | | | 2029 | 31,516 | 31,411 | 31,387 | 31,337 | 31,187 | | | | | 2030 | 30,892 | 30,789 | 30,762 | 30,766 | 30,519 | | | | | 2031 | 30,410 | 30,388 | 30,468 | 30,462 | 30,287 | | | | | 2032 | 30,265 | 30,281 | 30,432 | 33,454 | 33,157 | | | | Table 370 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(JLR) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(JLR) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Madal Vaar | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 921 | 921 | 921 | 921 | 921 | | | | 2023 | 1,017 | 1,017 | 1,017 | 1,017 | 1,017 | | | | 2024 | 1,023 | 1,023 | 1,023 | 1,023 | 1,023 | | | | 2025 | 1,040 | 1,040 | 1,040 | 1,040 | 1,040
 | | | 2026 | 1,074 | 1,074 | 1,074 | 1,074 | 1,074 | | | | 2027 | 1,109 | 1,108 | 1,108 | 1,107 | 1,105 | | | | 2028 | 1,123 | 1,122 | 1,121 | 1,119 | 1,116 | | | | 2029 | 1,112 | 1,110 | 1,109 | 1,108 | 1,102 | | | | 2030 | 1,088 | 1,091 | 1,090 | 1,087 | 1,078 | | | | 2031 | 1,066 | 1,068 | 1,066 | 1,063 | 1,051 | | | | 2032 | 1,060 | 1,063 | 1,059 | 1,051 | 1,036 | | | Table 371 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Karma) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Karma) | | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--|--| | Model Year | Regulatory Alternative | | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 2 | 2 | 2 | 2 | 2 | | | | | 2023 | 2 | 2 | 2 | 2 | 2 | | | | | 2024 | 2 | 2 | 2 | 2 | 2 | | | | | 2025 | 2 | 2 | 2 | 2 | 2 | | | | | 2026 | 2 | 2 | 2 | 2 | 2 | | | | | 2027 | 2 | 2 | 2 | 2 | 2 | | | | | 2028 | 2 | 2 | 2 | 2 | 2 | | | | | 2029 | 2 | 2 | 2 | 2 | 2 | | | | | 2030 | 2 | 2 | 2 | 2 | 2 | | | | | 2031 | 2 | 2 | 2 | 2 | 2 | | | | | 2032 | 2 | 2 | 2 | 2 | 2 | | | | Table 372 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Lucid) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Lucid) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Madal Vaar | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 48 | 48 | 48 | 48 | 48 | | | | 2023 | 48 | 48 | 48 | 48 | 48 | | | | 2024 | 45 | 45 | 45 | 45 | 45 | | | | 2025 | 43 | 43 | 43 | 43 | 43 | | | | 2026 | 43 | 43 | 43 | 43 | 43 | | | | 2027 | 43 | 43 | 43 | 43 | 43 | | | | 2028 | 44 | 43 | 43 | 43 | 43 | | | | 2029 | 43 | 42 | 42 | 42 | 42 | | | | 2030 | 42 | 42 | 42 | 41 | 41 | | | | 2031 | 42 | 41 | 41 | 41 | 41 | | | | 2032 | 42 | 41 | 41 | 41 | 41 | | | Table 373 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Mazda) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Mazda) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Model Veer | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 2,148 | 2,148 | 2,148 | 2,148 | 2,148 | | | | 2023 | 2,320 | 2,320 | 2,320 | 2,320 | 2,320 | | | | 2024 | 2,318 | 2,318 | 2,318 | 2,318 | 2,318 | | | | 2025 | 2,340 | 2,340 | 2,340 | 2,340 | 2,340 | | | | 2026 | 2,421 | 2,421 | 2,421 | 2,421 | 2,421 | | | | 2027 | 2,499 | 2,497 | 2,497 | 2,642 | 2,654 | | | | 2028 | 2,531 | 2,527 | 2,525 | 2,666 | 2,672 | | | | 2029 | 2,500 | 2,495 | 2,494 | 2,677 | 2,685 | | | | 2030 | 2,442 | 2,437 | 2,434 | 2,604 | 2,603 | | | | 2031 | 2,392 | 2,386 | 2,382 | 2,539 | 2,528 | | | | 2032 | 2,377 | 2,370 | 2,364 | 2,501 | 2,481 | | | Table 374 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Mercedes-Benz) | Estimated Labo | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Mercedes-Benz) | | | | | | | |----------------|--|--------|--------|--------|--------|--|--| | Madal Vaar | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 8,861 | 8,861 | 8,861 | 8,861 | 8,861 | | | | 2023 | 9,592 | 9,592 | 9,592 | 9,592 | 9,592 | | | | 2024 | 9,557 | 9,557 | 9,557 | 9,557 | 9,557 | | | | 2025 | 9,653 | 9,653 | 9,653 | 9,653 | 9,653 | | | | 2026 | 10,123 | 10,123 | 10,123 | 10,123 | 10,123 | | | | 2027 | 10,456 | 10,442 | 10,438 | 10,427 | 10,413 | | | | 2028 | 10,611 | 10,640 | 10,630 | 10,613 | 10,581 | | | | 2029 | 10,549 | 10,573 | 10,566 | 10,547 | 10,489 | | | | 2030 | 10,366 | 10,381 | 10,369 | 10,340 | 10,253 | | | | 2031 | 10,195 | 10,207 | 10,188 | 10,158 | 10,039 | | | | 2032 | 10,151 | 10,155 | 10,127 | 10,058 | 9,910 | | | Table 375 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Mitsubishi) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Mitsubishi) | | | | | | | | | |---|------------------------|--------|--------|--------|--------|--|--|--| | Model Veer | Regulatory Alternative | | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 1,413 | 1,413 | 1,413 | 1,413 | 1,413 | | | | | 2023 | 1,471 | 1,471 | 1,471 | 1,471 | 1,471 | | | | | 2024 | 1,429 | 1,429 | 1,429 | 1,429 | 1,429 | | | | | 2025 | 1,410 | 1,410 | 1,410 | 1,410 | 1,410 | | | | | 2026 | 1,435 | 1,435 | 1,435 | 1,435 | 1,435 | | | | | 2027 | 1,469 | 1,465 | 1,464 | 1,462 | 1,460 | | | | | 2028 | 1,481 | 1,475 | 1,474 | 1,472 | 1,466 | | | | | 2029 | 1,459 | 1,453 | 1,450 | 1,447 | 1,437 | | | | | 2030 | 1,428 | 1,422 | 1,420 | 1,416 | 1,400 | | | | | 2031 | 1,405 | 1,407 | 1,406 | 1,417 | 1,400 | | | | | 2032 | 1,399 | 1,402 | 1,401 | 1,409 | 1,390 | | | | Table 376 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Nissan) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Nissan) | | | | | | | | | |---|------------------------|--------|--------|--------|--------|--|--|--| | Model Veer | Regulatory Alternative | | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 59,204 | 59,204 | 59,204 | 59,204 | 59,204 | | | | | 2023 | 62,205 | 62,205 | 62,205 | 62,205 | 62,205 | | | | | 2024 | 60,853 | 60,853 | 60,853 | 60,853 | 60,853 | | | | | 2025 | 60,925 | 60,925 | 60,925 | 60,925 | 60,925 | | | | | 2026 | 62,286 | 62,286 | 62,286 | 62,286 | 62,286 | | | | | 2027 | 63,864 | 63,695 | 63,663 | 63,595 | 63,479 | | | | | 2028 | 64,512 | 64,670 | 64,833 | 64,736 | 64,576 | | | | | 2029 | 63,688 | 63,812 | 64,006 | 63,850 | 63,513 | | | | | 2030 | 62,428 | 62,535 | 62,887 | 63,078 | 62,551 | | | | | 2031 | 61,496 | 61,597 | 61,927 | 62,093 | 61,661 | | | | | 2032 | 61,207 | 61,301 | 61,627 | 61,703 | 61,434 | | | | Table 377 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Stellantis) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Stellantis) | | | | | | | | | |---|------------------------|---------|---------|---------|---------|--|--|--| | Model Veer | Regulatory Alternative | | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 95,067 | 95,067 | 95,067 | 95,067 | 95,067 | | | | | 2023 | 108,854 | 108,854 | 108,854 | 108,854 | 108,854 | | | | | 2024 | 111,942 | 111,942 | 111,942 | 111,942 | 111,942 | | | | | 2025 | 117,365 | 117,365 | 117,365 | 117,365 | 117,365 | | | | | 2026 | 120,670 | 120,670 | 120,670 | 120,670 | 120,670 | | | | | 2027 | 124,892 | 125,723 | 125,684 | 125,542 | 125,409 | | | | | 2028 | 126,001 | 126,787 | 126,673 | 126,453 | 126,133 | | | | | 2029 | 124,469 | 125,975 | 126,894 | 126,702 | 126,062 | | | | | 2030 | 121,840 | 123,455 | 124,251 | 123,885 | 126,035 | | | | | 2031 | 119,272 | 120,742 | 121,409 | 121,152 | 122,640 | | | | | 2032 | 118,356 | 120,325 | 120,822 | 120,032 | 121,046 | | | | Table 378 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Subaru) | Estimated Lab | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Subaru) | | | | | | | | |---------------|---|--------|--------|--------|--------|--|--|--| | Model Veer | Regulatory Alternative | | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 38,667 | 38,667 | 38,667 | 38,667 | 38,667 | | | | | 2023 | 41,933 | 41,933 | 41,933 | 41,933 | 41,933 | | | | | 2024 | 41,699 | 41,699 | 41,699 | 41,699 | 41,699 | | | | | 2025 | 42,077 | 42,077 | 42,077 | 42,077 | 42,077 | | | | | 2026 | 44,224 | 44,224 | 44,224 | 44,224 | 44,224 | | | | | 2027 | 45,784 | 45,717 | 45,699 | 45,649 | 45,586 | | | | | 2028 | 46,474 | 46,369 | 46,329 | 46,267 | 46,201 | | | | | 2029 | 45,973 | 45,859 | 45,822 | 45,752 | 45,905 | | | | | 2030 | 45,037 | 44,910 | 44,855 | 44,739 | 45,305 | | | | | 2031 | 44,206 | 44,082 | 44,002 | 43,879 | 44,209 | | | | | 2032 | 43,928 | 43,785 | 43,670 | 43,390 | 43,530 | | | | Table 379 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Tesla) | Estimated Lab | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Tesla) | | | | | | | | |---------------|--|--------|--------|--------|--------|--|--|--| | Model Veer | Regulatory Alternative | | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 58,893 | 58,893 | 58,893 | 58,893 | 58,893 | | | | | 2023 | 59,132 | 59,132 | 59,132 | 59,132 | 59,132 | | | | | 2024 | 55,814 | 55,814 | 55,814 | 55,814 | 55,814 | | | | | 2025 | 53,506 | 53,506 | 53,506 | 53,506 | 53,506 | | | | | 2026 | 53,699 | 53,699 | 53,699 | 53,699 | 53,699 | | | | | 2027 | 54,510 | 54,246 | 54,204 | 54,151 | 54,009 | | | | | 2028 |
54,726 | 54,371 | 54,329 | 54,268 | 53,962 | | | | | 2029 | 53,752 | 53,406 | 53,221 | 53,030 | 52,578 | | | | | 2030 | 52,748 | 52,463 | 52,320 | 52,194 | 51,452 | | | | | 2031 | 52,301 | 52,063 | 51,981 | 51,779 | 50,953 | | | | | 2032 | 52,178 | 52,002 | 51,974 | 51,897 | 51,046 | | | | ### Table 380 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Toyota) | Estimated Lab | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Toyota) | | | | | | | | |---------------|---|---------|---------|---------|---------|--|--|--| | Model Veer | Regulatory Alternative | | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 143,598 | 143,598 | 143,598 | 143,598 | 143,598 | | | | | 2023 | 151,382 | 151,382 | 151,382 | 151,382 | 151,382 | | | | | 2024 | 148,299 | 148,299 | 148,299 | 148,299 | 148,299 | | | | | 2025 | 147,068 | 147,068 | 147,068 | 147,068 | 147,068 | | | | | 2026 | 156,907 | 156,907 | 156,907 | 156,907 | 156,907 | | | | | 2027 | 161,955 | 161,543 | 161,462 | 161,288 | 161,006 | | | | | 2028 | 165,252 | 164,660 | 164,521 | 164,552 | 164,144 | | | | | 2029 | 164,368 | 163,761 | 163,498 | 163,500 | 162,708 | | | | | 2030 | 162,464 | 161,877 | 161,619 | 161,758 | 161,192 | | | | | 2031 | 161,198 | 160,659 | 160,399 | 160,548 | 161,115 | | | | | 2032 | 161,224 | 160,695 | 160,721 | 160,612 | 161,724 | | | | Table 381 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Volvo) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(Volvo) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Madal Vaar | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 2,633 | 2,633 | 2,633 | 2,633 | 2,633 | | | | 2023 | 2,736 | 2,736 | 2,736 | 2,736 | 2,736 | | | | 2024 | 2,653 | 2,653 | 2,653 | 2,653 | 2,653 | | | | 2025 | 2,626 | 2,626 | 2,626 | 2,626 | 2,626 | | | | 2026 | 2,674 | 2,674 | 2,674 | 2,674 | 2,674 | | | | 2027 | 2,734 | 2,727 | 2,725 | 2,722 | 2,717 | | | | 2028 | 2,755 | 2,744 | 2,742 | 2,738 | 2,727 | | | | 2029 | 2,712 | 2,701 | 2,696 | 2,689 | 2,670 | | | | 2030 | 2,660 | 2,652 | 2,651 | 2,644 | 2,614 | | | | 2031 | 2,625 | 2,618 | 2,617 | 2,608 | 2,571 | | | | 2032 | 2,614 | 2,608 | 2,607 | 2,598 | 2,557 | | | Table 382 - Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(VWA) | Estimated Labor Utilization (1000s of Person-Years), Total Fleet for Manufacturer(VWA) | | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--|--| | Model Veer | Regulatory Alternative | | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 7,579 | 7,579 | 7,579 | 7,579 | 7,579 | | | | | 2023 | 8,036 | 8,036 | 8,036 | 8,036 | 8,036 | | | | | 2024 | 7,900 | 7,900 | 7,900 | 7,900 | 7,900 | | | | | 2025 | 7,878 | 7,878 | 7,878 | 7,878 | 7,878 | | | | | 2026 | 8,150 | 8,150 | 8,150 | 8,150 | 8,150 | | | | | 2027 | 8,369 | 8,392 | 8,388 | 8,379 | 8,365 | | | | | 2028 | 8,486 | 8,498 | 8,493 | 8,483 | 8,466 | | | | | 2029 | 8,439 | 8,454 | 8,445 | 8,430 | 8,389 | | | | | 2030 | 8,283 | 8,707 | 8,711 | 8,690 | 8,615 | | | | | 2031 | 8,177 | 8,561 | 8,564 | 8,541 | 8,444 | | | | | 2032 | 8,142 | 8,498 | 8,543 | 8,509 | 8,390 | | | | ### Table 383 - Changes in Work Loss Days (thousand instances), Total Fleet through MY 2032 | Changes in Work Loss Days (thousand instances), Total Fleet through MY 2032 | | | | | | | |---|------------------------|--------|--------|--------|--|--| | Catagony | Regulatory Alternative | | | | | | | Category | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | Work Loss Days from Upstream Emissions | 2.9 | 3.6 | 0.6 | 3.0 | | | | Work Loss Days from Tailpipe Emissions | -10.6 | -15.0 | -10.6 | -19.6 | | | | Total Work Loss Days | -7.8 | -11.4 | -9.9 | -16.6 | | | ### Table 384 - Changes in Work Loss Days (thousand instances), Passenger Car Fleet through MY 2032 | Changes in Work Loss Days (thousand instances), Passenger Car Fleet through MY 2032 | | | | | | | |---|------------------------|--------|--------|--------|--|--| | Catagony | Regulatory Alternative | | | | | | | Category | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | Work Loss Days from Upstream Emissions | -0.9 | -1.7 | -2.1 | -4.3 | | | | Work Loss Days from Tailpipe Emissions | 0.8 | 1.4 | 3.6 | 5.5 | | | | Total Work Loss Days | -0.1 | -0.2 | 1.5 | 1.2 | | | ## Table 385 - Changes in Work Loss Days (thousand instances), Light Truck Fleet through MY 2032 | Changes in Work Loss Days (thousand insta | ances), Lig | ht Truck Fl | eet through | n MY 2032 | |---|-------------|---------------|-------------|-----------| | Catagony | Regulator | y Alternative | 9 | | | Category | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Work Loss Days from Upstream Emissions | 3.8 | 5.2 | 2.8 | 7.3 | | Work Loss Days from Tailpipe Emissions | -11.5 | -16.4 | -14.2 | -25.1 | | Total Work Loss Days | -7.6 | -11.2 | -11.4 | -17.8 | # **Compliance Impacts** Table -386 - Compliance Impacts and Cumulative Industry Costs by Model Year for Total and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumu | lative Ir | ndustry | Costs k | y Mode | el Year f | or Total | and To | tal Fleet | t, Altern | ative PO | C2LT4 | | |--|-----------|---------|---------|--------|-----------|----------|--------|-----------|-----------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 35.8 | 36.1 | 39.0 | 42.2 | 46.8 | 48.4 | 50.1 | 51.9 | 53.8 | 55.7 | 57.8 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 4% | 7% | 11% | 15% | 19% | 24% | N/A | | Average Achieved (mpg) | 34.1 | 35.5 | 38.4 | 40.9 | 43.8 | 45.9 | 47.3 | 49.1 | 50.7 | 52.8 | 54.4 | N/A | | Total Regulatory Costs | | • | | | | • | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.4 | 6.6 | 8.8 | 9.2 | 9.6 | 10.6 | 49.3 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.4 | 6.6 | 8.8 | 9.2 | 9.6 | 10.6 | 49.2 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 2.4 | 2.2 | 2.4 | 2.3 | 3.1 | 13.7 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.7 | 9.0 | 11.0 | 11.7 | 11.9 | 13.6 | 62.9 | | Sales Impacts | | | | | | • | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.04 | -0.06 | -0.07 | -0.07 | -0.07 | -0.08 | -0.4 | Table -387 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandPassenger Car Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandPassenger Car Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | | |--|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | | Fuel Economy | | | | | | | | | | | | | | | | Average Required (mpg) | 44.1 | 44.8 | 48.7 | 52.9 | 58.8 | 60.0 | 61.2 | 62.5 | 63.7 | 65.1 | 66.4 | N/A | | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 2% | 4% | 6% | 8% | 11% | 13% | N/A | | | | Average Achieved (mpg) | 43.7 | 46.6 | 51.3 | 54.3 | 59.5 | 61.3 | 63.2 | 65.4 | 67.5 | 69.6 | 71.4 | N/A | | | | Total Regulatory Costs | | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 2.0 | 2.8 | 2.7 | 2.7 | 2.6 | 14.2 | | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 2.0 | 2.8 | 2.7 | 2.7 | 2.6 | 14.1 | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.4 | 0.2 | 0.1 | 0.0 | 0.0 | 1.0 | | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.9 | 2.7 | 3.3 | 3.2 | 3.1 | 3.1 | 17.3 | | | | Sales Impacts | | | | | | • | | | | | | , | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.03 | -0.04 | -0.05 | -0.04 | -0.03 | -0.02 | -0.2 | | | Table -388 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandLight Truck Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulat | ive Indu | ustry Co | sts by | Model Y | ear for | Totalan | dLight 1 | Γruck Fl | eet, Alte | ernative | PC2LT | 4 | |--|----------|----------|--------|---------|---------|---------|----------|----------|-----------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 32.1 | 32.6 | 35.3 | 38.3 | 42.6 | 44.4 | 46.2 | 48.2 | 50.2 | 52.2 | 54.4 | N/A | | Change from
Baseline (%) | 0% | 0% | 0% | 0% | 0% | 4% | 9% | 13% | 18% | 23% | 28% | N/A | | Average Achieved (mpg) | 30.1 | 31.3 | 34.0 | 36.4 | 38.9 | 41.1 | 42.4 | 44.1 | 45.5 | 47.4 | 48.9 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 4.6 | 6.0 | 6.5 | 6.9 | 8.0 | 35.1 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 4.6 | 6.0 | 6.5 | 6.9 | 8.0 | 35.0 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 2.0 | 2.0 | 2.4 | 2.3 | 3.1 | 12.7 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.8 | 6.3 | 7.7 | 8.4 | 8.9 | 10.6 | 45.6 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.02 | -0.02 | -0.03 | -0.04 | -0.06 | -0.2 | Table -389 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandDomestic Car Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative | ve Indu | stry Cos | sts by N | lodel Ye | ar for T | otaland | Domest | tic Car F | leet, Al | ternativ | e PC2L | Γ4 | |--|---------|----------|----------|----------|----------|---------|--------|-----------|----------|----------|--------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 43.5 | 44.2 | 48.1 | 52.3 | 58.0 | 59.2 | 60.4 | 61.7 | 62.9 | 64.2 | 65.5 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 2% | 4% | 6% | 8% | 11% | 13% | N/A | | Average Achieved (mpg) | 44.9 | 46.9 | 53.2 | 56.7 | 61.3 | 63.5 | 64.9 | 67.2 | 69.1 | 70.9 | 72.8 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 8.0 | 0.9 | 0.9 | 0.9 | 1.0 | 5.1 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 8.0 | 0.9 | 0.9 | 0.9 | 1.0 | 5.0 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.4 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 1.1 | 1.2 | 1.2 | 1.2 | 1.3 | 6.7 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.02 | -0.03 | -0.02 | -0.01 | -0.01 | -0.1 | Table -390 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandImported Car Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulati | ve Indu | stry Co | sts by N | lodel Ye | ear for 1 | Totaland | Ilmporte | ed Car F | leet, Alt | ternative | PC2L1 | 74 | |--|---------|---------|----------|----------|-----------|----------|----------|----------|-----------|-----------|-------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 44.7 | 45.4 | 49.3 | 53.6 | 59.5 | 60.7 | 62.0 | 63.3 | 64.6 | 65.9 | 67.2 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 2% | 4% | 6% | 8% | 11% | 13% | N/A | | Average Achieved (mpg) | 42.7 | 46.3 | 49.6 | 52.2 | 57.9 | 59.3 | 61.6 | 63.8 | 65.9 | 68.4 | 70.0 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 1.2 | 1.9 | 1.8 | 1.8 | 1.7 | 9.1 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 1.2 | 1.8 | 1.8 | 1.8 | 1.7 | 9.1 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 1.6 | 2.2 | 2.0 | 1.9 | 1.8 | 10.6 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.02 | -0.03 | -0.02 | -0.02 | -0.01 | -0.1 | Table -391 - Compliance Impacts and Cumulative Industry Costs by Model Year for Total and Total Fleet, Alternative PC3LT5 | Compliance Impacts and Cumu | lative Ir | ndustry | Costs k | y Mode | l Year f | or Total | and To | tal Fleet | t, Altern | ative PO | C3LT5 | | |--|-----------|---------|---------|--------|----------|----------|--------|-----------|-----------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 35.8 | 36.1 | 39.0 | 42.2 | 46.8 | 48.9 | 51.2 | 53.5 | 56.1 | 58.7 | 61.5 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 5% | 10% | 15% | 20% | 26% | 32% | N/A | | Average Achieved (mpg) | 34.1 | 35.5 | 38.4 | 40.9 | 43.8 | 45.9 | 47.6 | 49.5 | 51.4 | 53.6 | 55.5 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.6 | 8.1 | 10.9 | 11.8 | 12.6 | 17.2 | 66.3 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.6 | 8.1 | 10.9 | 11.8 | 12.6 | 17.2 | 66.1 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.9 | 3.4 | 3.7 | 4.6 | 4.9 | 6.1 | 24.7 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.5 | 11.5 | 14.6 | 16.4 | 17.5 | 23.3 | 90.8 | | Sales Impacts | | | | | | | | | | | | , | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.06 | -0.09 | -0.10 | -0.12 | -0.12 | -0.17 | -0.7 | Table -392 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandPassenger Car Fleet, Alternative PC3LT5 | Compliance Impacts and Cumulativ | e Indus | try Cos | ts by M | odel Ye | ar for T | otalandl | Passeng | ger Car | Fleet, A | Iternativ | e PC3L | .T5 | |--|---------|---------|---------|---------|----------|----------|---------|---------|----------|-----------|--------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 44.1 | 44.8 | 48.7 | 52.9 | 58.8 | 60.6 | 62.5 | 64.4 | 66.4 | 68.5 | 70.6 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 6% | 10% | 13% | 16% | 20% | N/A | | Average Achieved (mpg) | 43.7 | 46.6 | 51.3 | 54.3 | 59.5 | 61.4 | 63.6 | 66.0 | 68.6 | 71.2 | 73.3 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 2.5 | 3.7 | 3.8 | 4.1 | 4.7 | 20.5 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 2.5 | 3.7 | 3.8 | 4.1 | 4.7 | 20.4 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.7 | 0.5 | 0.3 | 0.1 | 0.1 | 2.3 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.4 | 3.5 | 4.7 | 4.7 | 5.0 | 5.7 | 26.0 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.03 | -0.04 | -0.07 | -0.05 | -0.05 | -0.02 | -0.3 | Table -393 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandLight Truck Fleet, Alternative PC3LT5 | Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandLight Truck Fleet, Alternative PC3LT5 | | | | | | | | | | | | | | | |--|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | | Fuel Economy | | | | | | | | | | | | | | | | Average Required (mpg) | 32.1 | 32.6 | 35.3 | 38.3 | 42.6 | 44.9 | 47.2 | 49.7 | 52.3 | 55.1 | 58.0 | N/A | | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 5% | 11% | 17% | 23% | 29% | 36% | N/A | | | | Average Achieved (mpg) | 30.1 | 31.3 | 34.0 | 36.4 | 38.9 | 41.1 | 42.6 | 44.4 | 46.1 | 48.1 | 49.8 | N/A | | | | Total Regulatory Costs | | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.9 | 5.6 | 7.3 | 8.0 | 8.5 | 12.5 | 45.8 | | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.9 | 5.6 | 7.3 | 8.0 | 8.5 | 12.5 | 45.7 | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 2.7 | 3.2 | 4.3 | 4.8 | 6.0 | 22.4 | | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.1 | 8.0 | 10.0 | 11.7 | 12.5 | 17.6 | 64.8 | | | | Sales Impacts | | | | | | | | | | | | | | | | Sales Change
from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.02 | -0.04 | -0.03 | -0.06 | -0.07 | -0.14 | -0.4 | | | Table -394 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandDomestic Car Fleet, Alternative PC3LT5 | Compliance Impacts and Cumulativ | ve Indu | stry Cos | sts by N | lodel Ye | ar for T | otaland | Domest | tic Car F | leet, Al | ternativ | e PC3L | Γ5 | |--|---------|----------|----------|----------|----------|---------|--------|-----------|----------|----------|--------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 43.5 | 44.2 | 48.1 | 52.3 | 58.0 | 59.9 | 61.7 | 63.6 | 65.5 | 67.6 | 69.7 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 6% | 10% | 13% | 16% | 20% | N/A | | Average Achieved (mpg) | 44.9 | 46.9 | 53.2 | 56.7 | 61.3 | 63.6 | 65.2 | 67.7 | 70.2 | 72.8 | 75.0 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 1.1 | 1.3 | 1.4 | 1.7 | 2.4 | 8.8 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 1.1 | 1.3 | 1.4 | 1.7 | 2.4 | 8.8 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.4 | 0.3 | 0.2 | 0.0 | 0.1 | 1.2 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 1.6 | 1.7 | 1.9 | 2.2 | 3.0 | 11.7 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.02 | -0.02 | -0.03 | -0.03 | -0.02 | -0.01 | -0.1 | Table -395 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandImported Car Fleet, Alternative PC3LT5 | Compliance Impacts and Cumulati | ve Indu | stry Co | sts by N | lodel Ye | ear for T | Totaland | Ilmporte | ed Car F | leet, Alt | ternative | PC3L1 | Γ5 | |--|---------|---------|----------|----------|-----------|----------|----------|----------|-----------|-----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 44.7 | 45.4 | 49.3 | 53.6 | 59.5 | 61.4 | 63.3 | 65.2 | 67.2 | 69.3 | 71.5 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 6% | 10% | 13% | 16% | 20% | N/A | | Average Achieved (mpg) | 42.7 | 46.3 | 49.6 | 52.2 | 57.9 | 59.3 | 62.2 | 64.5 | 67.0 | 69.8 | 71.7 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 1.4 | 2.4 | 2.4 | 2.4 | 2.3 | 11.6 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 1.4 | 2.4 | 2.4 | 2.4 | 2.3 | 11.6 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.3 | 0.2 | 0.1 | 0.0 | 0.0 | 1.1 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 1.9 | 2.9 | 2.8 | 2.7 | 2.7 | 14.4 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.02 | -0.02 | -0.04 | -0.03 | -0.02 | -0.01 | -0.1 | Table -396 - Compliance Impacts and Cumulative Industry Costs by Model Year for Total and Total Fleet, Alternative PC6LT8 | Compliance Impacts and Cumu | Compliance Impacts and Cumulative Industry Costs by Model Year for Total and Total Fleet, Alternative PC6LT8 | | | | | | | | | | | | | | | |--|--|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | | | Fuel Economy | | | | | | | | | | | | | | | | | Average Required (mpg) | 35.8 | 36.1 | 39.0 | 42.2 | 46.8 | 50.5 | 54.5 | 58.9 | 63.7 | 68.9 | 74.5 | N/A | | | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 8% | 17% | 26% | 36% | 47% | 59% | N/A | | | | | Average Achieved (mpg) | 34.1 | 35.5 | 38.4 | 40.9 | 43.8 | 46.0 | 47.9 | 50.3 | 52.6 | 55.3 | 58.3 | N/A | | | | | Total Regulatory Costs | | | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.7 | 8.9 | 13.0 | 17.2 | 19.6 | 26.3 | 90.6 | | | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.3 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.7 | 8.9 | 13.0 | 17.1 | 19.5 | 26.2 | 90.4 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.6 | 8.8 | 12.8 | 17.1 | 20.2 | 23.6 | 87.1 | | | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.2 | 17.7 | 25.7 | 34.2 | 39.8 | 49.8 | 177.4 | | | | | Sales Impacts | | | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.08 | -0.14 | -0.20 | -0.26 | -0.31 | -0.39 | -1.4 | | | | Table -397 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandPassenger Car Fleet, Alternative PC6LT8 | Compliance Impacts and Cumulativ | e Indus | try Cos | ts by M | odel Ye | ar for T | otalandl | Passenç | ger Car | Fleet, A | Iternativ | e PC6L | .T8 | | |--|---------|---------|---------|---------|----------|----------|---------|---------|----------|-----------|--------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 44.1 | 44.8 | 48.7 | 52.9 | 58.8 | 62.5 | 66.5 | 70.8 | 75.3 | 80.1 | 85.2 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 6% | 13% | 20% | 28% | 36% | 45% | N/A | | | Average Achieved (mpg) | 43.7 | 46.6 | 51.3 | 54.3 | 59.5 | 61.4 | 65.2 | 68.8 | 72.6 | 76.8 | 81.7 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 3.1 | 4.6 | 6.1 | 7.1 | 9.0 | 31.5 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 3.1 | 4.6 | 6.0 | 7.1 | 9.0 | 31.5 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | 2.2 | 2.9 | 3.2 | 3.3 | 3.1 | 16.3 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 5.8 | 8.4 | 10.6 | 12.2 | 14.3 | 54.8 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.05 | -0.07 | -0.11 | -0.12 | -0.13 | -0.10 | -0.6 | | Table -398 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandLight Truck Fleet, Alternative PC6LT8 | Compliance Impacts and Cumula | tive Ind | ustry Co | osts by | Model \ | ear for | Totalan | dLight | Truck F | leet, Alt | ernative | PC6LT | 8 | | |--|----------|----------|---------|---------|---------|---------|--------|---------|-----------|----------|-------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 32.1 | 32.6 | 35.3 | 38.3 | 42.6 | 46.3 | 50.3 | 54.7 | 59.5 | 64.6 | 70.3 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 9% | 18% | 28% | 40% | 52% | 65% | N/A | | | Average Achieved (mpg) | 30.1 | 31.3 | 34.0 | 36.4 | 38.9 | 41.1 | 42.7 | 44.8 | 46.7 | 48.9 | 51.3 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 5.9 | 8.4 | 11.1 | 12.5 | 17.3 | 59.1 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | -0.2 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 5.8 | 8.4 | 11.1 | 12.4 | 17.2 | 58.9 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 6.6 | 9.9 | 13.9 | 16.9 | 20.5 | 70.8 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.8 | 11.9 | 17.3 | 23.6 | 27.5 | 35.5 | 122.7 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.03 | -0.07 | -0.09 | -0.14 | -0.18 | -0.29 | -0.8 | | Table -399 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandDomestic Car Fleet, Alternative PC6LT8 | Compliance Impacts and Cumulati | ve Indu | stry Cos | sts by N | lodel Ye | ear for T | otaland | Domest | tic Car F | leet, Al | ternativ | e PC6L | Г8 | | |--|---------|----------|----------|----------|-----------|---------|--------|-----------|----------|----------|--------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 43.5 | 44.2 | 48.1 | 52.3 | 58.0 | 61.7 |
65.7 | 69.9 | 74.3 | 79.1 | 84.1 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 6% | 13% | 20% | 28% | 36% | 45% | N/A | | | Average Achieved (mpg) | 44.9 | 46.9 | 53.2 | 56.7 | 61.3 | 63.7 | 67.2 | 71.6 | 75.7 | 79.5 | 83.6 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 1.4 | 1.8 | 2.7 | 3.3 | 4.2 | 14.3 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 1.4 | 1.8 | 2.7 | 3.3 | 4.2 | 14.3 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 1.1 | 1.3 | 1.4 | 1.4 | 1.4 | 7.3 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 2.7 | 3.5 | 4.6 | 5.6 | 6.8 | 25.0 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.02 | -0.04 | -0.06 | -0.06 | -0.06 | -0.05 | -0.3 | | Table -400 - Compliance Impacts and Cumulative Industry Costs by Model Year for TotalandImported Car Fleet, Alternative PC6LT8 | Compliance Impacts and Cumulati | ve Indu | stry Co | sts by N | lodel Ye | ear for T | Totaland | Ilmporte | ed Car F | leet, Alt | ernative | e PC6L1 | Γ8 | | |--|---------|---------|----------|----------|-----------|----------|----------|----------|-----------|----------|---------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 44.7 | 45.4 | 49.3 | 53.6 | 59.5 | 63.3 | 67.4 | 71.7 | 76.2 | 81.1 | 86.3 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 6% | 13% | 20% | 28% | 36% | 45% | N/A | | | Average Achieved (mpg) | 42.7 | 46.3 | 49.6 | 52.2 | 57.9 | 59.4 | 63.4 | 66.3 | 69.9 | 74.4 | 80.0 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 1.7 | 2.8 | 3.3 | 3.8 | 4.8 | 17.2 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 1.7 | 2.8 | 3.3 | 3.8 | 4.8 | 17.2 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 1.1 | 1.5 | 1.8 | 1.9 | 1.8 | 9.0 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 3.1 | 4.9 | 6.0 | 6.6 | 7.5 | 29.8 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.02 | -0.04 | -0.06 | -0.06 | -0.06 | -0.05 | -0.3 | | Table -401 - Compliance Impacts and Cumulative Industry Costs by Model Year for BMW and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumu | lative In | dustry | Costs b | y Mode | l Year fo | or BMW | and To | tal Flee | t, Alterr | native P | C2LT4 | | |--|-----------|--------|---------|--------|-----------|--------|--------|----------|-----------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | • | • | | | | | | | • | • | • | | Average Required (mpg) | 37.6 | 37.9 | 41.0 | 44.4 | 49.3 | 50.8 | 52.4 | 54.1 | 55.9 | 57.8 | 59.7 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 7% | 10% | 14% | 17% | 21% | N/A | | Average Achieved (mpg) | 32.9 | 34.8 | 38.0 | 41.5 | 46.5 | 46.4 | 48.4 | 50.7 | 53.1 | 55.3 | 58.6 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | | Sales Impacts | | • | • | | | | | | | | • | • | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | Table -402 - Compliance Impacts and Cumulative Industry Costs by Model Year for Ford and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumu | lative Ir | ndustry | Costs k | y Mode | el Year f | or Ford | and To | tal Fleet | t, Altern | ative PO | C2LT4 | | |--|-----------|---------|---------|--------|-----------|---------|--------|-----------|-----------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 31.4 | 31.8 | 34.3 | 37.2 | 41.4 | 42.9 | 44.7 | 46.5 | 48.4 | 50.3 | 52.3 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 4% | 8% | 12% | 17% | 22% | 27% | N/A | | Average Achieved (mpg) | 29.0 | 30.1 | 33.5 | 34.3 | 36.4 | 41.1 | 43.0 | 45.1 | 45.2 | 45.9 | 46.7 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 1.6 | 2.0 | 1.9 | 1.8 | 1.7 | 10.2 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 1.6 | 2.0 | 1.9 | 1.8 | 1.7 | 10.1 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.7 | 1.0 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 1.6 | 2.0 | 1.9 | 2.1 | 2.4 | 11.1 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.00 | -0.01 | -0.01 | -0.01 | 0.0 | Table -403 - Compliance Impacts and Cumulative Industry Costs by Model Year for GM and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cum | ulative I | ndustry | Costs | by Mod | el Year | for GM | and Tot | al Fleet, | , Alterna | ative PC | 2LT4 | | |--|-----------|---------|-------|--------|---------|--------|---------|-----------|-----------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 32.5 | 32.9 | 35.2 | 38.2 | 42.3 | 43.8 | 45.6 | 47.2 | 49.1 | 51.0 | 53.0 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 4% | 8% | 12% | 16% | 21% | 25% | N/A | | Average Achieved (mpg) | 29.1 | 29.0 | 33.7 | 37.1 | 38.3 | 39.8 | 40.0 | 40.4 | 40.7 | 43.3 | 44.0 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 1.5 | 1.7 | 1.7 | 2.3 | 2.4 | 11.0 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 1.5 | 1.7 | 1.7 | 2.3 | 2.4 | 11.0 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 8.0 | 1.1 | 1.5 | 1.2 | 1.5 | 6.5 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 2.3 | 2.7 | 3.2 | 3.5 | 4.0 | 17.5 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | 0.0 | Table -404 - Compliance Impacts and Cumulative Industry Costs by Model Year for Honda and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumul | ative In | dustry (| Costs b | y Model | Year fo | or Hond | a and To | otal Flee | et, Alteri | native P | C2LT4 | | |--|----------|----------|---------|---------|---------|---------|----------|-----------|------------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 39.1 | 39.4 | 42.7 | 46.2 | 51.2 | 52.8 | 54.5 | 56.2 | 58.1 | 60.1 | 62.0 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 7% | 10% | 14% | 18% | 21% | N/A | | Average Achieved (mpg) | 37.8 | 40.2 | 40.2 | 41.7 | 45.7 | 49.0 | 51.3 | 53.3 | 56.1 | 58.2 | 60.6 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 1.7 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 1.7 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 1.7 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 |
-0.01 | -0.01 | -0.01 | -0.01 | -0.01 | 0.0 | Table -405 - Compliance Impacts and Cumulative Industry Costs by Model Year for Hyundai KiH and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulativ | e Indus | stry Cos | ts by M | odel Ye | ar for H | lyundai | KiH and | d Total F | Fleet, Al | ternativ | e PC2L | T4 | |--|---------|----------|---------|---------|----------|---------|---------|-----------|-----------|----------|--------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 39.6 | 40.0 | 43.3 | 46.8 | 51.9 | 53.5 | 55.1 | 56.8 | 58.6 | 60.5 | 62.3 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 6% | 10% | 13% | 17% | 20% | N/A | | Average Achieved (mpg) | 39.1 | 40.8 | 41.0 | 44.9 | 49.0 | 50.1 | 53.6 | 54.9 | 56.6 | 58.5 | 60.4 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 2.1 | 2.0 | 1.8 | 1.7 | 1.7 | 10.3 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 2.1 | 2.0 | 1.8 | 1.7 | 1.7 | 10.3 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 2.1 | 2.0 | 1.8 | 1.7 | 1.7 | 10.4 | | Sales Impacts | | | | | | | | | | | | _ | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.01 | 0.00 | 0.00 | 0.0 | Table -406 - Compliance Impacts and Cumulative Industry Costs by Model Year for Hyundai KiK and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative | e Indus | stry Cos | ts by M | odel Ye | ar for H | yundai | KiK and | l Total F | leet, Al | ternativ | e PC2L | .T4 | | |--|---------|----------|---------|---------|----------|--------|---------|-----------|----------|----------|--------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 39.5 | 39.8 | 43.1 | 46.7 | 51.7 | 53.3 | 55.0 | 56.7 | 58.5 | 60.5 | 62.4 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 7% | 10% | 13% | 17% | 21% | N/A | | | Average Achieved (mpg) | 38.5 | 40.5 | 44.7 | 44.7 | 49.3 | 49.2 | 49.2 | 52.7 | 54.1 | 57.4 | 59.5 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 1.3 | 1.2 | 1.4 | 1.3 | 5.7 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 1.3 | 1.2 | 1.4 | 1.3 | 5.7 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.3 | 0.1 | 0.1 | 0.0 | 0.0 | 0.6 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.5 | 1.4 | 1.3 | 1.4 | 1.3 | 6.3 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | Table -407 - Compliance Impacts and Cumulative Industry Costs by Model Year for JLR and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumu | lative l | ndustry | Costs l | y Mode | el Year f | or JLR | and Tot | al Fleet | , Altern | ative PC | C2LT4 | | |--|----------|---------|---------|--------|-----------|--------|---------|----------|----------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 32.9 | 33.4 | 36.2 | 39.4 | 43.7 | 45.5 | 47.4 | 49.4 | 51.4 | 53.6 | 55.8 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 4% | 8% | 13% | 18% | 23% | 28% | N/A | | Average Achieved (mpg) | 27.4 | 34.2 | 36.7 | 36.8 | 38.9 | 39.8 | 39.8 | 40.7 | 42.8 | 46.4 | 49.0 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | Table -408 - Compliance Impacts and Cumulative Industry Costs by Model Year for Karma and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cum | ulative | Industry | y Costs | by Mod | lel Year | for Karm | na and To | otal Flee | t, Altern | ative PC | 2LT4 | | |--|---------|----------|---------|--------|----------|----------|-----------|-----------|-----------|----------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 55.2 | 56.3 | 57.5 | 58.6 | 59.8 | 61.1 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 2% | 4% | 6% | 8% | 11% | 13% | N/A | | Average Achieved (mpg) | 66.7 | 66.7 | 66.7 | 66.7 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Sales Impacts | | | | | | | • | | • | | | , | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | Table -409 - Compliance Impacts and Cumulative Industry Costs by Model Year for Lucid and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for Lucid and Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | |--|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 40.6 | 41.1 | 44.3 | 48.1 | 53.5 | 55.2 | 56.3 | 57.5 | 58.6 | 59.8 | 61.1 | N/A | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 2% | 4% | 6% | 8% | 11% | 13% | N/A | | Average Achieved (mpg) | 166.5 | 166.5 | 166.5 | 166.5 | 166.5 | 166.5 | 166.5 | 166.5 | 166.5 | 166.5 | 170.6 | N/A | | Total Regulatory Costs | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | Table -410 - Compliance Impacts and Cumulative Industry Costs by Model Year for Mazda and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for Mazda and Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 37.3 | 37.8 | 41.0 | 44.4 | 49.4 | 51.3 | 53.3 | 55.4 | 57.6 | 59.9 | 62.3 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 4% | 8% | 12% | 17% | 21% | 26% | N/A | | | Average Achieved (mpg) | 35.1 | 41.2 | 42.4 | 42.5 | 46.8 | 49.2 | 50.8 | 53.2 | 55.6 | 57.7 | 59.3 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 |
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | Table -411 - Compliance Impacts and Cumulative Industry Costs by Model Year for Mercedes-Benz and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for Mercedes-Benz and Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 36.8 | 37.2 | 40.2 | 43.6 | 48.4 | 49.9 | 51.5 | 53.3 | 55.0 | 56.9 | 58.8 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 7% | 10% | 14% | 18% | 22% | N/A | | | Average Achieved (mpg) | 31.6 | 36.7 | 37.3 | 37.8 | 43.4 | 44.9 | 47.4 | 49.4 | 53.6 | 55.8 | 57.8 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.3 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.3 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.3 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.6 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | Table -412 - Compliance Impacts and Cumulative Industry Costs by Model Year for Mitsubishi and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for Mitsubishi and Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 42.0 | 42.5 | 45.9 | 49.8 | 55.2 | 56.9 | 58.7 | 60.5 | 62.5 | 64.6 | 66.6 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 6% | 10% | 14% | 17% | 21% | N/A | | | Average Achieved (mpg) | 38.6 | 38.8 | 45.1 | 48.0 | 53.4 | 53.3 | 53.3 | 53.2 | 53.3 | 63.6 | 64.4 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.3 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | Table -413 - Compliance Impacts and Cumulative Industry Costs by Model Year for Nissan and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for Nissan and Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |---|------|------|------|------|------|------|-------|-------|-------|-------|------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 38.9 | 39.3 | 42.4 | 46.0 | 50.9 | 52.4 | 54.1 | 55.8 | 57.6 | 59.5 | 61.4 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 6% | 10% | 13% | 17% | 21% | N/A | | | Average Achieved (mpg) | 36.8 | 39.6 | 41.4 | 43.8 | 46.6 | 46.7 | 50.8 | 52.5 | 56.4 | 57.7 | 59.0 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 2.4 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 2.4 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.3 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 2.7 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.01 | -0.01 | -0.01 | 0.00 | 0.0 | | Table -414 - Compliance Impacts and Cumulative Industry Costs by Model Year for Stellantis and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for Stellantis and Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |---|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 31.9 | 32.3 | 34.9 | 38.0 | 42.1 | 43.8 | 45.6 | 47.3 | 49.2 | 51.1 | 53.2 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 4% | 8% | 12% | 17% | 21% | 26% | N/A | | | Average Achieved (mpg) | 27.3 | 28.5 | 31.4 | 37.0 | 37.5 | 40.1 | 40.2 | 42.8 | 44.4 | 45.4 | 47.3 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.4 | 1.0 | 1.1 | 1.0 | 1.7 | 5.5 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.4 | 1.0 | 1.1 | 1.0 | 1.7 | 5.5 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.6 | 0.3 | 0.4 | 0.7 | 0.7 | 3.0 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 1.0 | 1.4 | 1.5 | 1.7 | 2.4 | 8.5 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | 0.0 | | Table -415 - Compliance Impacts and Cumulative Industry Costs by Model Year for Subaru and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumula | ative Inc | dustry C | osts by | Model | Year fo | r Subar | u and T | otal Fle | et, Alter | native I | PC2LT4 | | | |--|-----------|----------|---------|-------|---------|---------|---------|----------|-----------|----------|--------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 37.8 | 38.2 | 41.4 | 44.9 | 50.0 | 51.9 | 53.9 | 56.0 | 58.2 | 60.5 | 62.9 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 4% | 8% | 12% | 17% | 21% | 26% | N/A | | | Average Achieved (mpg) | 36.7 | 40.3 | 42.2 | 44.1 | 50.0 | 52.3 | 54.3 | 56.6 | 59.5 | 62.0 | 64.2 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | Table -416 - Compliance Impacts and Cumulative Industry Costs by Model Year for Tesla and
Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for Tesla and Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 40.7 | 41.2 | 44.8 | 48.6 | 54.1 | 55.2 | 56.4 | 57.7 | 58.9 | 60.3 | 61.5 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 2% | 4% | 7% | 9% | 11% | 14% | N/A | | | Average Achieved (mpg) | 160.7 | 160.7 | 160.7 | 160.6 | 160.6 | 160.6 | 160.6 | 160.6 | 160.6 | 160.6 | 160.6 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | Table -417 - Compliance Impacts and Cumulative Industry Costs by Model Year for Toyota and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for Toyota and Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |---|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 37.1 | 37.4 | 40.4 | 43.6 | 48.4 | 50.0 | 51.8 | 53.6 | 55.5 | 57.5 | 59.5 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 3% | 7% | 11% | 15% | 19% | 23% | N/A | | | Average Achieved (mpg) | 36.6 | 37.7 | 40.6 | 41.7 | 46.6 | 47.8 | 49.2 | 50.8 | 52.7 | 54.9 | 57.0 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.1 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.1 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.1 | | Table -418 - Compliance Impacts and Cumulative Industry Costs by Model Year for Volvo and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for Volvo and Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 36.0 | 36.4 | 39.4 | 42.6 | 47.4 | 49.0 | 50.8 | 52.7 | 54.6 | 56.7 | 58.7 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 4% | 7% | 11% | 16% | 20% | 24% | N/A | | | Average Achieved (mpg) | 39.0 | 41.3 | 41.3 | 45.3 | 45.8 | 46.3 | 46.2 | 46.7 | 52.7 | 54.8 | 57.6 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.3 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.3 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.2 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | Table -419 - Compliance Impacts and Cumulative Industry Costs by Model Year for VWA and Total Fleet, Alternative PC2LT4 | Compliance Impacts and Cumulative Industry Costs by Model Year for VWA and Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Fuel Economy | | | | | | | | | | | | | | | Average Required (mpg) | 37.9 | 38.2 | 41.3 | 44.8 | 49.6 | 51.3 | 53.1 | 55.0 | 57.0 | 59.0 | 61.1 | N/A | | | Change from Baseline (%) | 0% | 0% | 0% | 0% | 0% | 4% | 7% | 11% | 15% | 19% | 23% | N/A | | | Average Achieved (mpg) | 33.8 | 35.2 | 40.3 | 42.9 | 45.0 | 45.8 | 47.8 | 49.4 | 53.4 | 56.5 | 58.7 | N/A | | | Total Regulatory Costs | | | | | | | | | | | | | | | Tech. (non-Off-Cycle/non-AC) Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.4 | 0.4 | 0.4 | 1.3 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.4 | 0.4 | 0.4 | 1.3 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.6 | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 2.0 | | | Sales Impacts | | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | Table 420 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Total) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Total) | | | | | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | | Fuel Economy | | | | | | | | | | | | | | Average Required (mpg) | 46.7 | 54.3 | 57.8 | 61.5 | 74.5 | | | | | | | | | Percent Change from Baseline | 0% | 16% | 24% | 32% | 59% | | | | | | | | | Average Achieved (mpg) | 50.8 | 53.4 | 54.4 | 55.5 | 58.3 | | | | | | | | | Total Regulatory Costs | | | | | | | | | | | | | | Technology Application Costs (\$b) | 56.3 | 8.0 | 10.6 | 17.2 | 26.3 | | | | | | | | | Off-Cycle Technology Costs (\$b) | 2.7 | 5.3 | 5.3 | 5.3 | 5.3 | | | | | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | Subtotal Technology Costs (\$b) | 59.0 | 13.3 | 15.9 | 22.6 | 31.6 | | | | | | | | | Total Civil Penalties (\$b) | 0.0 | 0.9 | 3.1 | 6.1 | 23.6 | | | | | | | | | Total Regulatory Costs (\$b) | 61.9 | 8.8 | 13.6 | 23.3 | 49.8 | | | | | | | | | Sales Impacts | | | | | | | | | | | | | | Sales Change from Baseline (m) | 0.00 | -0.28 | -0.40 | -0.65 | -1.39 | | | | | | | | Table 421 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Passenger Car Fleet by Alternative for Manufacturer (Total) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Passenger Car Fleet by Alternative for Manufacturer (Total) | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | Fuel Economy | | | | | | | | | Average Required (mpg) | 58.8 | 62.4 | 66.4 | 70.6 | 85.2 | | | | Percent Change from Baseline | 0% | 6% | 13% | 20% | 45% | | | | Average Achieved (mpg) | 69.0 | 70.2 | 71.4 | 73.3 | 81.7 | | | | Total Regulatory Costs | , | • | • | • | • | | | | Technology Application Costs (\$b) | 11.7 | 1.8 | 2.6 | 4.7 | 9.0 | | | | Off-Cycle Technology Costs (\$b) | 0.4 | 0.7 | 0.7 | 0.7 | 0.7 | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Subtotal Technology Costs (\$b) | 12.1 | 2.6 | 3.4 | 5.5 | 9.7 | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.1 | 3.1 | | | | Total Regulatory Costs (\$b) | 12.6 | 2.0 | 3.1 | 5.7 | 14.3 | | | | Sales
Impacts | · | • | • | | • | | | | Sales Change from Baseline (m) | 0.00 | -0.16 | -0.21 | -0.27 | -0.58 | | | Table 422 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Light Truck Fleet by Alternative for Manufacturer (Total) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Light Truck Fleet by Alternative for Manufacturer (Total) | | | | | | | |--|----------------------|--------|--------|--------|--------|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fuel Economy | | | | | | | | Average Required (mpg) | 42.6 | 51.2 | 54.4 | 58.0 | 70.3 | | | Percent Change from Baseline | 0% | 20% | 28% | 36% | 65% | | | Average Achieved (mpg) | 45.2 | 48.0 | 48.9 | 49.8 | 51.3 | | | Total Regulatory Costs | • | • | • | • | • | | | Technology Application Costs (\$b) | 44.6 | 6.2 | 8.0 | 12.5 | 17.3 | | | Off-Cycle Technology Costs (\$b) | 2.3 | 4.6 | 4.6 | 4.6 | 4.6 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 46.9 | 10.7 | 12.6 | 17.1 | 21.9 | | | Total Civil Penalties (\$b) | 0.0 | 0.9 | 3.1 | 6.0 | 20.5 | | | Total Regulatory Costs (\$b) | 49.4 | 6.9 | 10.6 | 17.6 | 35.5 | | | Sales Impacts | | | | | | | | Sales Change from Baseline (m) | 0.00 | -0.12 | -0.19 | -0.38 | -0.81 | | Table 423 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Domestic Car Fleet by Alternative for Manufacturer (Total) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Domestic Car Fleet by Alternative for Manufacturer (Total) | | | | | | | |---|----------------------|--------|----------|--------|--------|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fuel Economy | | | | | | | | Average Required (mpg) | 58.0 | 61.6 | 65.5 | 69.7 | 84.1 | | | Percent Change from Baseline | 0% | 6% | 13% | 20% | 45% | | | Average Achieved (mpg) | 69.9 | 71.6 | 72.8 | 75.0 | 83.6 | | | Total Regulatory Costs | • | | • | • | • | | | Technology Application Costs (\$b) | 5.2 | 0.8 | 1.0 | 2.4 | 4.2 | | | Off-Cycle Technology Costs (\$b) | 0.1 | 0.3 | 0.3 | 0.3 | 0.3 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 5.4 | 1.1 | 1.2 | 2.7 | 4.5 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.1 | 1.4 | | | Total Regulatory Costs (\$b) | 5.6 | 0.9 | 1.3 | 3.0 | 6.8 | | | Sales Impacts | • | | <u> </u> | • | • | | | Sales Change from Baseline (m) | 0.00 | -0.08 | -0.10 | -0.13 | -0.29 | | Table 424 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Imported Car Fleet by Alternative for Manufacturer (Total) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Imported Car Fleet by Alternative for Manufacturer (Total) | | | | | | | |---|----------------------|--------|--------|----------|----------|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fuel Economy | | | | | | | | Average Required (mpg) | 59.5 | 63.2 | 67.2 | 71.5 | 86.3 | | | Percent Change from Baseline | 0% | 6% | 13% | 20% | 45% | | | Average Achieved (mpg) | 68.1 | 68.9 | 70.0 | 71.7 | 80.0 | | | Total Regulatory Costs | | · | • | • | • | | | Technology Application Costs (\$b) | 6.5 | 1.0 | 1.7 | 2.3 | 4.8 | | | Off-Cycle Technology Costs (\$b) | 0.2 | 0.5 | 0.5 | 0.5 | 0.5 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 6.7 | 1.5 | 2.1 | 2.8 | 5.3 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | | | Total Regulatory Costs (\$b) | 7.0 | 1.0 | 1.8 | 2.7 | 7.5 | | | Sales Impacts | • | • | • | <u> </u> | <u> </u> | | | Sales Change from Baseline (m) | 0.00 | -0.08 | -0.11 | -0.14 | -0.29 | | Table 425 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (BMW) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (BMW) | | | | | | | |--|----------------------|--------|--------|--------|--------|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fuel Economy | | | | | | | | Average Required (mpg) | 49.2 | 56.1 | 59.7 | 63.5 | 76.9 | | | Percent Change from Baseline | 0% | 14% | 21% | 29% | 56% | | | Average Achieved (mpg) | 56.8 | 58.2 | 58.6 | 58.7 | 60.5 | | | Total Regulatory Costs | | • | • | • | • | | | Technology Application Costs (\$b) | 1.4 | 0.0 | 0.0 | 0.0 | 0.1 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 1.5 | 0.1 | 0.1 | 0.1 | 0.2 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.1 | 0.2 | 0.7 | | | Total Regulatory Costs (\$b) | 1.5 | 0.0 | 0.1 | 0.2 | 0.8 | | | Sales Impacts | | | | • | | | | Sales Change from Baseline (m) | 0.00 | -0.01 | -0.01 | -0.02 | -0.04 | | Table 426 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Ford) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Ford) | | | | | | | |---|----------------------|--------|--------|--------|--------|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fuel Economy | | | | | | | | Average Required (mpg) | 41.4 | 49.2 | 52.3 | 55.7 | 67.5 | | | Percent Change from Baseline | 0% | 19% | 27% | 35% | 63% | | | Average Achieved (mpg) | 41.2 | 46.1 | 46.7 | 46.7 | 46.8 | | | Total Regulatory Costs | | • | • | • | • | | | Technology Application Costs (\$b) | 7.8 | 1.4 | 1.7 | 1.7 | 2.1 | | | Off-Cycle Technology Costs (\$b) | 0.4 | 0.8 | 0.8 | 0.8 | 0.8 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 8.2 | 2.2 | 2.5 | 2.5 | 3.0 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.7 | 1.5 | 4.7 | | | Total Regulatory Costs (\$b) | 8.6 | 1.4 | 2.4 | 3.1 | 6.8 | | | Sales Impacts | | | | | | | | Sales Change from Baseline (m) | 0.00 | -0.02 | -0.04 | -0.07 | -0.15 | | Table 427 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (GM) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (GM) | | | | | | | |---|----------------------|--------|----------------|--------|--------|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fuel Economy | | · | | • | | | | Average Required (mpg) | 42.3 | 49.8 | 53.0 | 56.5 | 68.4 | | | Percent Change from Baseline | 0% | 18% | 25% | 34% | 62% | | | Average Achieved (mpg) | 40.3 | 43.8 | 44.0 | 44.2 | 44.2 | | | Total Regulatory Costs | | | - ' | | | | | Technology Application Costs (\$b) | 8.6 | 2.5 | 2.4 | 3.6 | 3.5 | | | Off-Cycle Technology Costs (\$b) | 0.4 | 0.8 | 0.8 | 0.8 | 0.8 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 9.0 | 3.3 | 3.3 | 4.5 | 4.3 | | | Total Civil Penalties (\$b) | 0.0 | 0.8 | 1.5 | 2.3 | 5.9 | | | Total Regulatory Costs (\$b) | 9.5 | 3.2 | 4.0 | 5.9 | 9.3 | | | Sales Impacts | · | · | • | • | • | | | Sales Change from Baseline (m) | 0.00 | -0.03 | -0.05 | -0.08 | -0.17 | | Table 428 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Honda) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Honda) | | | | | | | |--|----------------------|--------|--------|--------|----------|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fuel Economy | | | | | | | | Average Required (mpg) | 51.1 | 58.3 | 62.0 | 66.1 | 79.9 | | | Percent Change from Baseline | 0% | 14% | 21% | 29% | 56% | | | Average Achieved (mpg) | 57.1 | 58.6 | 60.6 | 63.1 | 68.1 | | | Total Regulatory Costs | | • | • | | • | | | Technology Application Costs (\$b) | 3.8 | 0.1 | 0.3 | 0.8 | 2.1 | | | Off-Cycle Technology Costs (\$b) | 0.2 | 0.4 | 0.4 | 0.4 | 0.4 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 4.0 | 0.5 | 0.7 | 1.2 | 2.5 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | | | Total Regulatory Costs (\$b) | 4.2 | 0.1 | 0.3 | 0.8 | 3.5 | | | Sales Impacts | • | • | • | | <u> </u> | | | Sales Change from Baseline (m) | 0.00 | -0.03 | -0.04 | -0.07 | -0.14 | | Table 429 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Hyundai KiH) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Hyundai KiH) | | | | | | | |--|----------------------|--------|--------|--------|--------|--| | Alternative | No Action
(Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fuel Economy | | | | | | | | Average Required (mpg) | 51.9 | 58.6 | 62.3 | 66.4 | 80.3 | | | Percent Change from Baseline | 0% | 13% | 20% | 28% | 55% | | | Average Achieved (mpg) | 56.5 | 57.8 | 60.4 | 62.9 | 66.7 | | | Total Regulatory Costs | • | · | • | • | • | | | Technology Application Costs (\$b) | 2.9 | 1.3 | 1.7 | 3.1 | 3.8 | | | Off-Cycle Technology Costs (\$b) | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 3.0 | 1.5 | 1.9 | 3.2 | 4.0 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.1 | 1.2 | | | Total Regulatory Costs (\$b) | 3.1 | 1.3 | 1.7 | 3.1 | 5.0 | | | Sales Impacts | • | • | • | • | | | | Sales Change from Baseline (m) | 0.00 | -0.02 | -0.03 | -0.04 | -0.09 | | Table 430 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Hyundai KiK) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Hyundai KiK) | | | | | | | |--|----------------------|--------|--------|----------|--------|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fuel Economy | | | | | | | | Average Required (mpg) | 51.7 | 58.6 | 62.4 | 66.4 | 80.3 | | | Percent Change from Baseline | 0% | 13% | 21% | 28% | 55% | | | Average Achieved (mpg) | 53.6 | 57.0 | 59.5 | 62.6 | 67.7 | | | Total Regulatory Costs | | | • | • | • | | | Technology Application Costs (\$b) | 1.3 | 0.6 | 1.3 | 2.8 | 3.3 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 1.4 | 0.7 | 1.4 | 2.9 | 3.3 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | | | Total Regulatory Costs (\$b) | 1.4 | 0.6 | 1.3 | 2.8 | 4.0 | | | Sales Impacts | | | • | <u> </u> | | | | Sales Change from Baseline (m) | 0.00 | -0.01 | -0.02 | -0.03 | -0.06 | | Table 431 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (JLR) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (JLR) | | | | | | | |--|----------------------|--------|--------|--------|--------|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fuel Economy | | | | | | | | Average Required (mpg) | 43.7 | 52.4 | 55.8 | 59.4 | 72.0 | | | Percent Change from Baseline | 0% | 20% | 28% | 36% | 65% | | | Average Achieved (mpg) | 46.2 | 49.0 | 49.0 | 49.0 | 49.0 | | | Total Regulatory Costs | • | • | • | | • | | | Technology Application Costs (\$b) | 0.3 | 0.0 | 0.1 | 0.0 | 0.0 | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Subtotal Technology Costs (\$b) | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.1 | 0.1 | 0.3 | | | Total Regulatory Costs (\$b) | 0.3 | 0.1 | 0.1 | 0.2 | 0.3 | | | Sales Impacts | • | • | • | | • | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | | Table 432 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Karma) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Karma) | | | | | | | | | |--|----------------------|--------|--------|----------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | | | | | | | | | Average Required (mpg) | 54.1 | 57.4 | 61.1 | 64.9 | 78.4 | | | | | Percent Change from Baseline | 0% | 6% | 13% | 20% | 45% | | | | | Average Achieved (mpg) | 138.6 | 138.6 | 138.6 | 138.6 | 138.6 | | | | | Total Regulatory Costs | • | • | • | • | • | | | | | Technology Application Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Sales Impacts | • | • | • | <u> </u> | • | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Table 433 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Lucid) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Lucid) | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | | | | | | | | | Average Required (mpg) | 54.1 | 57.4 | 61.1 | 64.9 | 78.4 | | | | | Percent Change from Baseline | 0% | 6% | 13% | 20% | 45% | | | | | Average Achieved (mpg) | 170.6 | 170.6 | 170.6 | 170.6 | 170.6 | | | | | Total Regulatory Costs | | • | • | • | • | | | | | Technology Application Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Sales Impacts | | | • | • | • | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Table 434 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Mazda) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Mazda) | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | | | | | | | | | Average Required (mpg) | 49.3 | 58.5 | 62.3 | 66.3 | 80.3 | | | | | Percent Change from Baseline | 0% | 19% | 26% | 34% | 63% | | | | | Average Achieved (mpg) | 58.5 | 58.6 | 59.3 | 63.6 | 72.3 | | | | | Total Regulatory Costs | • | • | • | | • | | | | | Technology Application Costs (\$b) | 0.8 | 0.0 | 0.0 | 0.9 | 1.7 | | | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 0.8 | 0.1 | 0.1 | 1.0 | 1.8 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | | | | Total Regulatory Costs (\$b) | 0.9 | 0.0 | 0.0 | 0.9 | 1.8 | | | | | Sales Impacts | • | • | • | | • | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | -0.01 | -0.02 | | | | Table 435 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Mercedes-Benz) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Mercedes-Benz) | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | · | | • | • | | | | | | Average Required (mpg) | 48.3 | 55.3 | 58.8 | 62.6 | 75.7 | | | | | Percent Change from Baseline | 0% | 14% | 22% | 30% | 57% | | | | | Average Achieved (mpg) | 55.1 | 57.4 | 57.8 | 58.6 | 58.8 | | | | | Total Regulatory Costs | • | | - | - | | | | | | Technology Application Costs (\$b) | 1.1 | 0.0 | 0.1 | 0.1 | 0.1 | | | | | Off-Cycle Technology Costs (\$b) | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 1.2 | 0.2 | 0.3 | 0.3 | 0.3 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.1 | 0.6 | | | | | Total Regulatory Costs (\$b) | 1.3 | 0.0 | 0.1 | 0.2 | 0.7 | | | | | Sales Impacts | • | | • | • | • | | | | | Sales Change from Baseline (m) | 0.00 | -0.01 | -0.01 | -0.01 | -0.03 | | | | Table 436 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Mitsubishi) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Mitsubishi) | | | | | | | | | |---|----------------------|--------|--------|--------|----------------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | | | | | | | | | Average Required (mpg) | 55.1 | 62.6 | 66.6 | 70.9 | 85.8 | | | | | Percent Change from Baseline | 0% | 14% | 21% | 29% | 56% | | | | | Average Achieved (mpg) | 58.4 | 63.4 | 64.4 | 68.0 | 70.8 | | | | | Total Regulatory Costs | | | • | • | - , | | | | |
Technology Application Costs (\$b) | 0.3 | 0.1 | 0.1 | 0.2 | 0.2 | | | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 0.3 | 0.1 | 0.1 | 0.2 | 0.2 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | | | | | Total Regulatory Costs (\$b) | 0.3 | 0.1 | 0.1 | 0.2 | 0.4 | | | | | Sales Impacts | | • | • | • | • | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | -0.01 | -0.01 | | | | Table 437 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Nissan) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Nissan) | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | | | | | | | | | Average Required (mpg) | 50.9 | 57.7 | 61.4 | 65.4 | 79.1 | | | | | Percent Change from Baseline | 0% | 13% | 21% | 28% | 55% | | | | | Average Achieved (mpg) | 54.3 | 56.1 | 59.0 | 61.3 | 66.1 | | | | | Total Regulatory Costs | | • | • | - | - | | | | | Technology Application Costs (\$b) | 4.3 | 0.2 | 0.5 | 0.8 | 1.5 | | | | | Off-Cycle Technology Costs (\$b) | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 4.5 | 0.5 | 0.8 | 1.1 | 1.8 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.1 | 1.0 | | | | | Total Regulatory Costs (\$b) | 4.7 | 0.2 | 0.5 | 0.8 | 2.5 | | | | | Sales Impacts | <u> </u> | | • | | • | | | | | Sales Change from Baseline (m) | 0.00 | -0.02 | -0.03 | -0.05 | -0.10 | | | | Table 438 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Stellantis) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Stellantis) | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | | | | | | | | | Average Required (mpg) | 42.1 | 50.0 | 53.2 | 56.7 | 68.7 | | | | | Percent Change from Baseline | 0% | 19% | 26% | 34% | 63% | | | | | Average Achieved (mpg) | 43.8 | 46.9 | 47.3 | 47.5 | 47.7 | | | | | Total Regulatory Costs | • | • | • | | • | | | | | Technology Application Costs (\$b) | 9.5 | 1.4 | 1.7 | 1.8 | 2.9 | | | | | Off-Cycle Technology Costs (\$b) | 0.4 | 0.8 | 0.8 | 0.8 | 0.8 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 9.9 | 2.2 | 2.5 | 2.5 | 3.7 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.7 | 1.5 | 4.6 | | | | | Total Regulatory Costs (\$b) | 10.3 | 1.5 | 2.4 | 3.3 | 7.5 | | | | | Sales Impacts | · | • | • | | • | | | | | Sales Change from Baseline (m) | 0.00 | -0.02 | -0.04 | -0.07 | -0.15 | | | | Table 439 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Subaru) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Subaru) | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | | | | | | | | | Average Required (mpg) | 49.9 | 59.2 | 62.9 | 67.0 | 81.2 | | | | | Percent Change from Baseline | 0% | 19% | 26% | 34% | 63% | | | | | Average Achieved (mpg) | 64.2 | 64.2 | 64.2 | 64.3 | 75.3 | | | | | Total Regulatory Costs | • | · | • | | • | | | | | Technology Application Costs (\$b) | 3.6 | 0.0 | 0.0 | 0.0 | 0.7 | | | | | Off-Cycle Technology Costs (\$b) | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 3.7 | 0.3 | 0.3 | 0.3 | 1.0 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Regulatory Costs (\$b) | 3.9 | 0.0 | 0.0 | 0.0 | 0.7 | | | | | Sales Impacts | • | • | • | | | | | | | Sales Change from Baseline (m) | 0.00 | -0.01 | -0.02 | -0.03 | -0.07 | | | | Table 440 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Tesla) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Tesla) | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | | | | | | | | | Average Required (mpg) | 54.1 | 57.8 | 61.5 | 65.5 | 79.0 | | | | | Percent Change from Baseline | 0% | 7% | 14% | 21% | 46% | | | | | Average Achieved (mpg) | 160.6 | 160.6 | 160.6 | 160.6 | 160.6 | | | | | Total Regulatory Costs | | • | • | | • | | | | | Technology Application Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Regulatory Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Sales Impacts | · | • | • | • | | | | | | Sales Change from Baseline (m) | 0.00 | -0.01 | -0.02 | -0.03 | -0.05 | | | | Table 441 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Toyota) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Toyota) | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | | | | | | | | | Average Required (mpg) | 48.4 | 56.0 | 59.5 | 63.4 | 76.7 | | | | | Percent Change from Baseline | 0% | 16% | 23% | 31% | 59% | | | | | Average Achieved (mpg) | 56.5 | 56.5 | 57.0 | 59.6 | 68.5 | | | | | Total Regulatory Costs | | | - | • | | | | | | Technology Application Costs (\$b) | 7.7 | 0.0 | 0.2 | 0.9 | 3.6 | | | | | Off-Cycle Technology Costs (\$b) | 0.5 | 0.9 | 0.9 | 0.9 | 0.9 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 8.2 | 0.9 | 1.1 | 1.8 | 4.5 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | | | | | Total Regulatory Costs (\$b) | 8.7 | 0.0 | 0.2 | 0.8 | 4.4 | | | | | Sales Impacts | | | | • | | | | | | Sales Change from Baseline (m) | 0.00 | -0.05 | -0.07 | -0.11 | -0.23 | | | | Table 442 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Volvo) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (Volvo) | | | | | | | | | |--|----------------------|--------|--------|--------|----------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | · | | | | | | | | Average Required (mpg) | 47.3 | 55.2 | 58.7 | 62.5 | 75.8 | | | | | Percent Change from Baseline | 0% | 17% | 24% | 32% | 60% | | | | | Average Achieved (mpg) | 51.2 | 54.6 | 57.6 | 59.7 | 60.2 | | | | | Total Regulatory Costs | | | - | - | <u> </u> | | | | | Technology Application Costs (\$b) | 0.3 | 0.0 | 0.1 | 0.1 | 0.1 | | | | | Off-Cycle Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Subtotal Technology Costs (\$b) | 0.3 | 0.1 | 0.1 | 0.2 | 0.2 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | | | | | Total Regulatory Costs (\$b) | 0.3 | 0.0 | 0.1 | 0.1 | 0.4 | | | | | Sales Impacts | · | • | • | | • | | | | | Sales Change from Baseline (m) | 0.00 | 0.00 | 0.00 | -0.01 | -0.01 | | | | Table 443 - Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (VWA) | Compliance Impacts and Cumulative Industry Costs for MY 2022 to 2032 Total Fleet by Alternative for Manufacturer (VWA) | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fuel Economy | | | | | | | | | | Average Required (mpg) | 49.6 | 57.4 | 61.1 | 65.0 | 78.7 | | | | | Percent Change from Baseline | 0% | 16% | 23% | 31% | 59% | | | | | Average Achieved (mpg) | 53.8 | 56.1 | 58.7 | 60.0 | 60.9 | | | | | Total Regulatory Costs | | • | • | | • | | | | | Technology Application Costs (\$b) | 2.6 | 0.2 | 0.4 | 0.5 | 0.5 | | | | | Off-Cycle Technology Costs (\$b) | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | A/C Efficiency Technology Costs (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | |
Subtotal Technology Costs (\$b) | 2.7 | 0.5 | 0.6 | 0.7 | 0.8 | | | | | Total Civil Penalties (\$b) | 0.0 | 0.0 | 0.0 | 0.2 | 1.3 | | | | | Total Regulatory Costs (\$b) | 2.8 | 0.2 | 0.4 | 0.7 | 1.9 | | | | | Sales Impacts | <u> </u> | • | • | • | • | | | | | Sales Change from Baseline (m) | 0.00 | -0.01 | -0.02 | -0.03 | -0.06 | | | | ## Powertrain Technology Penetration Rate, by Model Year Table 444 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Total Fleet, No Action Alternative (Baseline) Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Non-Hybrid High Compression Engines | 11 | 12 | 17 | 20 | 20 | 20 | 21 | 21 | 20 | 20 | 19 | | | | | Cylinder Deactivation | 5 | 4 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 32 | 32 | 31 | 30 | 28 | 27 | 26 | 24 | 24 | 23 | 22 | | | | | Variable Geometry Turbo | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 53 | 52 | 48 | 42 | 37 | 33 | 31 | 29 | 28 | 27 | 26 | | | | | Mild Hybrid Powertrains | 3.6 | 3.7 | 2.3 | 2.2 | 1.9 | 1.8 | 2.0 | 1.5 | 1.5 | 1.5 | 1.4 | | | | | Strong Hybrid Powertrains Total | 6.9 | 7.0 | 11.4 | 17.2 | 18.8 | 24.6 | 25.3 | 25.9 | 25.1 | 22.3 | 21.9 | | | | | Plug-In Hybrid Powertrains | 1.7 | 1.4 | 1.4 | 0.3 | 0.3 | 0.4 | 0.4 | 0.7 | 0.7 | 2.9 | 2.9 | | | | | Battery Electric Vehicles (BEVs) | 5.2 | 8.5 | 12.5 | 15.1 | 21.0 | 21.9 | 23.2 | 25.2 | 27.7 | 30.3 | 32.3 | | | | | BEV 1 | 0.3 | 2.7 | 3.1 | 3.3 | 4.6 | 4.8 | 5.1 | 5.5 | 6.0 | 6.4 | 6.7 | | | | | BEV 2 | 1.6 | 2.6 | 6.2 | 7.8 | 11.5 | 11.9 | 12.5 | 13.5 | 14.8 | 16.1 | 17.1 | | | | | BEV 3 | 2.3 | 2.4 | 2.3 | 3.2 | 4.2 | 4.4 | 4.8 | 5.4 | 6.2 | 7.0 | 7.6 | | | | | BEV 4 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 5-Speed Automatic | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 6 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 29 | 29 | 26 | 23 | 20 | 17 | 16 | 15 | 14 | 14 | 13 | | | | | 9-Speed Automatic | 11 | 8 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 12 | 15 | 16 | 18 | 19 | 15 | 15 | 14 | 14 | 13 | 13 | | | | | DCT Transmissions | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | | | | | CVT Transmissions | 23 | 22 | 21 | 20 | 18 | 19 | 18 | 18 | 17 | 16 | 16 | Table 445 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Passenger Car Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Passenger Car Fleet, No Action Alternative (Baseline) Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Non-Hybrid High Compression
Engines | 17 | 20 | 23 | 26 | 29 | 28 | 30 | 29 | 28 | 27 | 27 | | | | Cylinder Deactivation | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Non-Hybrid Turbocharged Engines | 32 | 31 | 27 | 26 | 21 | 21 | 20 | 19 | 18 | 18 | 17 | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 12V Stop-Start (non-hybrid) | 38 | 36 | 33 | 32 | 26 | 24 | 23 | 21 | 20 | 20 | 19 | | | | Mild Hybrid Powertrains | 2.1 | 2.1 | 1.7 | 2.2 | 1.8 | 1.6 | 2.3 | 2.3 | 2.2 | 2.2 | 2.1 | | | | Strong Hybrid Powertrains Total | 5.4 | 4.6 | 5.9 | 8.4 | 11.3 | 13.0 | 13.5 | 13.5 | 13.0 | 12.7 | 12.8 | | | | Plug-In Hybrid Powertrains | 1.2 | 0.6 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Battery Electric Vehicles (BEVs) | 12.4 | 17.4 | 22.8 | 24.4 | 31.1 | 32.0 | 33.4 | 35.5 | 38.1 | 40.4 | 42.2 | | | | BEV 1 | 0.6 | 4.8 | 5.6 | 5.7 | 8.7 | 9.3 | 10.0 | 10.9 | 12.0 | 13.0 | 13.7 | | | | BEV 2 | 3.8 | 4.5 | 9.1 | 10.4 | 13.5 | 13.7 | 14.2 | 14.9 | 15.9 | 16.7 | 17.4 | | | | BEV 3 | 5.6 | 5.7 | 5.7 | 5.9 | 6.5 | 6.6 | 6.8 | 7.3 | 7.8 | 8.3 | 8.7 | | | | BEV 4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | | | | Fuel Cell Vehicles (FCVs) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 6-Speed Automatic | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 8-Speed Automatic | 23 | 23 | 20 | 19 | 16 | 12 | 10 | 9 | 9 | 9 | 8 | | | | 9-Speed Automatic | 4 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 10-Speed Automatic | 3 | 3 | 5 | 7 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | | | | DCT Transmissions | 7 | 7 | 6 | 5 | 4 | 3 | 3 | 3 | 3 | 3 | 2 | | | | CVT Transmissions | 40 | 38 | 36 | 35 | 32 | 34 | 35 | 34 | 32 | 31 | 30 | | | Table 446 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Light Truck Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Light Truck Fleet, No Action Alternative (Baseline) Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Non-Hybrid High Compression
Engines | 7 | 8 | 13 | 17 | 16 | 16 | 16 | 17 | 16 | 16 | 16 | | | | Cylinder Deactivation | 8 | 6 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Non-Hybrid Turbocharged Engines | 32 | 34 | 33 | 33 | 31 | 29 | 29 | 27 | 27 | 26 | 25 | | | | Variable Geometry Turbo | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Electric Variable Geometry Turbo | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Diesel Engines | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 12V Stop-Start (non-hybrid) | 62 | 60 | 55 | 47 | 42 | 37 | 35 | 33 | 32 | 31 | 30 | | | | Mild Hybrid Powertrains | 4.6 | 4.6 | 2.6 | 2.2 | 1.9 | 1.9 | 1.9 | 1.2 | 1.2 | 1.1 | 1.1 | | | | Strong Hybrid Powertrains Total | 7.8 | 8.3 | 14.3 | 21.5 | 22.3 | 30.1 | 30.8 | 31.6 | 30.8 | 26.9 | 26.2 | | | | Plug-In Hybrid Powertrains | 2.0 | 1.9 | 1.9 | 0.4 | 0.4 | 0.6 | 0.6 | 1.1 | 1.1 | 4.3 | 4.3 | | | | Battery Electric Vehicles (BEVs) | 0.7 | 3.5 | 7.1 | 10.5 | 16.2 | 17.1 | 18.5 | 20.4 | 22.9 | 25.5 | 27.5 | | | | BEV 1 | 0.1 | 1.5 | 1.8 | 2.2 | 2.6 | 2.7 | 2.9 | 3.0 | 3.2 | 3.3 | 3.4 | | | | BEV 2 | 0.3 | 1.5 | 4.7 | 6.5 | 10.5 | 11.0 | 11.8 | 12.8 | 14.3 | 15.8 | 17.0 | | | | BEV 3 | 0.3 | 0.6 | 0.6 | 1.9 | 3.1 | 3.4 | 3.8 | 4.6 | 5.5 | 6.4 | 7.1 | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | | | | | 5-Speed Automatic | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 6-Speed Automatic | 7 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 8-Speed Automatic | 32 | 32 | 30 | 25 | 22 | 19 | 19 | 18 | 16 | 16 | 15 | | | | 9-Speed Automatic | 15 | 11 | 10 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 10-Speed Automatic | 18 | 22 | 22 | 24 | 26 | 20 | 20 | 18 | 18 | 17 | 17 | | | | DCT Transmissions | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | CVT Transmissions | 12 | 13 | 13 | 13 | 12 | 11 | 11 | 10 | 10 | 9 | 9 | | | Table 447 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Domestic Car Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Domestic Car Fleet, No Action Alternative (Baseline) Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | |---|------|------|------
------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Non-Hybrid High Compression
Engines | 11 | 15 | 19 | 24 | 28 | 27 | 32 | 31 | 29 | 28 | 27 | | | | Cylinder Deactivation | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Non-Hybrid Turbocharged Engines | 29 | 29 | 25 | 26 | 23 | 22 | 22 | 21 | 20 | 20 | 18 | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 12V Stop-Start (non-hybrid) | 35 | 34 | 32 | 31 | 27 | 26 | 25 | 24 | 23 | 22 | 22 | | | | Mild Hybrid Powertrains | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | | | | Strong Hybrid Powertrains Total | 3.1 | 1.7 | 3.1 | 6.3 | 8.3 | 9.0 | 8.9 | 9.0 | 8.8 | 8.5 | 9.1 | | | | Plug-In Hybrid Powertrains | 0.7 | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Battery Electric Vehicles (BEVs) | 17.0 | 20.6 | 27.3 | 29.4 | 34.9 | 36.1 | 37.4 | 39.2 | 41.4 | 43.5 | 45.1 | | | | BEV 1 | 0.3 | 3.4 | 4.0 | 4.0 | 6.4 | 7.1 | 7.9 | 8.8 | 9.7 | 10.6 | 11.3 | | | | BEV 2 | 1.4 | 1.8 | 8.0 | 9.8 | 12.5 | 12.9 | 13.4 | 14.2 | 15.1 | 16.0 | 16.7 | | | | BEV 3 | 10.5 | 10.6 | 10.6 | 10.8 | 11.1 | 11.2 | 11.3 | 11.5 | 11.8 | 12.1 | 12.3 | | | | BEV 4 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 6-Speed Automatic | 6 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 8-Speed Automatic | 18 | 17 | 14 | 14 | 13 | 7 | 6 | 6 | 6 | 6 | 5 | | | | 9-Speed Automatic | 3 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 10-Speed Automatic | 5 | 5 | 8 | 8 | 8 | 7 | 8 | 8 | 8 | 8 | 7 | | | | DCT Transmissions | 3 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | CVT Transmissions | 45 | 43 | 40 | 39 | 35 | 40 | 38 | 37 | 35 | 34 | 33 | | | Table 448 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Imported Car Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Imported Car Fleet, No Action Alternative (Baseline) Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Non-Hybrid High Compression
Engines | 23 | 25 | 28 | 28 | 30 | 30 | 29 | 28 | 27 | 27 | 26 | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Non-Hybrid Turbocharged Engines | 34 | 32 | 28 | 26 | 20 | 20 | 19 | 18 | 17 | 16 | 15 | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 12V Stop-Start (non-hybrid) | 40 | 38 | 35 | 32 | 24 | 23 | 20 | 19 | 18 | 17 | 16 | | | | Mild Hybrid Powertrains | 3.7 | 3.7 | 2.9 | 3.9 | 3.2 | 2.9 | 4.3 | 4.2 | 4.1 | 4.0 | 3.9 | | | | Strong Hybrid Powertrains Total | 7.6 | 7.4 | 8.7 | 10.4 | 14.3 | 17.0 | 18.1 | 17.9 | 17.2 | 16.7 | 16.3 | | | | Plug-In Hybrid Powertrains | 1.7 | 0.4 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Battery Electric Vehicles (BEVs) | 7.9 | 14.3 | 18.4 | 19.5 | 27.4 | 28.0 | 29.5 | 31.9 | 34.9 | 37.5 | 39.5 | | | | BEV 1 | 1.0 | 6.2 | 7.2 | 7.3 | 11.0 | 11.4 | 12.1 | 13.1 | 14.2 | 15.2 | 16.0 | | | | BEV 2 | 6.1 | 7.2 | 10.2 | 11.1 | 14.4 | 14.6 | 14.9 | 15.7 | 16.7 | 17.5 | 18.2 | | | | BEV 3 | 0.9 | 0.9 | 0.9 | 1.1 | 1.9 | 2.1 | 2.4 | 3.1 | 3.9 | 4.6 | 5.1 | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | | | | | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 6-Speed Automatic | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 8-Speed Automatic | 28 | 28 | 26 | 24 | 19 | 17 | 14 | 13 | 12 | 12 | 11 | | | | 9-Speed Automatic | 5 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 10-Speed Automatic | 0 | 1 | 3 | 5 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | | | | DCT Transmissions | 11 | 10 | 9 | 9 | 7 | 6 | 5 | 5 | 5 | 4 | 4 | | | | | - | - | | | | | 31 | | | | | | | | CVT Transmissions | 35 | 33 | 32 | 32 | 29 | 29 | ગ | 30 | 29 | 28 | 27 | | | Table 449 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetrati | on Rate | (%) by | Model
PC1L | | r Manu | facture | r (Tota | l) Total | Fleet, | Alterna | itive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 11 | 12 | 17 | 20 | 20 | 20 | 20 | 19 | 18 | 18 | 15 | | Cylinder Deactivation | 5 | 4 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 32 | 32 | 31 | 30 | 28 | 23 | 19 | 16 | 16 | 13 | 12 | | Variable Geometry Turbo | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 53 | 52 | 48 | 42 | 37 | 29 | 25 | 21 | 19 | 16 | 14 | | Mild Hybrid Powertrains | 3.6 | 3.7 | 2.3 | 2.2 | 1.9 | 1.9 | 1.8 | 2.0 | 2.0 | 2.0 | 2.0 | | Strong Hybrid Powertrains Total | 6.9 | 7.0 | 11.4 | 17.2 | 18.8 | 27.3 | 31.9 | 33.5 | 33.2 | 32.3 | 32.8 | | Plug-In Hybrid Powertrains | 1.7 | 1.4 | 1.4 | 0.3 | 0.3 | 1.8 | 2.0 | 3.0 | 3.1 | 5.2 | 6.2 | | Battery Electric Vehicles (BEVs) | 5.2 | 8.5 | 12.5 | 15.1 | 21.0 | 21.9 | 23.2 | 25.2 | 27.8 | 30.3 | 32.3 | | BEV 1 | 0.3 | 2.7 | 3.1 | 3.3 | 4.6 | 4.8 | 5.1 | 5.5 | 6.0 | 6.4 | 6.7 | | BEV 2 | 1.6 | 2.6 | 6.2 | 7.8 | 11.5 | 11.9 | 12.5 | 13.5 | 14.8 | 16.1 | 17.1 | | BEV 3 | 2.3 | 2.4 | 2.3 | 3.2 | 4.2 | 4.4 | 4.8 | 5.4 | 6.2 | 7.0 | 7.6 | | BEV 4 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 6 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 29 | 29 | 26 | 23 | 20 | 15 | 12 | 9 | 8 | 7 | 7 | | 9-Speed Automatic | 11 | 8 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 12 | 15 | 16 | 18 | 19 | 15 | 13 | 12 | 12 | 10 | 7 | | DCT Transmissions | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | | CVT Transmissions | 23 | 22 | 21 | 20 | 18 | 17 | 16 | 15 | 15 | 14 | 13 | Table 450 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC1LT3 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC1LT3 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression Engines | 7 | 8 | 13 | 17 | 16 | 16 | 15 | 15 | 14 | 13 | 10 | | | | | Cylinder Deactivation | 8 | 6 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 32 | 34 | 33 | 33 | 31 | 24 | 20 | 17 | 16 | 13 | 12 | | | | | Variable Geometry Turbo | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 62 | 60 | 55 | 47 | 42 | 32 | 26 | 23 | 21 | 17 | 13 | | | | | Mild Hybrid Powertrains | 4.6 | 4.6 | 2.6 | 2.2 | 1.9 | 1.9 | 1.9 | 1.1 | 1.0 | 1.3 | 1.4 | | | | | Strong Hybrid Powertrains Total | 7.8 | 8.3 | 14.3 | 21.5 | 22.3 | 33.3 | 39.3 | 41.4 | 41.4 | 40.0 | 40.7 | | | | | Plug-In Hybrid Powertrains | 2.0 | 1.9 | 1.9 | 0.4 | 0.4 | 2.6 | 2.9 | 4.3 | 4.6 | 7.7 | 9.1 | | | | | Battery Electric Vehicles (BEVs) | 0.7 | 3.5 | 7.1 | 10.5 | 16.2 | 17.2 | 18.5 | 20.4 | 23.0 | 25.5 | 27.5 | | | | | BEV 1
| 0.1 | 1.5 | 1.8 | 2.2 | 2.6 | 2.7 | 2.9 | 3.0 | 3.2 | 3.3 | 3.4 | | | | | BEV 2 | 0.3 | 1.5 | 4.7 | 6.5 | 10.5 | 11.1 | 11.8 | 12.9 | 14.3 | 15.8 | 17.0 | | | | | BEV 3 | 0.3 | 0.6 | 0.6 | 1.9 | 3.1 | 3.4 | 3.8 | 4.6 | 5.5 | 6.4 | 7.1 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5-Speed Automatic | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 7 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 32 | 32 | 30 | 25 | 22 | 16 | 13 | 10 | 8 | 8 | 7 | | | | | 9-Speed Automatic | 15 | 11 | 10 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 18 | 22 | 22 | 24 | 26 | 20 | 17 | 15 | 16 | 12 | 9 | | | | | DCT Transmissions | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | | | | CVT Transmissions | 12 | 13 | 13 | 13 | 12 | 10 | 8 | 7 | 7 | 7 | 6 | | | | | | | | | | | | • | | | | | | | | Table 451 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC1LT3 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC1LT3 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression Engines | 17 | 20 | 23 | 26 | 29 | 28 | 30 | 29 | 28 | 27 | 26 | | | | | Cylinder Deactivation | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 32 | 31 | 27 | 26 | 21 | 20 | 18 | 15 | 14 | 12 | 12 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 38 | 36 | 33 | 32 | 26 | 23 | 21 | 18 | 17 | 15 | 15 | | | | | Mild Hybrid Powertrains | 2.1 | 2.1 | 1.7 | 2.2 | 1.8 | 1.8 | 1.8 | 4.1 | 4.1 | 3.5 | 3.4 | | | | | Strong Hybrid Powertrains Total | 5.4 | 4.6 | 5.9 | 8.4 | 11.3 | 14.3 | 15.7 | 16.0 | 15.4 | 16.1 | 16.1 | | | | | Plug-In Hybrid Powertrains | 1.2 | 0.6 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 12.4 | 17.4 | 22.8 | 24.4 | 31.1 | 32.0 | 33.4 | 35.6 | 38.1 | 40.5 | 42.2 | | | | | BEV 1 | 0.6 | 4.8 | 5.6 | 5.7 | 8.7 | 9.3 | 10.0 | 10.9 | 12.0 | 13.0 | 13.7 | | | | | BEV 2 | 3.8 | 4.5 | 9.1 | 10.4 | 13.5 | 13.7 | 14.2 | 14.9 | 15.9 | 16.8 | 17.4 | | | | | BEV 3 | 5.6 | 5.7 | 5.7 | 5.9 | 6.5 | 6.6 | 6.8 | 7.3 | 7.8 | 8.3 | 8.7 | | | | | BEV 4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | Fuel Cell Vehicles (FCVs) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 23 | 23 | 20 | 19 | 16 | 12 | 9 | 7 | 7 | 7 | 6 | | | | | 9-Speed Automatic | 4 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 3 | 3 | 5 | 7 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | | | | | DCT Transmissions | 7 | 7 | 6 | 5 | 4 | 3 | 3 | 3 | 3 | 3 | 2 | | | | | CVT Transmissions | 40 | 38 | 36 | 35 | 32 | 33 | 34 | 33 | 31 | 30 | 29 | | | | | | | • | • | • | • | • | • | • | • | • | | | | | Table 452 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC1LT3 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC1LT3 Model Year 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression Engines | 11 | 15 | 19 | 24 | 28 | 27 | 32 | 30 | 29 | 28 | 27 | | | | | Cylinder Deactivation | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 29 | 29 | 25 | 26 | 23 | 20 | 19 | 14 | 14 | 12 | 11 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 35 | 34 | 32 | 31 | 27 | 23 | 22 | 17 | 16 | 14 | 14 | | | | | Mild Hybrid Powertrains | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.7 | 0.7 | 4.9 | 4.9 | 4.9 | 4.8 | | | | | Strong Hybrid Powertrains Total | 3.1 | 1.7 | 3.1 | 6.3 | 8.3 | 11.5 | 11.3 | 11.7 | 11.3 | 12.3 | 12.9 | | | | | Plug-In Hybrid Powertrains | 0.7 | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 17.0 | 20.6 | 27.3 | 29.4 | 34.9 | 36.1 | 37.4 | 39.3 | 41.5 | 43.5 | 45.1 | | | | | BEV 1 | 0.3 | 3.4 | 4.0 | 4.0 | 6.4 | 7.1 | 7.9 | 8.8 | 9.7 | 10.6 | 11.3 | | | | | BEV 2 | 1.4 | 1.8 | 8.0 | 9.8 | 12.5 | 12.9 | 13.4 | 14.2 | 15.1 | 16.0 | 16.7 | | | | | BEV 3 | 10.5 | 10.6 | 10.6 | 10.8 | 11.1 | 11.2 | 11.3 | 11.5 | 11.8 | 12.1 | 12.3 | | | | | BEV 4 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 6 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 18 | 17 | 14 | 14 | 13 | 7 | 6 | 5 | 5 | 4 | 3 | | | | | 9-Speed Automatic | 3 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 5 | 5 | 8 | 8 | 8 | 7 | 8 | 9 | 9 | 8 | 7 | | | | | DCT Transmissions | 3 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | CVT Transmissions | 45 | 43 | 40 | 39 | 35 | 37 | 36 | 35 | 33 | 32 | 31 | | | | | | • | • | • | • | • | • | • | • | • | • | | | | | Table 453 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC1LT3 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC1LT3 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression Engines | 23 | 25 | 28 | 28 | 30 | 30 | 29 | 27 | 26 | 26 | 26 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 34 | 32 | 28 | 26 | 20 | 20 | 17 | 15 | 15 | 13 | 12 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 40 | 38 | 35 | 32 | 24 | 23 | 20 | 18 | 17 | 17 | 16 | | | | | Mild Hybrid Powertrains | 3.7 | 3.7 | 2.9 | 3.9 | 3.2 | 2.9 | 2.8 | 3.4 | 3.4 | 2.1 | 2.1 | | | | | Strong Hybrid Powertrains Total | 7.6 | 7.4 | 8.7 | 10.4 | 14.3 | 17.0 | 20.0 | 20.2 | 19.4 | 19.8 | 19.3 | | | | | Plug-In Hybrid Powertrains | 1.7 | 0.4 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 7.9 | 14.3 | 18.4 | 19.5 | 27.4 | 28.0 | 29.5 | 32.0 | 34.9 | 37.5 | 39.5 | | | | | BEV 1 | 1.0 | 6.2 | 7.2 | 7.3 | 11.0 | 11.4 | 12.1 | 13.1 | 14.2 | 15.2 | 16.0 | | | | | BEV 2 | 6.1 | 7.2 | 10.2 | 11.1 | 14.4 | 14.6 | 14.9 | 15.7 | 16.7 | 17.5 | 18.2 | | | | | BEV 3 | 0.9 | 0.9 | 0.9 | 1.1 | 1.9 | 2.1 | 2.4 | 3.1 | 3.9 | 4.6 | 5.1 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | | | | | Fuel Cell Vehicles (FCVs) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | i del dell' vernelee (i e ve) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 3 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 28 | 28 | 26 | 24 | 19 | 17 | 12 | 10 | 10 | 9 | 9 | | | | | 9-Speed Automatic | 5 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 1 | 3 | 5 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | | | | | DCT Transmissions | 11 | 10 | 9 | 9 | 7 | 6 | 5 | 5 | 5 | 5 | 4 | | | | | CVT Transmissions | 35 | 33 | 32 | 32 | 29 | 29 | 31 | 31 | 30 | 27 | 27 | | | | | | - | - | • | | | • | | • | • | • | | | | | Table 454 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetrati | on Rate | (%) by | Model
PC2L | | r Manu | facture | r (Tota | l) Total | Fleet, | Alterna | itive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 11 | 12 | 17 | 20 | 20 | 20 | 19 | 18 | 17 | 16 | 13 | | Cylinder Deactivation | 5 | 4 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 32 | 32 | 31 | 30 | 28 | 22 | 19 | 16 | 14 | 11 | 10 | | Variable Geometry Turbo | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 53 | 52 | 48 | 42 | 37 | 29 | 23 | 19 | 17 | 14 | 11 | | Mild Hybrid Powertrains | 3.6 | 3.7 | 2.3 | 2.2 | 1.9 | 1.8 | 1.8 | 1.3 | 1.1 | 0.9 | 0.6 | | Strong Hybrid Powertrains Total | 6.9 | 7.0 | 11.4 | 17.2 | 18.8 | 27.5 | 32.6 | 35.5 | 36.2 | 35.6 | 36.9 | | Plug-In Hybrid Powertrains | 1.7 | 1.4 | 1.4 | 0.3 | 0.3 | 2.0 | 2.5 | 3.9 | 4.1 | 6.4 | 7.5 | | Battery Electric Vehicles (BEVs) | 5.2 | 8.5 | 12.5 | 15.1 | 21.0 | 21.9 | 23.2 | 25.2 | 27.8 | 30.3 | 32.3 | | BEV 1 | 0.3 | 2.7 | 3.1 | 3.3 | 4.6 | 4.8 | 5.1 | 5.5 | 6.0 | 6.4 | 6.7 | | BEV 2 | 1.6 | 2.6 | 6.2 | 7.8 | 11.5 | 11.9 | 12.5 | 13.5 | 14.8 | 16.1 | 17.1 | | BEV 3 | 2.3 | 2.4 | 2.3 | 3.2 | 4.2 | 4.4 | 4.8 | 5.4 | 6.2 | 7.0 | 7.6 | | BEV 4 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 6 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 29 | 29 | 26 | 23 | 20 | 14 | 11 | 8 | 6 | 6 | 5 | | 9-Speed Automatic | 11 | 8 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 12 | 15 | 16 | 18 | 19 | 15 | 13 | 11 | 10 | 8 | 5 | | DCT Transmissions | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | | CVT Transmissions | 23 | 22 | 21 | 20 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | Table 455 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC2LT4 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC2LT4 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression Engines | 17 | 20 | 23 | 26 | 29 | 28 | 30 | 28 | 26 | 26 | 25 | | | | | Cylinder Deactivation | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 32 | 31 | 27 | 26 | 21 | 19 | 17 | 14 | 13 | 11 | 10 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 38 | 36 | 33 | 32 | 26 | 22 | 19 | 16 | 15 | 15 | 14 | | | | | Mild Hybrid Powertrains | 2.1 | 2.1 | 1.7 | 2.2 | 1.8 | 1.6 | 1.5 | 1.5 | 0.9 | 0.4 | 0.3 | | | | | Strong Hybrid Powertrains Total | 5.4 | 4.6 | 5.9 | 8.4 | 11.3 | 15.5 | 17.5 | 20.7 | 20.6 | 20.6 | 20.6 | | | | | Plug-In Hybrid Powertrains | 1.2 | 0.6 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 12.4 | 17.4 | 22.8 | 24.4 | 31.1 | 32.0 | 33.4 | 35.6 | 38.1 | 40.5 | 42.2 | | | | | BEV 1 | 0.6 | 4.8 | 5.6 | 5.7 | 8.7 | 9.3 | 10.0 | 10.9 | 12.0 | 13.0 | 13.7 | | | | | BEV 2 | 3.8 | 4.5 | 9.1 | 10.4 | 13.5 | 13.7 | 14.2 | 14.9 | 15.9 | 16.8 | 17.4 | | | | | BEV 3 | 5.6 | 5.7 | 5.7 | 5.9 | 6.5 | 6.6 | 6.8 | 7.3 | 7.8 | 8.3 | 8.7 | | | | | BEV 4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | Fuel Cell Vehicles (FCVs) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 23 | 23 | 20 | 19 | 16 | 11 | 7 | 5 | 5 | 3 | 3 | | | | | 9-Speed Automatic | 4 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 3 | 3 | 5 | 7 | 5 | 5 | 5 | 3 | 3 | 5 | 4 | | | | | DCT Transmissions | 7 | 7 | 6 | 5 | 4 | 3 | 3 | 3 | 3 | 3 | 2 | | | | | CVT Transmissions | 40 | 38 | 36 | 35 | 32 | 33 | 34 | 32 | 30 | 28 | 27 | | | | | | | • | • | • | • | • | • | • | • | • | | | | | Table 456 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC2LT4 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC2LT4 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression
Engines | 7 | 8 | 13 | 17 | 16 | 16 | 14 | 13 | 12 | 11 | 7 | | | | | Cylinder Deactivation | 8 | 6 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 32 | 34 | 33 | 33 | 31 | 24 | 20 | 17 | 15 | 11 | 9 | | | | | Variable Geometry Turbo | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 62 | 60 | 55 | 47 | 42 | 32 | 25 | 20 | 18 | 14 | 9 | | | | | Mild Hybrid Powertrains | 4.6 | 4.6 | 2.6 | 2.2 | 1.9 | 1.9 | 2.0 | 1.2 | 1.1 | 1.1 | 0.8 | | | | | Strong Hybrid Powertrains Total | 7.8 | 8.3 | 14.3 | 21.5 | 22.3 | 33.1 | 39.5 | 42.2 | 43.4 | 42.6 | 44.6 | | | | | Plug-In Hybrid Powertrains | 2.0 | 1.9 | 1.9 | 0.4 | 0.4 | 2.9 | 3.6 | 5.7 | 6.1 | 9.4 | 11.0 | | | | | Battery Electric Vehicles (BEVs) | 0.7 | 3.5 | 7.1 | 10.5 | 16.2 | 17.2 | 18.5 | 20.4 | 23.0 | 25.5 | 27.5 | | | | | BEV 1 | 0.1 | 1.5 | 1.8 | 2.2 | 2.6 | 2.7 | 2.9 | 3.0 | 3.2 | 3.3 | 3.4 | | | | | BEV 2 | 0.3 | 1.5 | 4.7 | 6.5 | 10.5 | 11.1 | 11.8 | 12.9 | 14.3 | 15.8 | 17.0 | | | | | BEV 3 | 0.3 | 0.6 | 0.6 | 1.9 | 3.1 | 3.4 | 3.8 | 4.6 | 5.5 | 6.4 | 7.1 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 5-Speed Automatic | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 7 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 32 | 32 | 30 | 25 | 22 | 16 | 13 | 10 | 7 | 7 | 6 | | | | | 9-Speed Automatic | 15 | 11 | 10 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 18 | 22 | 22 | 24 | 26 | 20 | 17 | 14 | 13 | 10 | 6 | | | | | DCT Transmissions | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | | | | CVT Transmissions | 12 | 13 | 13 | 13 | 12 | 10 | 8 | 7 | 7 | 6 | 5 | | | | Table 457 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC2LT4 | Powertrain Technology Penetra | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC2LT4 Model Year 202 202 202 202 202 202 202 202 203 203 | | | | | | | | | | | | | | | |-------------------------------------|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--
--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | | Non-Hybrid High Compression Engines | 11 | 15 | 19 | 24 | 28 | 27 | 32 | 30 | 29 | 28 | 27 | | | | | | Cylinder Deactivation | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Non-Hybrid Turbocharged Engines | 29 | 29 | 25 | 26 | 23 | 17 | 17 | 12 | 12 | 11 | 10 | | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 12V Stop-Start (non-hybrid) | 35 | 34 | 32 | 31 | 27 | 21 | 20 | 15 | 14 | 14 | 13 | | | | | | Mild Hybrid Powertrains | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | | | | | | Strong Hybrid Powertrains Total | 3.1 | 1.7 | 3.1 | 6.3 | 8.3 | 13.9 | 13.7 | 18.3 | 17.9 | 17.7 | 18.2 | | | | | | Plug-In Hybrid Powertrains | 0.7 | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Battery Electric Vehicles (BEVs) | 17.0 | 20.6 | 27.3 | 29.4 | 34.9 | 36.1 | 37.4 | 39.3 | 41.5 | 43.5 | 45.1 | | | | | | BEV 1 | 0.3 | 3.4 | 4.0 | 4.0 | 6.4 | 7.1 | 7.9 | 8.8 | 9.7 | 10.6 | 11.3 | | | | | | BEV 2 | 1.4 | 1.8 | 8.0 | 9.8 | 12.5 | 12.9 | 13.4 | 14.2 | 15.1 | 16.0 | 16.7 | | | | | | BEV 3 | 10.5 | 10.6 | 10.6 | 10.8 | 11.1 | 11.2 | 11.3 | 11.5 | 11.8 | 12.1 | 12.3 | | | | | | BEV 4 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 6-Speed Automatic | 6 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 8-Speed Automatic | 18 | 17 | 14 | 14 | 13 | 5 | 4 | 2 | 2 | 2 | 1 | | | | | | 9-Speed Automatic | 3 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 10-Speed Automatic | 5 | 5 | 8 | 8 | 8 | 7 | 8 | 5 | 5 | 5 | 4 | | | | | | DCT Transmissions | 3 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | CVT Transmissions | 45 | 43 | 40 | 39 | 35 | 37 | 36 | 35 | 33 | 32 | 31 | | | | | | | • | • | • | • | • | • | • | • | • | • | | | | | | Table 458 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC2LT4 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC2LT4 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression Engines | 23 | 25 | 28 | 28 | 30 | 30 | 28 | 25 | 24 | 24 | 23 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 34 | 32 | 28 | 26 | 20 | 20 | 17 | 15 | 13 | 12 | 11 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 40 | 38 | 35 | 32 | 24 | 23 | 18 | 17 | 16 | 16 | 15 | | | | | Mild Hybrid Powertrains | 3.7 | 3.7 | 2.9 | 3.9 | 3.2 | 2.9 | 2.6 | 2.6 | 1.5 | 0.5 | 0.5 | | | | | Strong Hybrid Powertrains Total | 7.6 | 7.4 | 8.7 | 10.4 | 14.3 | 17.0 | 21.3 | 23.0 | 23.1 | 23.5 | 23.0 | | | | | Plug-In Hybrid Powertrains | 1.7 | 0.4 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 7.9 | 14.3 | 18.4 | 19.5 | 27.4 | 28.0 | 29.5 | 32.0 | 34.9 | 37.5 | 39.5 | | | | | BEV 1 | 1.0 | 6.2 | 7.2 | 7.3 | 11.0 | 11.4 | 12.1 | 13.1 | 14.2 | 15.2 | 16.0 | | | | | BEV 2 | 6.1 | 7.2 | 10.2 | 11.1 | 14.4 | 14.6 | 14.9 | 15.7 | 16.7 | 17.5 | 18.2 | | | | | BEV 3 | 0.9 | 0.9 | 0.9 | 1.1 | 1.9 | 2.1 | 2.4 | 3.1 | 3.9 | 4.6 | 5.1 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | | | | | Fuel Cell Vehicles (FCVs) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 28 | 28 | 26 | 24 | 19 | 17 | 10 | 8 | 8 | 5 | 4 | | | | | 9-Speed Automatic | 5 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 1 | 3 | 5 | 3 | 3 | 3 | 2 | 2 | 4 | 5 | | | | | DCT Transmissions | 11 | 10 | 9 | 9 | 7 | 6 | 5 | 5 | 5 | 5 | 4 | | | | | CVT Transmissions | 35 | 33 | 32 | 32 | 29 | 29 | 31 | 30 | 27 | 25 | 24 | | | | | | -0 | | <u> </u> | <u> </u> | | | l ~ . | | l | | | | | | Table 459 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetrati | on Rate | (%) by | Model
PC3L | | r Manu | facture | r (Tota | I) Total | Fleet, | Alterna | ntive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 11 | 12 | 17 | 20 | 20 | 20 | 18 | 17 | 15 | 15 | 11 | | Cylinder Deactivation | 5 | 4 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 32 | 32 | 31 | 30 | 28 | 22 | 19 | 15 | 12 | 9 | 7 | | Variable Geometry Turbo | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 53 | 52 | 48 | 42 | 37 | 29 | 22 | 18 | 15 | 11 | 8 | | Mild Hybrid Powertrains | 3.6 | 3.7 | 2.3 | 2.2 | 1.9 | 1.8 | 2.0 | 1.4 | 1.5 | 1.6 | 1.3 | | Strong Hybrid Powertrains Total | 6.9 | 7.0 | 11.4 | 17.2 | 18.8 | 27.5 | 34.1 | 37.2 | 39.2 | 39.2 | 40.7 | | Plug-In Hybrid Powertrains | 1.7 | 1.4 | 1.4 | 0.3 | 0.3 | 2.0 | 2.0 | 3.6 | 3.9 | 6.3 | 7.9 | | Battery Electric Vehicles (BEVs) | 5.2 | 8.5 | 12.5 | 15.1 | 21.0 | 21.9 | 23.2 | 25.2 | 27.8 | 30.3 | 32.3 | | BEV 1 | 0.3 | 2.7 | 3.1 | 3.3 | 4.6 | 4.8 | 5.1 | 5.5 | 6.0 | 6.4 | 6.7 | | BEV 2 | 1.6 | 2.6 | 6.2 | 7.8 | 11.5 | 11.9 | 12.5 | 13.5 | 14.8 | 16.1 | 17.1 | | BEV 3 | 2.3 | 2.4 | 2.3 | 3.2 | 4.2 | 4.4 | 4.8 | 5.4 | 6.2 | 7.0 | 7.6 | | BEV 4 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 6 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 29 | 29 | 26 | 23 | 20 | 14 | 8 | 4 | 1 | 1 | 1 | | 9-Speed Automatic | 11 | 8 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 12 | 15 | 16 | 18 | 19 | 15 | 14 | 13 | 12 | 8 | 5 | | DCT Transmissions | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | | CVT Transmissions | 23 | 22 | 21 | 20 | 18 | 17 | 17 | 16 | 15 | 14 | 13 | Table 460 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC3LT5 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC3LT5 Model Year 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression Engines | 17 | 20 | 23 | 26 | 29 | 28 | 29 | 26 | 24 | 23 | 23 | | | | | Cylinder Deactivation | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 32 | 31 | 27 | 26 | 21 | 19 | 16 | 14 | 12 | 9 | 8 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 38 | 36 | 33 | 32 | 26 | 22 | 17 | 14 | 13 | 12 | 10 | | | | | Mild Hybrid Powertrains | 2.1 | 2.1 | 1.7 | 2.2 | 1.8 | 1.6 | 2.3 | 2.3 | 2.7 | 2.7 | 3.6 | | | | | Strong Hybrid Powertrains Total | 5.4 | 4.6 | 5.9 |
8.4 | 11.3 | 15.5 | 18.6 | 22.1 | 23.2 | 24.8 | 25.1 | | | | | Plug-In Hybrid Powertrains | 1.2 | 0.6 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | | | | | Battery Electric Vehicles (BEVs) | 12.4 | 17.4 | 22.8 | 24.4 | 31.1 | 32.0 | 33.4 | 35.6 | 38.1 | 40.5 | 42.2 | | | | | BEV 1 | 0.6 | 4.8 | 5.6 | 5.7 | 8.7 | 9.3 | 10.0 | 10.9 | 12.0 | 13.0 | 13.7 | | | | | BEV 2 | 3.8 | 4.5 | 9.1 | 10.4 | 13.5 | 13.7 | 14.2 | 14.9 | 15.9 | 16.8 | 17.4 | | | | | BEV 3 | 5.6 | 5.7 | 5.7 | 5.9 | 6.5 | 6.6 | 6.8 | 7.3 | 7.8 | 8.3 | 8.7 | | | | | BEV 4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | Fuel Cell Vehicles (FCVs) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 23 | 23 | 20 | 19 | 16 | 11 | 5 | 3 | 1 | 1 | 0 | | | | | 9-Speed Automatic | 4 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 3 | 3 | 5 | 7 | 5 | 5 | 6 | 4 | 5 | 4 | 4 | | | | | DCT Transmissions | 7 | 7 | 6 | 5 | 4 | 3 | 3 | 3 | 3 | 3 | 2 | | | | | CVT Transmissions | 40 | 38 | 36 | 35 | 32 | 33 | 33 | 32 | 29 | 27 | 26 | | | | | | | | • | | • | • | • | | | | | | | | Table 461 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC3LT5 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC3LT5 Model Year 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression
Engines | 7 | 8 | 13 | 17 | 16 | 16 | 14 | 12 | 11 | 10 | 6 | | | | | Cylinder Deactivation | 8 | 6 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 32 | 34 | 33 | 33 | 31 | 24 | 19 | 16 | 12 | 8 | 7 | | | | | Variable Geometry Turbo | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 62 | 60 | 55 | 47 | 42 | 32 | 24 | 19 | 16 | 11 | 7 | | | | | Mild Hybrid Powertrains | 4.6 | 4.6 | 2.6 | 2.2 | 1.9 | 1.9 | 1.9 | 1.1 | 1.0 | 1.0 | 0.2 | | | | | Strong Hybrid Powertrains Total | 7.8 | 8.3 | 14.3 | 21.5 | 22.3 | 33.1 | 41.3 | 44.1 | 46.6 | 45.9 | 48.2 | | | | | Plug-In Hybrid Powertrains | 2.0 | 1.9 | 1.9 | 0.4 | 0.4 | 2.9 | 2.9 | 5.3 | 5.6 | 9.3 | 11.6 | | | | | Battery Electric Vehicles (BEVs) | 0.7 | 3.5 | 7.1 | 10.5 | 16.2 | 17.2 | 18.5 | 20.5 | 23.0 | 25.5 | 27.5 | | | | | BEV 1 | 0.1 | 1.5 | 1.8 | 2.2 | 2.6 | 2.7 | 2.9 | 3.0 | 3.2 | 3.3 | 3.4 | | | | | BEV 2 | 0.3 | 1.5 | 4.7 | 6.5 | 10.5 | 11.1 | 11.8 | 12.9 | 14.3 | 15.8 | 16.9 | | | | | BEV 3 | 0.3 | 0.6 | 0.6 | 1.9 | 3.1 | 3.4 | 3.8 | 4.6 | 5.5 | 6.4 | 7.1 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 5-Speed Automatic | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 7 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 32 | 32 | 30 | 25 | 22 | 16 | 9 | 4 | 1 | 1 | 1 | | | | | 9-Speed Automatic | 15 | 11 | 10 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 18 | 22 | 22 | 24 | 26 | 20 | 18 | 17 | 14 | 10 | 6 | | | | | DCT Transmissions | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | | | | CVT Transmissions | 12 | 13 | 13 | 13 | 12 | 10 | 10 | 9 | 9 | 8 | 6 | | | | Table 462 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC3LT5 | Powertrain Technology Penetra | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC3LT5 Model Year 202 202 202 202 202 202 202 202 203 203 | | | | | | | | | | | | | | | |-------------------------------------|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | | Non-Hybrid High Compression Engines | 11 | 15 | 19 | 24 | 28 | 27 | 32 | 30 | 26 | 25 | 25 | | | | | | Cylinder Deactivation | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Non-Hybrid Turbocharged Engines | 29 | 29 | 25 | 26 | 23 | 17 | 17 | 12 | 12 | 9 | 7 | | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 12V Stop-Start (non-hybrid) | 35 | 34 | 32 | 31 | 27 | 21 | 20 | 15 | 14 | 12 | 10 | | | | | | Mild Hybrid Powertrains | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 2.3 | 3.0 | 4.0 | | | | | | Strong Hybrid Powertrains Total | 3.1 | 1.7 | 3.1 | 6.3 | 8.3 | 13.9 | 13.7 | 19.0 | 20.3 | 22.2 | 22.9 | | | | | | Plug-In Hybrid Powertrains | 0.7 | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.2 | | | | | | Battery Electric Vehicles (BEVs) | 17.0 | 20.6 | 27.3 | 29.4 | 34.9 | 36.1 | 37.4 | 39.3 | 41.5 | 43.5 | 45.1 | | | | | | BEV 1 | 0.3 | 3.4 | 4.0 | 4.0 | 6.4 | 7.1 | 7.9 | 8.8 | 9.7 | 10.6 | 11.3 | | | | | | BEV 2 | 1.4 | 1.8 | 8.0 | 9.8 | 12.5 | 12.9 | 13.4 | 14.2 | 15.1 | 16.0 | 16.7 | | | | | | BEV 3 | 10.5 | 10.6 | 10.6 | 10.8 | 11.1 | 11.2 | 11.3 | 11.5 | 11.8 | 12.1 | 12.3 | | | | | | BEV 4 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 6-Speed Automatic | 6 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 8-Speed Automatic | 18 | 17 | 14 | 14 | 13 | 5 | 4 | 2 | 1 | 0 | 0 | | | | | | 9-Speed Automatic | 3 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 10-Speed Automatic | 5 | 5 | 8 | 8 | 8 | 7 | 8 | 5 | 5 | 3 | 2 | | | | | | DCT Transmissions | 3 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | CVT Transmissions | 45 | 43 | 40 | 39 | 35 | 37 | 36 | 34 | 32 | 30 | 29 | | | | | | | • | • | • | • | • | • | • | • | • | • | | | | | | Table 463 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC3LT5 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC3LT5 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression
Engines | 23 | 25 | 28 | 28 | 30 | 30 | 26 | 23 | 21 | 22 | 21 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 34 | 32 | 28 | 26 | 20 | 20 | 16 | 15 | 13 | 10 | 9 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 40 | 38 | 35 | 32 | 24 | 23 | 15 | 14 | 13 | 11 | 10 | | | | | Mild Hybrid Powertrains | 3.7 | 3.7 | 2.9 | 3.9 | 3.2 | 2.9 | 4.3 | 4.2 | 3.1 | 2.5 | 3.2 | | | | | Strong Hybrid Powertrains Total | 7.6 | 7.4 | 8.7 | 10.4 | 14.3 | 17.0 | 23.5 | 25.1 | 26.1 | 27.4 | 27.2 | | | | | Plug-In Hybrid Powertrains | 1.7 | 0.4 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 7.9 | 14.3 | 18.4 | 19.5 | 27.4 | 28.0 | 29.5 | 32.0 | 34.9 | 37.5 | 39.5 | | | | | BEV 1 | 1.0 | 6.2 | 7.2 | 7.3 | 11.0 | 11.4 | 12.1 | 13.1 | 14.2 | 15.2 | 16.0 | | | | | BEV 2 | 6.1 | 7.2 | 10.2 | 11.1 | 14.4 | 14.6 | 14.9 | 15.7 | 16.7 | 17.5 | 18.2 | | | | | BEV 3 | 0.9 | 0.9 | 0.9 | 1.1 | 1.9 | 2.1 | 2.4 | 3.1 | 3.9 | 4.6 | 5.1 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 |
0.1 | 0.2 | 0.2 | | | | | Fuel Cell Vehicles (FCVs) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 28 | 28 | 26 | 24 | 19 | 17 | 7 | 5 | 1 | 1 | 1 | | | | | 9-Speed Automatic | 5 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 1 | 3 | 5 | 3 | 3 | 4 | 4 | 6 | 5 | 5 | | | | | DCT Transmissions | 11 | 10 | 9 | 9 | 7 | 6 | 5 | 5 | 5 | 4 | 4 | | | | | CVT Transmissions | 35 | 33 | 32 | 32 | 29 | 29 | 31 | 29 | 27 | 24 | 23 | | | | Table 464 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetrati | on Rate | (%) by | Model
PC6L | | r Manu | facture | r (Tota | l) Total | Fleet, | Alterna | itive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 11 | 12 | 17 | 20 | 20 | 20 | 18 | 14 | 11 | 9 | 3 | | Cylinder Deactivation | 5 | 4 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 32 | 32 | 31 | 30 | 28 | 22 | 17 | 13 | 10 | 5 | 2 | | Variable Geometry Turbo | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 53 | 52 | 48 | 42 | 37 | 29 | 21 | 15 | 12 | 7 | 2 | | Mild Hybrid Powertrains | 3.6 | 3.7 | 2.3 | 2.2 | 1.9 | 1.8 | 1.8 | 1.2 | 1.0 | 0.8 | 0.4 | | Strong Hybrid Powertrains Total | 6.9 | 7.0 | 11.4 | 17.2 | 18.8 | 27.7 | 36.9 | 42.0 | 44.2 | 45.9 | 51.0 | | Plug-In Hybrid Powertrains | 1.7 | 1.4 | 1.4 | 0.3 | 0.3 | 2.0 | 2.1 | 4.5 | 6.7 | 9.6 | 11.9 | | Battery Electric Vehicles (BEVs) | 5.2 | 8.5 | 12.5 | 15.1 | 21.0 | 21.9 | 23.2 | 25.2 | 27.7 | 30.3 | 32.3 | | BEV 1 | 0.3 | 2.7 | 3.1 | 3.3 | 4.6 | 4.8 | 5.1 | 5.5 | 6.0 | 6.4 | 6.7 | | BEV 2 | 1.6 | 2.6 | 6.2 | 7.8 | 11.5 | 11.9 | 12.5 | 13.5 | 14.8 | 16.1 | 17.1 | | BEV 3 | 2.3 | 2.4 | 2.3 | 3.2 | 4.2 | 4.4 | 4.8 | 5.4 | 6.2 | 7.0 | 7.6 | | BEV 4 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 6 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 29 | 29 | 26 | 23 | 20 | 14 | 7 | 3 | 0 | 0 | 0 | | 9-Speed Automatic | 11 | 8 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 12 | 15 | 16 | 18 | 19 | 15 | 15 | 14 | 12 | 8 | 2 | | DCT Transmissions | 4 | 4 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | | CVT Transmissions | 23 | 22 | 21 | 20 | 18 | 17 | 15 | 11 | 8 | 6 | 3 | Table 465 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC6LT8 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC6LT8 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression Engines | 17 | 20 | 23 | 26 | 29 | 28 | 27 | 22 | 16 | 12 | 6 | | | | | Cylinder Deactivation | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 32 | 31 | 27 | 26 | 21 | 19 | 11 | 8 | 6 | 2 | 0 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 38 | 36 | 33 | 32 | 26 | 22 | 12 | 9 | 9 | 6 | 2 | | | | | Mild Hybrid Powertrains | 2.1 | 2.1 | 1.7 | 2.2 | 1.8 | 1.6 | 1.6 | 1.6 | 1.1 | 0.4 | 0.8 | | | | | Strong Hybrid Powertrains Total | 5.4 | 4.6 | 5.9 | 8.4 | 11.3 | 15.5 | 27.0 | 33.2 | 37.8 | 44.1 | 49.8 | | | | | Plug-In Hybrid Powertrains | 1.2 | 0.6 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.9 | 1.1 | 1.4 | | | | | Battery Electric Vehicles (BEVs) | 12.4 | 17.4 | 22.8 | 24.4 | 31.1 | 32.0 | 33.4 | 35.6 | 38.1 | 40.5 | 42.2 | | | | | BEV 1 | 0.6 | 4.8 | 5.6 | 5.7 | 8.7 | 9.3 | 10.0 | 10.9 | 12.0 | 13.0 | 13.7 | | | | | BEV 2 | 3.8 | 4.5 | 9.1 | 10.4 | 13.5 | 13.7 | 14.2 | 15.0 | 15.9 | 16.8 | 17.4 | | | | | BEV 3 | 5.6 | 5.7 | 5.7 | 5.9 | 6.5 | 6.6 | 6.8 | 7.3 | 7.8 | 8.3 | 8.7 | | | | | BEV 4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | Fuel Cell Vehicles (FCVs) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 23 | 23 | 20 | 19 | 16 | 11 | 5 | 3 | 1 | 0 | 0 | | | | | 9-Speed Automatic | 4 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 3 | 3 | 5 | 7 | 5 | 5 | 5 | 3 | 5 | 1 | 0 | | | | | DCT Transmissions | 7 | 7 | 6 | 5 | 4 | 3 | 2 | 2 | 1 | 1 | 0 | | | | | CVT Transmissions | 40 | 38 | 36 | 35 | 32 | 33 | 27 | 23 | 16 | 12 | 6 | | | | Table 466 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC6LT8 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC6LT8 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression
Engines | 7 | 8 | 13 | 17 | 16 | 15 | 13 | 10 | 8 | 7 | 1 | | | | | Cylinder Deactivation | 8 | 6 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 32 | 34 | 33 | 33 | 31 | 24 | 19 | 15 | 11 | 7 | 2 | | | | | Variable Geometry Turbo | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 62 | 60 | 55 | 47 | 42 | 32 | 24 | 18 | 13 | 7 | 2 | | | | | Mild Hybrid Powertrains | 4.6 | 4.6 | 2.6 | 2.2 | 1.9 | 1.9 | 1.9 | 1.1 | 1.0 | 1.0 | 0.2 | | | | | Strong Hybrid Powertrains Total | 7.8 | 8.3 | 14.3 | 21.5 | 22.3 | 33.4 | 41.4 | 46.0 | 47.1 | 46.8 | 51.6 | | | | | Plug-In Hybrid Powertrains | 2.0 | 1.9 | 1.9 | 0.4 | 0.4 | 2.9 | 3.0 | 6.4 | 9.4 | 13.6 | 16.9 | | | | | Battery Electric Vehicles (BEVs) | 0.7 | 3.5 | 7.1 | 10.5 | 16.2 | 17.2 | 18.5 | 20.5 | 23.0 | 25.5 | 27.5 | | | | | BEV 1 | 0.1 | 1.5 | 1.8 | 2.2 | 2.6 | 2.7 | 2.9 | 3.0 | 3.2 | 3.3 | 3.4 | | | | | BEV 2 | 0.3 | 1.5 | 4.7 | 6.5 | 10.5 | 11.1 | 11.8 | 12.9 | 14.3 | 15.8 | 17.0 | | | | | BEV 3 | 0.3 | 0.6 | 0.6 | 1.9 | 3.1 | 3.4 | 3.8 | 4.6 | 5.5 | 6.4 | 7.1 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 5-Speed Automatic | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 7 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 32 | 32 | 30 | 25 | 22 | 16 | 8 | 2 | 0 | 0 | 0 | | | | | 9-Speed Automatic | 15 | 11 | 10 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 18 | 22 | 22 | 24 | 26 | 20 | 20 | 18 | 16 | 11 | 3 | | | | | DCT Transmissions | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | | | | CVT Transmissions | 12 | 13 | 13 | 13 | 12 | 10 | 9 | 6 | 4 | 3 | 1 | | | | Table 467 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC6LT8 | Powertrain Technology Penetra | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC6LT8 Model Year 202 202 202 202 202 202 202 202 203 203 | | | | | | | | | | | | | | | |-------------------------------------
---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | | Non-Hybrid High Compression Engines | 11 | 15 | 19 | 24 | 28 | 27 | 31 | 23 | 14 | 10 | 6 | | | | | | Cylinder Deactivation | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Non-Hybrid Turbocharged Engines | 29 | 29 | 25 | 26 | 23 | 17 | 8 | 4 | 4 | 1 | 1 | | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 12V Stop-Start (non-hybrid) | 35 | 34 | 32 | 31 | 27 | 21 | 12 | 7 | 8 | 6 | 5 | | | | | | Mild Hybrid Powertrains | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 1.4 | | | | | | Strong Hybrid Powertrains Total | 3.1 | 1.7 | 3.1 | 6.3 | 8.3 | 13.9 | 23.3 | 33.3 | 39.4 | 44.2 | 47.8 | | | | | | Plug-In Hybrid Powertrains | 0.7 | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.9 | 0.9 | | | | | | Battery Electric Vehicles (BEVs) | 17.0 | 20.6 | 27.3 | 29.4 | 34.9 | 36.1 | 37.4 | 39.3 | 41.5 | 43.5 | 45.1 | | | | | | BEV 1 | 0.3 | 3.4 | 4.0 | 4.0 | 6.4 | 7.1 | 7.9 | 8.8 | 9.7 | 10.6 | 11.3 | | | | | | BEV 2 | 1.4 | 1.8 | 8.0 | 9.8 | 12.5 | 12.9 | 13.4 | 14.2 | 15.1 | 16.0 | 16.7 | | | | | | BEV 3 | 10.5 | 10.6 | 10.6 | 10.8 | 11.1 | 11.2 | 11.3 | 11.5 | 11.8 | 12.1 | 12.3 | | | | | | BEV 4 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 6-Speed Automatic | 6 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 8-Speed Automatic | 18 | 17 | 14 | 14 | 13 | 5 | 4 | 2 | 1 | 0 | 0 | | | | | | 9-Speed Automatic | 3 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 10-Speed Automatic | 5 | 5 | 8 | 8 | 8 | 7 | 7 | 4 | 4 | 2 | 0 | | | | | | DCT Transmissions | 3 | 3 | 3 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | | | | | CVT Transmissions | 45 | 43 | 40 | 39 | 35 | 37 | 28 | 21 | 13 | 9 | 6 | Table 468 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC6LT8 | Powertrain Technology Penetra | ation Ra | | | el Year
PC6L1 | | nufactu | ırer (To | tal) lmp | orted (| Car Fle | et, | |-------------------------------------|----------|----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 23 | 25 | 28 | 28 | 30 | 30 | 24 | 21 | 18 | 14 | 6 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 34 | 32 | 28 | 26 | 20 | 20 | 14 | 12 | 8 | 3 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 40 | 38 | 35 | 32 | 24 | 23 | 13 | 12 | 10 | 6 | 0 | | Mild Hybrid Powertrains | 3.7 | 3.7 | 2.9 | 3.9 | 3.2 | 2.9 | 3.0 | 2.9 | 1.9 | 0.6 | 0.3 | | Strong Hybrid Powertrains Total | 7.6 | 7.4 | 8.7 | 10.4 | 14.3 | 17.0 | 30.7 | 33.0 | 36.1 | 43.9 | 51.8 | | Plug-In Hybrid Powertrains | 1.7 | 0.4 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.9 | 1.2 | 1.8 | | Battery Electric Vehicles (BEVs) | 7.9 | 14.3 | 18.4 | 19.5 | 27.4 | 28.0 | 29.5 | 32.0 | 34.9 | 37.5 | 39.5 | | BEV 1 | 1.0 | 6.2 | 7.2 | 7.3 | 11.0 | 11.4 | 12.1 | 13.1 | 14.2 | 15.2 | 16.0 | | BEV 2 | 6.1 | 7.2 | 10.2 | 11.1 | 14.4 | 14.6 | 14.9 | 15.7 | 16.7 | 17.5 | 18.2 | | BEV 3 | 0.9 | 0.9 | 0.9 | 1.1 | 1.9 | 2.1 | 2.4 | 3.1 | 3.9 | 4.6 | 5.1 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 28 | 28 | 26 | 24 | 19 | 17 | 7 | 4 | 0 | 0 | 0 | | 9-Speed Automatic | 5 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 1 | 3 | 5 | 3 | 3 | 4 | 3 | 5 | 1 | 0 | | DCT Transmissions | 11 | 10 | 9 | 9 | 7 | 6 | 4 | 3 | 3 | 2 | 0 | | CVT Transmissions | 35 | 33 | 32 | 32 | 29 | 29 | 26 | 24 | 20 | 14 | 6 | | | | | | | | | | | | | | Table 469 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (BMW) Total Fleet, No Action Alternative (Baseline) | Model Year 202 2 3 2 202 2 3 2 4 2 202 5 6 7 8 8 9 9 0 0 1 1 Non-Hybrid High Compression Engines 0 | on | No Act | l Fleet, | V) Tota | er (BMV | ufacture | | | Model | | on Rate | Powertrain Technology Penetration | |---|----------|--------|----------|---------|---------|----------|------|------|-------|------|---------|-----------------------------------| | Engines 0 </th <th>203
2</th> <th></th> <th>Model Year</th> | 203
2 | | | | | | | | | | | Model Year | | Dynamic Cylinder Deactivation 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Non-Hybrid Turbocharged Engines 91 87 75 62 23 23 15 12 12 11 Variable Geometry Turbo 0 <td>0</td> <td>Cylinder Deactivation</td> | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Cylinder Deactivation | | Variable Geometry Turbo 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Dynamic Cylinder Deactivation | | Electric Variable Geometry Turbo 0 0 0 0 0 0 0 0 0 | 10 | 11 | 12 | 12 | 15 | 23 | 23 | 62 | 75 | 87 | 91 | Non-Hybrid Turbocharged Engines | | Diesel Engines 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Variable Geometry Turbo | | Compressed Natural Gas 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Electric Variable Geometry Turbo | | 12V Stop-Start (non-hybrid) 58 53 44 33 19 19 13 11 10 9 Mild Hybrid Powertrains 29.0 29.9 28.8 26.3 1.7 1.7 0.0 0.0 0.0 0.0 Strong Hybrid Powertrains 5.8 5.9 5.0 0.0
0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Diesel Engines | | Mild Hybrid Powertrains 29.0 29.9 28.8 26.3 1.7 1.7 0.0 0.0 0.0 0.0 Strong Hybrid Powertrains Total 0.0 0.0 2.1 15.7 53.6 53.8 58.5 57.2 53.4 50.2 Plug-In Hybrid Powertrains 5.8 5.9 5.0 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Compressed Natural Gas | | Strong Hybrid Powertrains Total 0.0 0.0 2.1 15.7 53.6 53.8 58.5 57.2 53.4 50.2 Plug-In Hybrid Powertrains 5.8 5.9 5.0 0.0 | 9 | 9 | 10 | 11 | 13 | 19 | 19 | 33 | 44 | 53 | 58 | 12V Stop-Start (non-hybrid) | | Plug-In Hybrid Powertrains 5.8 5.9 5.0 0.0 </td <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.7</td> <td>1.7</td> <td>26.3</td> <td>28.8</td> <td>29.9</td> <td>29.0</td> <td>Mild Hybrid Powertrains</td> | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 1.7 | 26.3 | 28.8 | 29.9 | 29.0 | Mild Hybrid Powertrains | | Battery Electric Vehicles (BEVs) 3.3 7.3 17.5 22.5 23.2 23.1 26.2 30.3 35.0 39.1 BEV 1 0.8 3.2 3.3 3.3 4.1 4.1 4.1 4.0 4.1 4.1 BEV 2 0.2 1.8 11.9 11.8 11.7 11.5 12.4 13.6 15.0 16.3 BEV 3 2.3 2.3 2.3 7.4 7.4 7.5 9.7 12.6 15.7 18.5 BEV 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 Electric Vehicles (FCVs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 47.6 | 50.2 | 53.4 | 57.2 | 58.5 | 53.8 | 53.6 | 15.7 | 2.1 | 0.0 | 0.0 | Strong Hybrid Powertrains Total | | BEV 1 0.8 3.2 3.3 3.3 4.1 4.1 4.0 4.1 4.1 BEV 2 0.2 1.8 11.9 11.8 11.7 11.5 12.4 13.6 15.0 16.3 BEV 3 2.3 2.3 2.3 7.4 7.4 7.5 9.7 12.6 15.7 18.5 BEV 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 Fuel Cell Vehicles (FCVs) 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 5.9 | 5.8 | Plug-In Hybrid Powertrains | | BEV 2 | 42.2 | 39.1 | 35.0 | 30.3 | 26.2 | 23.1 | 23.2 | 22.5 | 17.5 | 7.3 | 3.3 | Battery Electric Vehicles (BEVs) | | BEV 3 2.3 2.3 2.3 7.4 7.4 7.5 9.7 12.6 15.7 18.5 BEV 4 0.0 | 4.1 | 4.1 | 4.1 | 4.0 | 4.1 | 4.1 | 4.1 | 3.3 | 3.3 | 3.2 | 0.8 | BEV 1 | | BEV 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 Fuel Cell Vehicles (FCVs) 0.0 | 17.2 | 16.3 | 15.0 | 13.6 | 12.4 | 11.5 | 11.7 | 11.8 | 11.9 | 1.8 | 0.2 | BEV 2 | | Fuel Cell Vehicles (FCVs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | 20.5 | 18.5 | 15.7 | 12.6 | 9.7 | 7.5 | 7.4 | 7.4 | 2.3 | 2.3 | 2.3 | BEV 3 | | 5-Speed Automatic 0 | 0.3 | 0.2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | BEV 4 | | 5-Speed Automatic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | 6-Speed Automatic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Fuel Cell Vehicles (FCVs) | | 6-Speed Automatic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | 7-Speed Automatic 0 0 0 0 0 0 0 0 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5-Speed Automatic | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6-Speed Automatic | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7-Speed Automatic | | 8-Speed Automatic 85 74 62 45 15 10 9 8 8 | 7 | 8 | 8 | 9 | 10 | 15 | 15 | 45 | 62 | 74 | 85 | 8-Speed Automatic | | 9-Speed Automatic 0 0 0 0 0 0 0 0 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9-Speed Automatic | | 10-Speed Automatic 0 8 10 13 6 6 3 2 2 1 | 1 | 1 | 2 | 2 | 3 | 6 | 6 | 13 | 10 | 8 | 0 | 10-Speed Automatic | | DCT Transmissions 6 6 3 3 3 2 2 2 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | DCT Transmissions | | CVT Transmissions 0 0 0 0 0 0 0 0 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | CVT Transmissions | Table 470 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Ford) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetra | tion Rat | | y Mode
native | | | ufactur | er (For | d) Tota | l Fleet, | No Act | ion | |-------------------------------------|----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 74 | 70 | 62 | 62 | 58 | 45 | 45 | 38 | 38 | 37 | 37 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 73 | 68 | 62 | 62 | 57 | 43 | 43 | 37 | 37 | 36 | 35 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 8.6 | 8.6 | 10.6 | 10.5 | 10.5 | 32.6 | 32.3 | 38.3 | 38.2 | 37.3 | 36.4 | | Plug-In Hybrid Powertrains | 1.2 | 1.1 | 1.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.8 | 0.8 | 0.7 | 0.7 | | Battery Electric Vehicles (BEVs) | 2.9 | 7.5 | 14.7 | 15.6 | 20.2 | 20.1 | 20.1 | 20.1 | 20.1 | 22.1 | 23.9 | | BEV 1 | 0.5 | 3.1 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | BEV 2 | 1.4 | 3.6 | 10.8 | 11.5 | 16.1 | 16.0 | 16.0 | 16.0 | 16.0 | 17.5 | 18.8 | | BEV 3 | 1.0 | 0.9 | 0.8 | 1.1 | 1.1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.6 | 2.2 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 29 | 29 | 23 | 16 | 13 | 11 | 11 | 11 | 11 | 11 | 10 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 54 | 51 | 49 | 56 | 54 | 35 | 35 | 29 | 29 | 28 | 28 | | DCT Transmissions | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | Table 471 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (GM) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetra | ition Ra | | y Mode | | | nufactu | rer (GN | l) Total | Fleet, | No Acti | ion | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 1 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | Cylinder Deactivation | 4 | 4 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 47 | 46 | 35 | 33 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 5 | 5 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 82 | 82 | 66 | 43 | 36 | 27 | 27 | 27 | 27 | 27 | 26 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 1.3 | 2.9 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 5.3 | 24.7 | 28.2 | 39.1 | 39.1 | 39.1 | 39.1 | 22.6 | 22.6 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 2.1 | 2.1 | 3.0 | 3.0 | 3.0 | 3.0 | 19.4 | 19.3 | | Battery Electric Vehicles (BEVs) | 1.6 | 1.5 | 17.3 | 18.7 | 21.6 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.7 | | BEV 1 | 0.0 | 0.0 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7
 2.7 | | BEV 2 | 1.6 | 1.5 | 14.6 | 16.0 | 18.9 | 18.8 | 18.8 | 18.8 | 18.8 | 18.8 | 19.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 20 | 20 | 19 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | | 9-Speed Automatic | 22 | 22 | 18 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 28 | 28 | 35 | 30 | 29 | 18 | 19 | 19 | 19 | 19 | 19 | | DCT Transmissions | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 9 | 8 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 4 | 4 | Table 472 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Honda) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetrati | ion Rate | | | Year fo | | ıfacture | er (Hon | da) Tot | al Fleet | , No Ac | tion | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 2022 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 8 | 8 | 7 | 6 | 6 | 14 | 13 | 12 | 12 | 11 | | Cylinder Deactivation | 27 | 13 | 13 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 43 | 56 | 56 | 62 | 58 | 54 | 52 | 50 | 47 | 44 | 41 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 79 | 78 | 78 | 74 | 65 | 61 | 58 | 56 | 53 | 50 | 48 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 9.3 | 6.8 | 6.8 | 11.5 | 10.9 | 11.9 | 11.4 | 10.9 | 10.3 | 9.7 | 10.6 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 4.8 | 5.1 | 5.8 | 15.7 | 19.3 | 22.8 | 26.4 | 30.5 | 34.0 | 36.7 | | BEV 1 | 0.0 | 3.4 | 3.5 | 3.6 | 7.8 | 9.3 | 10.8 | 12.3 | 14.0 | 15.6 | 16.8 | | BEV 2 | 0.0 | 1.1 | 1.2 | 1.9 | 6.4 | 8.1 | 9.7 | 11.4 | 13.2 | 14.8 | 16.1 | | BEV 3 | 0.0 | 0.3 | 0.3 | 0.4 | 1.5 | 1.9 | 2.3 | 2.7 | 3.2 | 3.6 | 3.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 17 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 17 | 31 | 32 | 28 | 28 | 26 | 25 | 24 | 22 | 21 | 19 | | DCT Transmissions | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | CVT Transmissions | 55 | 52 | 51 | 50 | 45 | 42 | 40 | 38 | 36 | 34 | 33 | Table 473 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiH) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetrat | | e (%) by
Action A | | | | ufactur | er (Hyu | ndai Ki | iH) Tota | il Fleet, | , No | |--|------|----------------------|------|------|------|---------|---------|---------|----------|-----------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 59 | 59 | 59 | 54 | 46 | 46 | 45 | 44 | 42 | 40 | 39 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 19 | 18 | 18 | 15 | 11 | 9 | 8 | 8 | 8 | 7 | 7 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 68 | 68 | 68 | 60 | 43 | 40 | 39 | 38 | 36 | 34 | 33 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 7.2 | 7.3 | 7.3 | 7.0 | 6.7 | 6.4 | 6.2 | | Strong Hybrid Powertrains Total | 10.9 | 9.8 | 10.1 | 16.0 | 21.0 | 27.6 | 27.3 | 26.4 | 25.2 | 24.9 | 24.1 | | Plug-In Hybrid Powertrains | 1.9 | 1.7 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 3.3 | 7.0 | 6.8 | 11.2 | 17.9 | 17.8 | 18.6 | 21.5 | 24.8 | 27.8 | 30.0 | | BEV 1 | 0.2 | 4.0 | 3.9 | 3.7 | 4.4 | 4.4 | 4.7 | 6.1 | 7.7 | 9.1 | 10.2 | | BEV 2 | 2.1 | 2.1 | 2.0 | 6.5 | 12.3 | 12.3 | 12.6 | 13.7 | 14.9 | 15.9 | 16.7 | | BEV 3 | 1.0 | 1.0 | 1.0 | 0.9 | 1.2 | 1.1 | 1.3 | 1.7 | 2.2 | 2.7 | 3.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 50 | 42 | 40 | 32 | 25 | 25 | 24 | 23 | 22 | 22 | 21 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | | DCT Transmissions | 11 | 11 | 11 | 8 | 7 | 7 | 6 | 6 | 6 | 5 | 5 | | CVT Transmissions | 22 | 28 | 28 | 28 | 25 | 22 | 21 | 21 | 20 | 19 | 18 | Table 474 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiK) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetrat | | e (%) by
Action A | | | | ufactur | er (Hyu | ndai Ki | iK) Tota | l Fleet, | , No | |--|------|----------------------|------|------|------|---------|---------|---------|----------|----------|------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 45 | 57 | 58 | 59 | 50 | 50 | 50 | 54 | 52 | 50 | 49 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 24 | 23 | 19 | 19 | 17 | 17 | 17 | 17 | 17 | 16 | 16 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 32 | 32 | 30 | 30 | 27 | 27 | 27 | 27 | 26 | 25 | 24 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 0.9 | | Strong Hybrid Powertrains Total | 5.0 | 5.0 | 5.0 | 5.0 | 10.2 | 10.2 | 10.2 | 10.1 | 9.7 | 9.4 | 9.2 | | Plug-In Hybrid Powertrains | 3.0 | 1.6 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 4.4 | 6.1 | 11.4 | 12.8 | 18.3 | 18.3 | 18.3 | 19.2 | 22.1 | 24.7 | 26.7 | | BEV 1 | 0.0 | 1.9 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 3.0 | 3.9 | 4.7 | 5.3 | | BEV 2 | 3.7 | 3.5 | 7.9 | 9.4 | 14.9 | 14.9 | 14.9 | 15.4 | 17.2 | 18.8 | 20.0 | | BEV 3 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.9 | 1.2 | 1.3 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 34 | 47 | 39 | 39 | 22 | 22 | 22 | 22 | 21 | 21 | 20 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 9 | 9 | 9 | 9 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | CVT Transmissions | 32 | 31 | 34 | 34 | 42 | 42 | 42 | 41 | 40 | 38 | 37 | Table 475 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (JLR) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetrati | ion Rat | | y Mode
native (| | | ufactui | er (JLF | R) Total | Fleet, | No Acti | ion | |-------------------------------------|----------|----------|--------------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 47 | 39 | 35 | 35 | 27 | 27 | 27 | 26 | 25 | 19 | 18 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 52 | 31 | 27 | 27 | 10 | 10 | 10 | 9 | 9 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 46 | 38 | 34 | 34 | 27 | 27 | 27 | 26 | 25 | 19 |
18 | | Mild Hybrid Powertrains | 0.9 | 0.9 | 0.9 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 12.3 | 12.3 | 12.4 | 37.5 | 37.5 | 37.5 | 36.2 | 34.0 | 44.6 | 42.6 | | Plug-In Hybrid Powertrains | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.9 | 18.0 | 25.6 | 25.6 | 25.6 | 25.5 | 25.5 | 28.1 | 32.4 | 36.2 | 39.1 | | BEV 1 | 0.9 | 2.0 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.8 | 4.6 | 4.4 | 4.3 | | BEV 2 | 0.0 | 14.8 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.3 | 19.2 | 19.1 | 19.0 | | BEV 3 | 0.0 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 4.0 | 8.6 | 12.7 | 15.8 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 85 | 30 | 23 | 23 | 18 | 1 | 1 | 1 | 1 | 1 | 1 | | 9-Speed Automatic | 13 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 37 | 37 | 37 | 19 | 36 | 36 | 35 | 33 | 19 | 18 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 476 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Karma) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetra | tion Ra | | | el Year f
e (Base | | ufactur | er (Karı | ma) Tot | al Fleet | , No Ac | tion | |--|-----------|-----------|-----------|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 100.
0 | 100.
0 | 100.
0 | 100.
0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 0.0 | 0.0 | 0.0 | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | | BEV 2 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 477 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Lucid) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetra | tion Ra | | y Mode | | | nufactui | rer (Luc | id) Tota | al Fleet | , No Ac | tion | |--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 100.
0 | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 478 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mazda) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetrat | on Rate | | | Year fo
(Baseli | | ıfacture | er (Maz | da) Tot | al Fleet | , No Ac | tion | |--|----------|----------|----------|--------------------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 71 | 69 | 69 | 68 | 60 | 57 | 55 | 52 | 49 | 47 | 45 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 29 | 6 | 5 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 22.5 | 22.6 | 22.8 | 20.1 | 23.1 | 22.1 | 21.0 | 19.8 | 18.7 | 17.9 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.3 | 2.4 | 4.3 | 4.2 | 16.0 | 19.7 | 23.3 | 27.0 | 31.1 | 34.7 | 37.5 | | BEV 1 | 0.3 | 0.8 | 2.4 | 2.3 | 4.8 | 5.6 | 6.3 | 7.1 | 8.0 | 8.8 | 9.4 | | BEV 2 | 0.0 | 1.4 | 1.6 | 1.6 | 9.6 | 12.1 | 14.6 | 17.0 | 19.8 | 22.3 | 24.1 | | BEV 3 | 0.0 | 0.2 | 0.3 | 0.3 | 1.6 | 2.0 | 2.4 | 2.8 | 3.3 | 3.7 | 4.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 97 | 11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 61 | 70 | 71 | 62 | 51 | 49 | 46 | 44 | 41 | 40 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 4 | 4 | 4 | 4 | Table 479 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, No Action Alternative (Baseline) Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------|------|------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 90 | 81 | 77 | 77 | 56 | 42 | 25 | 22 | 21 | 19 | 16 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 7 | 7 | 6 | 6 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 63 | 54 | 53 | 53 | 44 | 39 | 25 | 22 | 21 | 19 | 16 | | | | | Mild Hybrid Powertrains | 26.5 | 26.2 | 23.6 | 22.9 | 12.5 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 4.4 | 5.4 | 12.1 | 28.2 | 48.5 | 47.7 | 44.6 | 41.9 | 41.7 | | | | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 3.1 | 12.6 | 12.1 | 11.7 | 26.4 | 26.3 | 26.2 | 30.1 | 34.7 | 38.8 | 41.8 | | | | | BEV 1 | 0.0 | 9.6 | 9.3 | 8.9 | 8.1 | 8.1 | 8.0 | 7.6 | 7.1 | 6.7 | 6.4 | | | | | BEV 2 | 1.3 | 1.2 | 1.2 | 1.2 | 10.8 | 10.8 | 10.8 | 11.2 | 11.6 | 12.0 | 12.2 | | | | | BEV 3 | 1.8 | 1.7 | 1.7 | 1.6 | 7.0 | 7.0 | 7.0 | 10.7 | 15.0 | 18.8 | 21.7 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.4 | 0.7 | 1.0 | 1.3 | 1.5 | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 9-Speed Automatic | 81 | 27 | 14 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 45 | 54 | 65 | 52 | 40 | 20 | 17 | 16 | 15 | 14 | | | | | DCT Transmissions | 16 | 16 | 16 | 15 | 9 | 5 | 5 | 5 | 5 | 4 | 2 | | | | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Table 480 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mitsubishi) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetration | n Rate (S | | | ear for I
(Baseli | | cturer | (Mitsub | oishi) To | otal Fle | et, No <i>i</i> | Action | |--|-----------|------|------|----------------------|------|--------|---------|-----------|----------|-----------------|--------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 12 | 11 | 11 | 11 | 11 | 11 | 11 | 58 | 57 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 21 | 21 | 21 | 21 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 5.9 | 5.7 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.5 | | Plug-In Hybrid Powertrains | 1.4 | 1.4 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 1.2 | 13.7 | 15.0 | 20.5 | 20.4 | 20.4 | 20.4 | 20.4 | 20.4 | 21.6 | | BEV 1 | 0.0 | 0.5 | 4.4 | 4.3 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.8 | | BEV 2 | 0.0 | 0.6 | 9.3 | 10.7 | 16.2 | 16.2 | 16.2 | 16.2 | 16.2 | 16.2 | 16.8 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5.0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 98 | 97 | 79 | 79 | 70 | 70 | 70 | 70 | 70 | 70 | 69 | Table 481 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Nissan) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetrati | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Nissan) Total Fleet, No Action Alternative (Baseline) Model Year 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | |-------------------------------------|---|------|------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression Engines | 0 | 0 | 10 | 19 | 31 | 30 | 40 | 42 | 41 | 40 | 39 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 10 | 10 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 13 | 13 | 14 | 14 | 14 | 15 | 13 | 13 | 13 | 12 | 12 | | | | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 1.1 | 3.0 | 3.0 | 4.6 | 10.2 | 9.9 | 9.5 | 9.2 | 9.0 | | | | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 1.2 | 8.2 | 9.3 | 12.5 | 15.1 | 15.0 | 15.4 | 17.8 | 20.5 | 22.9 | 24.7 | | | | | BEV 1 | 1.0 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.3 | 5.2 | 5.1 | 5.0 | | | | | BEV 2 | 0.3 | 2.6 | 3.7 | 7.0 | 9.5 | 9.5 | 9.7 | 11.8 | 14.1 | 16.2 | 17.7 | | | | | BEV 3 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.7 | 1.2 | 1.7 | 2.0 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 9-Speed Automatic | 23 | 25 | 26 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 1 | 1 | 1 | 26 | 26 | 25 | 24 | 23 | 22 | 22 | | | | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | CVT Transmissions | 71 | 65 | 63 | 59 | 56 | 55 | 50 | 48 | 47 | 46 | 45 | | | | | | | | | | | | | | | | | | | | Table 482 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Stellantis) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetration | n Rate (| | | ear for
(Baseli | | acturer | (Stella | ntis) To | tal Flee | et, No A | ction | |--|----------|------|------|--------------------|------|---------|---------|----------|----------|----------|-------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 11 | 12 | 12 | 12 | 18 | 17 | 17 | 16 | | Cylinder Deactivation | 20 | 20 | 6 | 5 | 5 | 4 | 4 | 1 | 1 | 1 | 1 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 10 | 10 | 9 | 11 | 10 | 20 | 20 | 19 | 18 | 17 | 17 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 46 | 44 | 44 | 33 | 33 | 30 | 30 | 28 | 27 | 26 | 25 | | Mild Hybrid Powertrains | 16.4 | 16.4 | 6.5 | 4.4 | 4.5 | 4.7 | 4.7 | 1.1 | 1.0 | 1.0 | 1.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 20.2 | 31.5 | 31.7 | 38.6 | 38.6 | 40.8 | 39.4 | 38.1 | 37.1 | | Plug-In Hybrid Powertrains | 4.7 | 4.7 | 4.7 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 2.4 | 2.3 | 2.3 | | Battery Electric Vehicles (BEVs) | 0.0 | 4.8 | 7.6 | 17.7 | 18.0 | 18.0 | 18.0 | 19.2 | 22.1 | 24.7 | 26.7 | | BEV 1 | 0.0 | 2.4 | 2.4 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.7 | 2.6 | 2.5 | | BEV 2 | 0.0 | 2.1 | 4.8 | 9.8 | 10.0 | 10.0 | 10.0 | 10.9 | 12.9 | 14.7 | 16.1 | | BEV 3 | 0.0 | 0.3 | 0.3 | 5.1 | 5.1 | 5.1 | 5.1 | 5.6 | 6.5 | 7.4 | 8.1 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
| 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 65 | 61 | 38 | 30 | 30 | 23 | 22 | 17 | 14 | 13 | 13 | | 9-Speed Automatic | 28 | 27 | 27 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 12 | 19 | 19 | 21 | 20 | 22 | 22 | 21 | | DCT Transmissions | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 483 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Subaru) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetratio | n Rate | | | Year fo
(Baseli | | facture | r (Suba | ru) Tot | al Fleet | , No Ad | ction | |--|----------|----------|----------|--------------------|------|---------|---------|---------|----------|---------|-------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 13 | 40 | 60 | 60 | 57 | 55 | 52 | 48 | 45 | 43 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 24 | 24 | 24 | 23 | 20 | 19 | 18 | 17 | 16 | 15 | 15 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 76 | 74 | 75 | 74 | 64 | 61 | 58 | 55 | 52 | 48 | 46 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 1.3 | 1.1 | 1.0 | 1.0 | 0.9 | 0.9 | 0.8 | 0.8 | | Plug-In Hybrid Powertrains | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 5.2 | 5.1 | 5.3 | 17.6 | 21.6 | 25.7 | 29.7 | 34.2 | 38.2 | 41.2 | | BEV 1 | 0.0 | 3.1 | 3.0 | 2.9 | 3.3 | 3.4 | 3.5 | 3.7 | 3.9 | 4.1 | 4.2 | | BEV 2 | 0.0 | 1.1 | 1.1 | 1.4 | 7.9 | 10.0 | 12.0 | 14.1 | 16.5 | 18.5 | 20.1 | | BEV 3 | 0.0 | 1.0 | 1.0 | 1.0 | 6.5 | 8.3 | 10.1 | 11.9 | 13.9 | 15.6 | 17.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | | CVT Transmissions | 95 | 91 | 91 | 90 | 79 | 75 | 71 | 67 | 63 | 59 | 56 | Table 484 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Tesla) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetra | tion Ra | | | el Year
e (Base | | nufactu | rer (Tes | la) Tota | al Fleet, | No Ac | tion | |--|-----------|-----------|-----------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 2 | 18.5 | 18.5 | 18.4 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 | | BEV 3 | 56.9 | 57.1 | 57.2 | 57.4 | 57.5 | 57.5 | 57.5 | 57.5 | 57.5 | 57.5 | 57.5 | | BEV 4 | 24.6 | 24.5 | 24.4 | 24.3 | 24.3 | 24.2 | 24.2 | 24.2 | 24.2 | 24.2 | 24.2 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 485 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Toyota) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetrati | on Rate | | Model
native | | | facture | r (Toyo | ta) Tot | al Fleet | , No Ad | tion | |-------------------------------------|---------|------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 2022 | 2023 | 2024 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 25 | 24 | 31 | 31 | 33 | 32 | 31 | 29 | 28 | 27 | 26 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 7 | 7 | 17 | 18 | 24 | 27 | 26 | 25 | 24 | 23 | 22 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 25 | 25 | 26 | 26 | 23 | 23 | 22 | 21 | 20 | 19 | 18 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 24.8 | 25.1 | 25.3 | 25.8 | 21.7 | 21.3 | 20.4 | 19.6 | 18.7 | 17.8 | 17.1 | | Plug-In Hybrid Powertrains | 2.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 2.4 | 2.3 | 4.0 | 15.8 | 17.7 | 21.1 | 24.4 | 28.1 | 31.4 | 33.9 | | BEV 1 | 0.0 | 1.4 | 1.4 | 2.6 | 7.1 | 7.6 | 8.6 | 9.5 | 10.6 | 11.6 | 12.3 | | BEV 2 | 0.0 | 0.6 | 0.6 | 0.9 | 5.3 | 6.2 | 7.6 | 9.1 | 10.7 | 12.1 | 13.2 | | BEV 3 | 0.0 | 0.4 | 0.4 | 0.6 | 3.4 | 3.9 | 4.9 | 5.8 | 6.8 | 7.7 | 8.4 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | | | | | | | | | | 5-Speed Automatic | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 11 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 34 | 33 | 50 | 49 | 44 | 36 | 33 | 31 | 30 | 28 | 27 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 6 | 6 | 6 | 6 | 6 | 5 | 5 | 5 | 5 | 4 | 4 | | DCT Transmissions | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | CVT Transmissions | 15 | 14 | 14 | 13 | 12 | 18 | 20 | 19 | 18 | 17 | 17 | | | | | | | | • | | | • | | | Table 486 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Volvo) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetrat | ion Rate | | | Year fo | | ufactur | er (Volv | o) Tota | al Fleet | , No Ac | tion | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 64 | 65 | 65 | 65 | 63 | 64 | 64 | 64 | 60 | 57 | 54 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 5 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 27.2 | 26.8 | 26.4 | 26.1 | 23.8 | 23.8 | 23.7 | 23.7 | 22.4 | 21.2 | 20.2 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 1.7 | 4.7 | 6.8 | 6.8 | 6.8 | 6.8 | 6.4 | 6.1 | 5.8 | | Plug-In Hybrid Powertrains | 17.6 | 14.9 | 15.1 | 0.0 | 0.0 | 0.0 | 0.0
 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 13.4 | 15.6 | 15.1 | 29.9 | 29.7 | 29.6 | 29.6 | 29.5 | 33.3 | 37.3 | 40.2 | | BEV 1 | 3.5 | 6.3 | 6.2 | 6.1 | 6.1 | 6.1 | 6.0 | 6.0 | 6.0 | 6.1 | 6.1 | | BEV 2 | 9.9 | 9.3 | 8.9 | 8.5 | 8.3 | 8.2 | 8.1 | 8.1 | 8.5 | 9.1 | 9.4 | | BEV 3 | 0.0 | 0.0 | 0.0 | 15.2 | 15.3 | 15.4 | 15.4 | 15.4 | 18.7 | 22.1 | 24.7 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 69 | 69 | 68 | 65 | 63 | 64 | 64 | 64 | 60 | 57 | 54 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 487 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (VWA) Total Fleet, No Action Alternative (Baseline) | Powertrain Technology Penetra | tion Rat | | y Mode
native | | | ufactur | er (VW | A) Tota | l Fleet, | No Act | tion | |--|----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 11 | 11 | 11 | 11 | 11 | 11 | 10 | 10 | 9 | | Cylinder Deactivation | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 61 | 57 | 49 | 39 | 32 | 31 | 28 | 27 | 26 | 23 | 22 | | Variable Geometry Turbo | 19 | 20 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 81 | 78 | 57 | 46 | 43 | 41 | 33 | 31 | 30 | 27 | 26 | | Mild Hybrid Powertrains | 8.3 | 8.2 | 4.2 | 4.3 | 0.4 | 0.2 | 6.5 | 6.2 | 5.9 | 5.6 | 5.5 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 21.1 | 31.7 | 35.2 | 37.4 | 38.7 | 37.0 | 35.1 | 35.2 | 33.8 | | Plug-In Hybrid Powertrains | 1.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 7.1 | 10.5 | 14.5 | 16.8 | 20.8 | 20.7 | 21.9 | 25.3 | 29.2 | 32.6 | 35.2 | | BEV 1 | 2.8 | 6.2 | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 | 6.1 | 6.0 | 5.8 | 5.7 | | BEV 2 | 4.1 | 4.0 | 8.1 | 8.9 | 12.9 | 12.8 | 13.4 | 15.2 | 17.3 | 19.2 | 20.6 | | BEV 3 | 0.2 | 0.2 | 0.2 | 1.5 | 1.6 | 1.6 | 2.2 | 3.9 | 5.9 | 7.6 | 8.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 60 | 59 | 38 | 35 | 33 | 27 | 27 | 25 | 24 | 23 | 22 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 1 | 2 | 2 | 1 | 6 | 6 | 6 | 6 | 4 | 4 | | DCT Transmissions | 30 | 26 | 22 | 13 | 10 | 8 | 7 | 6 | 6 | 6 | 5 | | CVT Transmissions | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 488 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (BMW) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration | n Rate (| (%) by | Model `
PC1L | | r Manu | facture | r (BMW | /) Total | Fleet, | Alterna | tive | |-------------------------------------|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 91 | 87 | 75 | 62 | 23 | 23 | 15 | 12 | 12 | 11 | 4 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 58 | 53 | 44 | 33 | 19 | 19 | 13 | 11 | 10 | 9 | 2 | | Mild Hybrid Powertrains | 29.0 | 29.9 | 28.8 | 26.3 | 1.7 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 2.1 | 15.7 | 53.6 | 53.9 | 58.5 | 57.2 | 53.4 | 50.2 | 54.0 | | Plug-In Hybrid Powertrains | 5.8 | 5.9 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 3.3 | 7.3 | 17.5 | 22.5 | 23.2 | 23.1 | 26.2 | 30.3 | 35.0 | 39.1 | 42.2 | | BEV 1 | 8.0 | 3.2 | 3.3 | 3.3 | 4.1 | 4.1 | 4.0 | 4.0 | 4.1 | 4.1 | 4.1 | | BEV 2 | 0.2 | 1.8 | 11.9 | 11.8 | 11.7 | 11.5 | 12.4 | 13.6 | 15.0 | 16.3 | 17.2 | | BEV 3 | 2.3 | 2.3 | 2.3 | 7.4 | 7.4 | 7.5 | 9.7 | 12.6 | 15.7 | 18.5 | 20.5 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.2 | 0.3 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 85 | 74 | 62 | 45 | 15 | 15 | 10 | 1 | 1 | 1 | 1 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 8 | 10 | 13 | 6 | 6 | 3 | 9 | 9 | 8 | 1 | | DCT Transmissions | 6 | 6 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 489 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Ford) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetratio | n Rate | (%) by | Model
PC1L | | r Manu | facture | er (Ford |) Total | Fleet, | Alterna | tive | |-------------------------------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 74 | 70 | 62 | 62 | 58 | 33 | 16 | 4 | 4 | 4 | 4 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 73 | 68 | 62 | 62 | 57 | 35 | 18 | 5 | 5 | 5 | 5 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.5 | | Strong Hybrid Powertrains Total | 8.6 | 8.6 | 10.6 | 10.5 | 10.5 | 44.1 | 60.9 | 72.3 | 72.3 | 70.4 | 68.8 | | Plug-In Hybrid Powertrains | 1.2 | 1.1 | 1.0 | 0.0 | 0.0 | 0.0 | 0.3 | 1.2 | 1.2 | 1.1 | 1.1 | | Battery Electric Vehicles (BEVs) | 2.9 | 7.5 | 14.7 | 15.6 | 20.2 | 20.1 | 20.1 | 20.1 | 20.1 | 22.1 | 23.9 | | BEV 1 | 0.5 | 3.1 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | BEV 2 | 1.4 | 3.6 | 10.8 | 11.5 | 16.1 | 16.0 | 16.0 | 16.0 | 16.0 | 17.5 | 18.8 | | BEV 3 | 1.0 | 0.9 | 0.8 | 1.1 | 1.1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.6 | 2.2 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | r del Gell Verlicles (1 GV3) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 29 | 29 | 23 | 16 | 13 | 7 | 7 | 3 | 3 | 3 | 2 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 54 | 51 | 49 | 56 | 54 | 27 | 10 | 3 | 3 | 3 | 3 | | DCT Transmissions | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 490 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (GM) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetra | tion Rate | e (%) by | Model
PC1L | | or Manı | ufactur | er (GM) |) Total | Fleet, A | Alternat | ive | |--|-----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 1 | 7 | 8 | 8 | 8 | 8 | 8 | 6 | 1 | | Cylinder Deactivation | 4 | 4 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 47 | 46 | 35 | 33
| 28 | 28 | 28 | 22 | 21 | 6 | 6 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 5 | 5 | 5 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 5 | 5 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 82 | 82 | 66 | 43 | 36 | 27 | 26 | 22 | 20 | 6 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 1.3 | 2.9 | 3.7 | 3.7 | 9.3 | 9.4 | 8.2 | 8.2 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 5.3 | 24.7 | 28.2 | 28.3 | 28.3 | 28.6 | 29.6 | 29.4 | 35.0 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 2.1 | 2.1 | 13.7 | 13.7 | 13.8 | 13.7 | 30.1 | 30.0 | | Battery Electric Vehicles (BEVs) | 1.6 | 1.5 | 17.3 | 18.7 | 21.6 | 21.6 | 21.6 | 21.6 | 21.6 | 21.6 | 21.7 | | BEV 1 | 0.0 | 0.0 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | BEV 2 | 1.6 | 1.5 | 14.6 | 16.0 | 18.9 | 18.9 | 18.9 | 18.9 | 18.9 | 18.9 | 19.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 20 | 20 | 19 | 14 | 14 | 14 | 5 | 5 | 0 | 0 | 0 | | 9-Speed Automatic | 22 | 22 | 18 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 28 | 28 | 35 | 30 | 29 | 18 | 28 | 27 | 31 | 17 | 11 | | DCT Transmissions | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 9 | 8 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | Table 491 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Honda) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration | on Rate | (%) by l | Model ' | | Manuf | facture | r (Hond | la) Tota | l Fleet, | Altern | ative | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 8 | 8 | 7 | 6 | 6 | 14 | 13 | 12 | 12 | 11 | | Cylinder Deactivation | 27 | 13 | 13 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 43 | 56 | 56 | 62 | 58 | 39 | 37 | 35 | 33 | 32 | 29 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 79 | 78 | 78 | 74 | 65 | 45 | 43 | 41 | 39 | 37 | 36 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 9.3 | 6.8 | 6.8 | 11.5 | 10.9 | 27.6 | 26.4 | 25.2 | 23.8 | 22.5 | 22.9 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 4.8 | 5.1 | 5.8 | 15.7 | 19.3 | 22.8 | 26.4 | 30.5 | 34.0 | 36.7 | | BEV 1 | 0.0 | 3.4 | 3.5 | 3.6 | 7.8 | 9.3 | 10.8 | 12.3 | 14.0 | 15.6 | 16.8 | | BEV 2 | 0.0 | 1.1 | 1.2 | 1.9 | 6.4 | 8.1 | 9.7 | 11.4 | 13.2 | 14.8 | 16.1 | | BEV 3 | 0.0 | 0.3 | 0.3 | 0.4 | 1.5 | 1.9 | 2.3 | 2.8 | 3.2 | 3.6 | 3.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 17 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 17 | 31 | 32 | 28 | 28 | 26 | 25 | 24 | 22 | 21 | 19 | | DCT Transmissions | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | CVT Transmissions | 55 | 52 | 51 | 50 | 45 | 26 | 25 | 24 | 23 | 22 | 21 | Table 492 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiH) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetra | ation Ra | | | el Year
PC1L1 | | nufactı | ırer (Hy | /undai | KiH) To | tal Flee | ∍t, | |-------------------------------------|----------|----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 59 | 59 | 59 | 54 | 46 | 46 | 43 | 41 | 40 | 38 | 34 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 19 | 18 | 18 | 15 | 11 | 9 | 6 | 6 | 6 | 6 | 5 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 68 | 68 | 68 | 60 | 43 | 40 | 34 | 33 | 31 | 30 | 29 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 7.2 | 7.3 | 7.9 | 7.6 | 7.3 | 6.9 | 4.0 | | Strong Hybrid Powertrains Total | 10.9 | 9.8 | 10.1 | 16.0 | 21.0 | 27.6 | 29.6 | 28.6 | 27.3 | 26.2 | 28.1 | | Plug-In Hybrid Powertrains | 1.9 | 1.7 | 1.8 | 0.0 | 0.0 | 0.0 | 2.5 | 2.4 | 2.3 | 2.2 | 2.1 | | Battery Electric Vehicles (BEVs) | 3.3 | 7.0 | 6.8 | 11.2 | 17.9 | 17.8 | 18.6 | 21.5 | 24.8 | 27.8 | 30.0 | | BEV 1 | 0.2 | 4.0 | 3.9 | 3.7 | 4.4 | 4.4 | 4.7 | 6.1 | 7.7 | 9.1 | 10.2 | | BEV 2 | 2.1 | 2.1 | 2.0 | 6.5 | 12.3 | 12.3 | 12.6 | 13.7 | 14.9 | 15.9 | 16.7 | | BEV 3 | 1.0 | 1.0 | 1.0 | 0.9 | 1.2 | 1.1 | 1.3 | 1.7 | 2.2 | 2.7 | 3.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 50 | 42 | 40 | 32 | 25 | 25 | 22 | 21 | 20 | 19 | 19 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 2 | 4 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | | DCT Transmissions | 11 | 11 | 11 | 8 | 7 | 7 | 4 | 4 | 4 | 4 | 4 | | CVT Transmissions | 22 | 28 | 28 | 28 | 25 | 22 | 21 | 21 | 20 | 19 | 16 | | | | | | | | | | | | | | Table 493 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiK) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiK) Total Fleet, Alternative PC1LT3 202 202 202 202 202 202 202 202 203 203 | | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression
Engines | 45 | 57 | 58 | 59 | 50 | 50 | 50 | 40 | 39 | 38 | 37 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 24 | 23 | 19 | 19 | 17 | 17 | 17 | 17 | 16 | 14 | 13 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 32 | 32 | 30 | 30 | 27 | 27 | 27 | 27 | 26 | 23 | 16 | | | | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 2.0 | 7.6 | | | | | Strong Hybrid Powertrains Total | 5.0 | 5.0 | 5.0 | 5.0 | 10.2 | 10.2 | 10.2 | 17.0 | 16.4 | 17.9 | 17.4 | | | | | Plug-In Hybrid Powertrains | 3.0 | 1.6 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 6.5 | 6.3 | 6.0 | 5.8 | | | | | Battery Electric Vehicles (BEVs) | 4.4 | 6.1 | 11.4 | 12.8 | 18.3 | 18.3 | 18.3 | 19.2 | 22.1 | 24.7 | 26.7 | | | | | BEV 1 | 0.0 | 1.9 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 3.0 | 3.9 | 4.7 | 5.3 | | | | | BEV 2 | 3.7 | 3.5 | 7.9 | 9.4 | 14.9 | 14.9 | 14.9 | 15.4 | 17.2 | 18.8 | 20.0 | | | | | BEV 3 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.9 | 1.2 | 1.3 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 34 | 47 | 39 | 39 | 22 | 22 | 22 | 10 | 9 | 9 | 9 | | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | DCT
Transmissions | 9 | 9 | 9 | 9 | 7 | 7 | 7 | 7 | 7 | 5 | 5 | | | | | CVT Transmissions | 32 | 31 | 34 | 34 | 42 | 42 | 42 | 40 | 39 | 38 | 37 | | | | Table 494 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (JLR) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetrat | ion Rate | (%) by | Model
PC1L | | or Manu | ufactur | er (JLR |) Total | Fleet, A | Alterna | tive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 47 | 39 | 35 | 35 | 27 | 27 | 27 | 26 | 21 | 13 | 13 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 52 | 31 | 27 | 27 | 10 | 10 | 10 | 9 | 9 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 46 | 38 | 34 | 34 | 27 | 27 | 27 | 26 | 21 | 13 | 13 | | Mild Hybrid Powertrains | 0.9 | 0.9 | 0.9 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 12.3 | 12.3 | 12.4 | 37.5 | 37.5 | 37.5 | 36.2 | 34.0 | 46.7 | 44.6 | | Plug-In Hybrid Powertrains | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 3.8 | 3.6 | | Battery Electric Vehicles (BEVs) | 0.9 | 18.0 | 25.6 | 25.6 | 25.6 | 25.6 | 25.6 | 28.1 | 32.4 | 36.2 | 39.0 | | BEV 1 | 0.9 | 2.0 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.8 | 4.6 | 4.4 | 4.3 | | BEV 2 | 0.0 | 14.8 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.3 | 19.2 | 19.1 | 19.0 | | BEV 3 | 0.0 | 1.2 | 1.2 | 1.2 | 1.2 | 1.3 | 1.3 | 4.0 | 8.6 | 12.7 | 15.8 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 85 | 30 | 23 | 23 | 18 | 1 | 1 | 1 | 1 | 1 | 1 | | 9-Speed Automatic | 13 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 37 | 37 | 37 | 19 | 36 | 36 | 35 | 29 | 13 | 12 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 495 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Karma) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetrat | on Rate | e (%) by | | Year fo | or Manu | ıfacture | er (Karn | na) Tota | al Fleet, | Altern | ative | |--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 100.
0 | 100.
0 | 100.
0 | 100.
0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 0.0 | 0.0 | 0.0 | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | | BEV 2 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Taci deli verioles (1 0 vs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 496 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Lucid) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetrat | ion Rat | e (%) b | y Mode
PC1 | | or Manı | ufactur | er (Luci | id) Tota | l Fleet, | Alterna | ative | |--|-----------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 100.
0 | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 497 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mazda) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration | on Rate | (%) by l | Model \ | | ^r Manuf | acture | r (Mazd | a) Tota | l Fleet, | Altern | ative | |--|----------|----------|----------|----------|--------------------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 71 | 69 | 69 | 68 | 60 | 57 | 55 | 52 | 49 | 47 | 45 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 29 | 6 | 5 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 22.5 | 22.6 | 22.8 | 20.1 | 23.1 | 22.1 | 21.0 | 19.8 | 18.7 | 17.9 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.3 | 2.4 | 4.3 | 4.2 | 16.0 | 19.7 | 23.3 | 27.0 | 31.1 | 34.7 | 37.5 | | BEV 1 | 0.3 | 0.8 | 2.4 | 2.3 | 4.8 | 5.6 | 6.3 | 7.1 | 8.0 | 8.8 | 9.4 | | BEV 2 | 0.0 | 1.4 | 1.6 | 1.6 | 9.6 | 12.1 | 14.6 | 17.0 | 19.8 | 22.3 | 24.1 | | BEV 3 | 0.0 | 0.2 | 0.3 | 0.3 | 1.6 | 2.0 | 2.4 | 2.8 | 3.3 | 3.7 | 4.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 97 | 11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 61 | 70 | 71 | 62 | 51 | 49 | 46 | 44 | 41 | 40 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 4 | 4 | 4 | 4 | Table 498 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, Alternative PC1LT3 | | | | | | | | | | | | | | |---|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--| | Model Year | 202 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Non-Hybrid Turbocharged Engines | 90 | 81 | 77 | 77 | 56 | 42 | 25 | 22 | 5 | 5 | 3 | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Electric Variable Geometry Turbo | 7 | 7 | 6 | 6 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 12V Stop-Start (non-hybrid) | 63 | 54 | 53 | 53 | 44 | 39 | 25 | 22 | 5 | 5 | 3 | | | | Mild Hybrid Powertrains | 26.5 | 26.2 | 23.6 | 22.9 | 12.5 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 4.4 | 5.4 | 12.1 | 28.2 | 48.5 | 47.7 | 60.3 | 56.6 | 55.6 | | | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Battery Electric Vehicles (BEVs) | 3.1 | 12.6 | 12.1 | 11.7 | 26.4 | 26.2 | 26.2 | 30.1 | 34.7 | 38.8 | 41.8 | | | | BEV 1 | 0.0 | 9.6 | 9.3 | 8.9 | 8.1 | 8.0 | 8.0 | 7.5 | 7.1 | 6.7 | 6.4 | | | | BEV 2 | 1.3 | 1.2 | 1.2 | 1.2 | 10.8 | 10.8 | 10.8 | 11.2 | 11.6 | 12.0 | 12.2 | | | | BEV 3 | 1.8 | 1.7 | 1.7 | 1.6 | 7.0 | 7.0 | 7.0 | 10.7 | 15.0 | 18.8 | 21.7 | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.4 | 0.7 | 1.0 | 1.3 | 1.5 | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 9-Speed Automatic | 81 | 27 | 14 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 10-Speed Automatic | 0 | 45 | 54 | 65 | 52 | 40 | 20 | 17 | 0 | 0 | 0 | | | | DCT Transmissions | 16 | 16 | 16 | 15 | 9 | 5 | 5 | 5 | 5 | 4 | 2 | | | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Table 499 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mitsubishi) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penet | ration R | | by Moernative | | | anufact | turer (N | litsubis | shi) Tot | al Fleet | Ι, | |-------------------------------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 12 | 11 | 11 | 11 | 11 | 11 | 11 | 50 | 49 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 21 | 21 | 21 | 21 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | 18.7 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 5.9 | 5.7 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 17.5 | 17.3 | | Plug-In Hybrid Powertrains | 1.4 | 1.4 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 1.2 | 13.7 | 15.0 | 20.5 | 20.4 | 20.4 | 20.4 | 20.4 | 20.4 | 21.6 | | BEV 1 | 0.0 | 0.5 | 4.4 | 4.3 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.8 | | BEV 2 | 0.0 | 0.6 | 9.3 | 10.7 | 16.2 | 16.2 | 16.2 | 16.2 | 16.2 | 16.2 | 16.8 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 98 | 97 | 79 | 79 | 70 | 70 | 70 | 70 | 70 | 62 | 61 | Table 500 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Nissan) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration | n Rate (| %) by l | Model Y
PC1L | | Manuf | acturer | (Nissa | n) Tota | ıl Fleet, | Altern | ative | |--|----------|----------------|-----------------|----------|----------|----------|----------|----------|-----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 10 | 19 | 31 | 30 | 30 | 32 | 31 | 30 | 30 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 10 | 10 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 13 | 13 | 14 | 14 | 14 | 15 | 3 | 3 | 4 | 4 | 4 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 1.1 | 3.0 | 3.0 | 4.6 | 31.9 | 31.1 | 29.9 | 28.8 | 28.1 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 1.2 | 8.2 | 9.3 | 12.5 | 15.1 | 15.0 | 15.4 | 17.8 | 20.5 | 22.9 | 24.7 | | BEV 1 | 1.0 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.3 | 5.2 | 5.1 | 5.0 | | BEV 2 | 0.3 | 2.6 | 3.7 | 7.0 | 9.5 | 9.5 | 9.7 | 11.8 | 14.1 | 16.2 | 17.7 | | BEV 3 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.7 | 1.2 | 1.7 | 2.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 23 | 25 | 26 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 1 | 1 | 1 | 26 | 26 | 15 | 14 | 14 | 13 | 13 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 71 | 65 | 63 | 59 | 56 | 54 | 38 | 37 | 36 | 35 | 34 | Table 501 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Stellantis) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration | n Rate (% | %) by M | odel Ye | | Manufa | cturer | (Stellar | ntis) To | tal Flee | t, Alter | native | |--|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 11 | 12 | 12 | 12 | 15 | 14 | 14 | 5 | | Cylinder Deactivation | 20 | 20 | 6 | 5 | 5 | 4 | 4 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 10 | 10 | 9 | 11 | 10 | 10 | 10 | 9 | 8 | 8 | 6 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 46 | 44 | 44 | 33 | 33 | 21 | 20 | 15 | 14 | 14 | 5 | | Mild Hybrid Powertrains | 16.4 | 16.4 | 6.5
| 4.4 | 4.5 | 4.7 | 4.7 | 0.2 | 0.2 | 0.2 | 0.2 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 20.2 | 31.5 | 31.7 | 48.1 | 48.8 | 52.2 | 50.3 | 48.6 | 49.1 | | Plug-In Hybrid Powertrains | 4.7 | 4.7 | 4.7 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 4.8 | 4.6 | 13.1 | | Battery Electric Vehicles (BEVs) | 0.0 | 4.8 | 7.6 | 17.7 | 18.0 | 18.0 | 18.0 | 19.2 | 22.1 | 24.7 | 26.7 | | BEV 1 | 0.0 | 2.4 | 2.4 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.7 | 2.6 | 2.5 | | BEV 2 | 0.0 | 2.1 | 4.8 | 9.8 | 10.0 | 10.0 | 10.0 | 10.9 | 12.9 | 14.7 | 16.1 | | BEV 3 | 0.0 | 0.3 | 0.3 | 5.1 | 5.1 | 5.1 | 5.1 | 5.6 | 6.5 | 7.4 | 8.1 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 65 | 61 | 38 | 30 | 30 | 14 | 12 | 5 | 0 | 0 | 0 | | 9-Speed Automatic | 28 | 27 | 27 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 12 | 19 | 19 | 21 | 18 | 23 | 22 | 11 | | DCT Transmissions | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | l | 1 | 1 | 1 | ı | ı | ı | ı | l . | | Table 502 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Subaru) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration | n Rate (| (%) by l | Model Y
PC1L | | Manuf | acturer | (Suba | ru) Tota | al Fleet | , Altern | ative | |--|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 13 | 40 | 60 | 60 | 57 | 55 | 52 | 48 | 45 | 43 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 24 | 24 | 24 | 23 | 20 | 19 | 18 | 17 | 16 | 15 | 15 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 76 | 74 | 75 | 74 | 64 | 61 | 58 | 55 | 52 | 48 | 46 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 1.3 | 1.1 | 1.0 | 1.0 | 0.9 | 0.9 | 0.8 | 0.8 | | Plug-In Hybrid Powertrains | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 5.2 | 5.1 | 5.3 | 17.6 | 21.6 | 25.7 | 29.7 | 34.2 | 38.2 | 41.2 | | BEV 1 | 0.0 | 3.1 | 3.0 | 2.9 | 3.3 | 3.4 | 3.5 | 3.6 | 3.8 | 4.0 | 4.2 | | BEV 2 | 0.0 | 1.1 | 1.1 | 1.4 | 7.9 | 10.0 | 12.0 | 14.1 | 16.5 | 18.5 | 20.1 | | BEV 3 | 0.0 | 1.0 | 1.0 | 1.0 | 6.5 | 8.3 | 10.1 | 11.9 | 13.9 | 15.6 | 17.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | | CVT Transmissions | 95 | 91 | 91 | 90 | 79 | 75 | 71 | 67 | 63 | 59 | 56 | | | | 1 | 1 | 1 | 1 | ı | ı | ı | ı | ı | | Table 503 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Tesla) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Tesla) Total Fleet, Alternative PC1LT3 Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | |--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Battery Electric Vehicles (BEVs) | 100.
0 | | | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | BEV 2 | 18.5 | 18.5 | 18.4 | 18.3 | 18.3 | 18.3 | 18.3 | 18.2 | 18.3 | 18.3 | 18.3 | | | | BEV 3 | 56.9 | 57.1 | 57.2 | 57.4 | 57.5 | 57.5 | 57.5 | 57.6 | 57.5 | 57.5 | 57.5 | | | | BEV 4 | 24.6 | 24.5 | 24.4 | 24.3 | 24.3 | 24.2 | 24.2 | 24.2 | 24.2 | 24.2 | 24.2 | | | | | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | • | | | | | | | | | | | | | | Table 504 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Toyota) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration | n Rate (| %) by l | Model Y
PC1L | | Manuf | acturer | (Toyot | ta) Tota | ıl Fleet, | Altern | ative | |--|----------|----------------|-----------------|----------|----------|----------|----------|----------|-----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 25 | 24 | 31 | 31 | 33 | 32 | 31 | 29 | 28 | 27 | 26 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 7 | 7 | 17 | 18 | 24 | 27 | 26 | 25 | 24 | 23 | 22 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 25 | 25 | 26 | 26 | 23 | 23 | 22 | 21 | 20 | 19 | 18 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 24.8 | 25.1 | 25.3 | 25.8 | 21.7 | 21.3 | 20.5 | 19.6 | 18.7 | 17.8 | 17.1 | | Plug-In Hybrid Powertrains | 2.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 2.4 | 2.3 | 4.0 | 15.8 | 17.7 | 21.1 | 24.4 | 28.1 | 31.4 | 33.9 | | BEV 1 | 0.0 | 1.4 | 1.4 | 2.6 | 7.1 | 7.6 | 8.5 | 9.5 | 10.6 | 11.6 | 12.3 | | BEV 2 | 0.0 | 0.6 | 0.6 | 0.9 | 5.3 | 6.2 | 7.6 | 9.1 | 10.7 | 12.1 | 13.2 | | BEV 3 | 0.0 | 0.4 | 0.4 | 0.6 | 3.4 | 3.9 | 4.9 | 5.8 | 6.8 | 7.7 | 8.4 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | | | | | | | | | | 5-Speed Automatic | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 11 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 34 | 33 | 50 | 49 | 44 | 36 | 33 | 31 | 30 | 28 | 27 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 6 | 6 | 6 | 6 | 6 | 5 | 5 | 5 | 5 | 4 | 4 | | DCT Transmissions | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | CVT Transmissions | 15 | 14 | 14 | 13 | 12 | 18 | 20 | 19 | 18 | 17 | 17 | | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | | | | Table 505 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Volvo) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetration | on Rate | (%) by | Model '
PC1L | | r Manu |
facture | r (Volve | o) Tota | l Fleet, | Alterna | ative | |-------------------------------------|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 64 | 65 | 65 | 65 | 63 | 64 | 64 | 64 | 47 | 44 | 42 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 5 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 27.2 | 26.8 | 26.4 | 26.1 | 23.8 | 23.7 | 23.7 | 23.7 | 22.4 | 21.2 | 20.2 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 1.7 | 4.7 | 6.8 | 6.8 | 6.8 | 6.8 | 20.0 | 18.8 | 17.9 | | Plug-In Hybrid Powertrains | 17.6 | 14.9 | 15.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 13.4 | 15.6 | 15.1 | 29.9 | 29.7 | 29.6 | 29.5 | 29.5 | 33.3 | 37.3 | 40.2 | | BEV 1 | 3.5 | 6.3 | 6.2 | 6.1 | 6.1 | 6.0 | 6.0 | 6.0 | 6.0 | 6.1 | 6.1 | | BEV 2 | 9.9 | 9.3 | 8.9 | 8.5 | 8.3 | 8.2 | 8.1 | 8.1 | 8.5 | 9.1 | 9.4 | | BEV 3 | 0.0 | 0.0 | 0.0 | 15.2 | 15.3 | 15.4 | 15.4 | 15.4 | 18.8 | 22.1 | 24.7 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 69 | 69 | 68 | 65 | 63 | 41 | 41 | 27 | 10 | 10 | 9 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 23 | 23 | 37 | 36 | 34 | 33 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 506 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (VWA) Total Fleet, Alternative PC1LT3 | Powertrain Technology Penetratio | n Rate | (%) by | Model
PC1L | | r Manu | facture | r (VWA |) Total | Fleet, | Alterna | tive | |-------------------------------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 11 | 11 | 11 | 11 | 11 | 11 | 3 | 3 | 3 | | Cylinder Deactivation | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 61 | 57 | 49 | 39 | 32 | 31 | 22 | 21 | 17 | 14 | 13 | | Variable Geometry Turbo | 19 | 20 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 81 | 78 | 57 | 46 | 43 | 41 | 33 | 31 | 20 | 17 | 16 | | Mild Hybrid Powertrains | 8.3 | 8.2 | 4.2 | 4.3 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 21.1 | 31.7 | 35.2 | 37.5 | 45.4 | 43.4 | 45.6 | 45.5 | 43.8 | | Plug-In Hybrid Powertrains | 1.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2 | 5.0 | 4.8 | | Battery Electric Vehicles (BEVs) | 7.1 | 10.5 | 14.5 | 16.8 | 20.8 | 20.7 | 21.9 | 25.3 | 29.2 | 32.6 | 35.2 | | BEV 1 | 2.8 | 6.2 | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 | 6.1 | 6.0 | 5.8 | 5.7 | | BEV 2 | 4.1 | 4.0 | 8.1 | 8.9 | 12.9 | 12.8 | 13.4 | 15.2 | 17.3 | 19.2 | 20.6 | | BEV 3 | 0.2 | 0.2 | 0.2 | 1.5 | 1.6 | 1.6 | 2.2 | 4.0 | 5.9 | 7.6 | 8.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 60 | 59 | 38 | 35 | 33 | 19 | 8 | 3 | 3 | 3 | 3 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 1 | 2 | 2 | 1 | 14 | 18 | 22 | 11 | 8 | 8 | | DCT Transmissions | 30 | 26 | 22 | 13 | 10 | 8 | 6 | 6 | 6 | 6 | 5 | | CVT Transmissions | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 507 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (BMW) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetrati | on Rate | (%) by | Model `
PC2L | | r Manu | facture | r (BMV | /) Total | Fleet, | Alterna | itive | |--|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 91 | 87 | 75 | 62 | 23 | 23 | 15 | 12 | 12 | 11 | 4 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 58 | 53 | 44 | 33 | 19 | 19 | 13 | 11 | 10 | 9 | 2 | | Mild Hybrid Powertrains | 29.0 | 29.9 | 28.8 | 26.3 | 1.7 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 2.1 | 15.7 | 53.6 | 53.9 | 58.5 | 57.2 | 53.4 | 50.2 | 54.0 | | Plug-In Hybrid Powertrains | 5.8 | 5.9 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 3.3 | 7.3 | 17.5 | 22.5 | 23.2 | 23.1 | 26.2 | 30.3 | 35.0 | 39.1 | 42.2 | | BEV 1 | 0.8 | 3.2 | 3.3 | 3.3 | 4.1 | 4.1 | 4.0 | 4.0 | 4.0 | 4.1 | 4.1 | | BEV 2 | 0.2 | 1.8 | 11.9 | 11.8 | 11.7 | 11.5 | 12.4 | 13.6 | 15.0 | 16.3 | 17.3 | | BEV 3 | 2.3 | 2.3 | 2.3 | 7.4 | 7.4 | 7.5 | 9.7 | 12.6 | 15.8 | 18.5 | 20.5 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.2 | 0.3 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 85 | 74 | 62 | 45 | 15 | 15 | 10 | 1 | 1 | 1 | 1 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 8 | 10 | 13 | 6 | 6 | 3 | 9 | 9 | 8 | 1 | | DCT Transmissions | 6 | 6 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 508 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Ford) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetrati | on Rate | (%) by | Model
PC2L | | r Manu | ıfacture | er (Ford | l) Total | Fleet, | Alterna | tive | |-------------------------------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 74 | 70 | 62 | 62 | 58 | 30 | 13 | 1 | 1 | 1 | 1 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 73 | 68 | 62 | 62 | 57 | 32 | 15 | 3 | 3 | 3 | 3 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 8.6 | 8.6 | 10.6 | 10.5 | 10.5 | 45.9 | 62.7 | 74.1 | 74.1 | 72.2 | 70.6 | | Plug-In Hybrid Powertrains | 1.2 | 1.1 | 1.0 | 0.0 | 0.0 | 1.2 | 1.5 | 2.4 | 2.4 | 2.3 | 2.3 | | Battery Electric Vehicles (BEVs) | 2.9 | 7.5 | 14.7 | 15.6 | 20.2 | 20.1 | 20.1 | 20.1 | 20.1 | 22.1 | 23.9 | | BEV 1 | 0.5 | 3.1 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | BEV 2 | 1.4 | 3.6 | 10.8 | 11.5 | 16.1 | 16.0 | 16.0 | 16.0 | 16.0 | 17.5 | 18.7 | | BEV 3 | 1.0 | 0.9 | 0.8 | 1.1 | 1.1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.6 | 2.2 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| 0 | 0 | 0 | | 7-Speed Automatic | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 29 | 29 | 23 | 16 | 13 | 4 | 4 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 54 | 51 | 49 | 56 | 54 | 27 | 10 | 3 | 3 | 2 | 3 | | DCT Transmissions | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | - | | | • | | • | • | | • | • | | Table 509 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (GM) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetrat | ion Rate | e (%) by | Model
PC2L | | or Manı | ufactur | er (GM) | Total | Fleet, A | Alternat | ive | |-------------------------------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 1 | 7 | 8 | 8 | 8 | 7 | 7 | 6 | 0 | | Cylinder Deactivation | 4 | 4 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 47 | 46 | 35 | 33 | 28 | 28 | 28 | 22 | 20 | 6 | 6 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 5 | 5 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 82 | 82 | 66 | 43 | 36 | 27 | 26 | 22 | 20 | 7 | 1 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 1.3 | 2.9 | 3.7 | 3.7 | 3.7 | 2.4 | 1.1 | 1.1 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 5.3 | 24.7 | 28.2 | 28.3 | 28.3 | 34.2 | 36.1 | 34.6 | 40.2 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 2.1 | 2.1 | 13.7 | 13.7 | 13.8 | 14.2 | 30.7 | 30.6 | | Battery Electric Vehicles (BEVs) | 1.6 | 1.5 | 17.3 | 18.7 | 21.6 | 21.6 | 21.6 | 21.6 | 21.6 | 21.6 | 21.7 | | BEV 1 | 0.0 | 0.0 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | BEV 2 | 1.6 | 1.5 | 14.6 | 16.0 | 18.9 | 18.9 | 18.9 | 18.9 | 18.9 | 18.9 | 19.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 20 | 20 | 19 | 14 | 14 | 14 | 5 | 5 | 0 | 0 | 0 | | 9-Speed Automatic | 22 | 22 | 18 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 28 | 28 | 35 | 30 | 29 | 18 | 28 | 22 | 26 | 13 | 7 | | DCT Transmissions | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 9 | 8 | 4 | 4 | 4 | 3 | 3 | 3 | 1 | 0 | 0 | | | | • | • | | • | | • | • | | | • | Table 510 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Honda) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetration | on Rate | (%) by l | Model \ | | Manuf | acture | r (Hond | la) Tota | l Fleet, | Altern | ative | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 8 | 8 | 7 | 6 | 6 | 14 | 13 | 12 | 12 | 11 | | Cylinder Deactivation | 27 | 13 | 13 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 43 | 56 | 56 | 62 | 58 | 39 | 37 | 32 | 27 | 26 | 20 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 79 | 78 | 78 | 74 | 65 | 45 | 42 | 37 | 32 | 30 | 26 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.7 | 0.7 | 0.6 | 0.6 | | Strong Hybrid Powertrains Total | 9.3 | 6.8 | 6.8 | 11.5 | 10.9 | 27.6 | 26.7 | 28.5 | 30.3 | 28.6 | 31.7 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 4.8 | 5.1 | 5.8 | 15.7 | 19.3 | 22.8 | 26.4 | 30.5 | 34.0 | 36.7 | | BEV 1 | 0.0 | 3.4 | 3.5 | 3.6 | 7.8 | 9.3 | 10.8 | 12.3 | 14.0 | 15.6 | 16.8 | | BEV 2 | 0.0 | 1.1 | 1.2 | 1.9 | 6.4 | 8.1 | 9.7 | 11.4 | 13.2 | 14.8 | 16.1 | | BEV 3 | 0.0 | 0.3 | 0.3 | 0.4 | 1.5 | 1.9 | 2.3 | 2.8 | 3.2 | 3.6 | 3.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 17 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 17 | 31 | 32 | 28 | 28 | 26 | 25 | 21 | 16 | 15 | 10 | | DCT Transmissions | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | CVT Transmissions | 55 | 52 | 51 | 50 | 45 | 26 | 25 | 24 | 23 | 22 | 21 | | | | | | | | | | | | | | Table 511 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiH) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetr | ation Ra | | | el Year
PC2L1 | | nufactı | ırer (Hy | /undai | KiH) To | tal Flee | ∋t, | |--|----------|----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 59 | 59 | 59 | 54 | 46 | 46 | 30 | 29 | 28 | 27 | 20 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 19 | 18 | 18 | 15 | 11 | 9 | 5 | 5 | 5 | 5 | 5 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 68 | 68 | 68 | 60 | 43 | 40 | 21 | 20 | 20 | 19 | 18 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 7.2 | 7.3 | 7.3 | 7.1 | 6.7 | 6.4 | 0.0 | | Strong Hybrid Powertrains Total | 10.9 | 9.8 | 10.1 | 16.0 | 21.0 | 27.6 | 37.3 | 36.0 | 34.4 | 33.0 | 38.1 | | Plug-In Hybrid Powertrains | 1.9 | 1.7 | 1.8 | 0.0 | 0.0 | 0.0 | 8.2 | 7.9 | 7.6 | 7.2 | 6.9 | | Battery Electric Vehicles (BEVs) | 3.3 | 7.0 | 6.8 | 11.2 | 17.9 | 17.8 | 18.6 | 21.5 | 24.8 | 27.8 | 30.0 | | BEV 1 | 0.2 | 4.0 | 3.9 | 3.7 | 4.4 | 4.4 | 4.7 | 6.1 | 7.7 | 9.1 | 10.2 | | BEV 2 | 2.1 | 2.1 | 2.0 | 6.5 | 12.3 | 12.3 | 12.6 | 13.7 | 14.9 | 15.9 | 16.7 | | BEV 3 | 1.0 | 1.0 | 1.0 | 0.9 | 1.2 | 1.1 | 1.3 | 1.7 | 2.2 | 2.7 | 3.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 50 | 42 | 40 | 32 | 25 | 25 | 9 | 9 | 8 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 2 | 4 | 4 | 2 | 1 | 1 | 1 | 9 | 9 | | DCT Transmissions | 11 | 11 | 11 | 8 | 7 | 7 | 4 | 4 | 4 | 4 | 4 | | CVT Transmissions | 22 | 28 | 28 | 28 | 25 | 22 | 21 | 21 | 20 | 19 | 12 | Table 512 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiK) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetr | ation Ra | | by Mod
ernative | | | nufactu | ırer (Hy | /undai | KiK) To | tal Flee | et, | |--|----------|----------|--------------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 45 | 57 | 58 | 59 | 50 | 50 | 50 | 37 | 35 | 30 | 25 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 24 | 23 | 19 | 19 | 17 | 17 | 17 | 17 | 16 | 9 | 9 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 32 | 32 | 30 | 30 | 27 | 27 | 27 | 27 | 26 | 18 | 8 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 5.7 | | Strong Hybrid Powertrains Total | 5.0 | 5.0 | 5.0 | 5.0 | 10.2 | 10.2 | 10.2 |
19.4 | 18.7 | 24.6 | 28.6 | | Plug-In Hybrid Powertrains | 3.0 | 1.6 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 7.7 | 7.4 | 11.5 | 11.2 | | Battery Electric Vehicles (BEVs) | 4.4 | 6.1 | 11.4 | 12.8 | 18.3 | 18.3 | 18.3 | 19.2 | 22.1 | 24.7 | 26.7 | | BEV 1 | 0.0 | 1.9 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 3.0 | 3.9 | 4.7 | 5.3 | | BEV 2 | 3.7 | 3.5 | 7.9 | 9.4 | 14.9 | 14.9 | 14.9 | 15.5 | 17.2 | 18.8 | 20.0 | | BEV 3 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.9 | 1.2 | 1.3 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 34 | 47 | 39 | 39 | 22 | 22 | 22 | 9 | 9 | 9 | 9 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 9 | 9 | 9 | 9 | 7 | 7 | 7 | 7 | 7 | 0 | 0 | | CVT Transmissions | 32 | 31 | 34 | 34 | 42 | 42 | 42 | 37 | 35 | 30 | 25 | Table 513 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (JLR) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetrat | ion Rate | (%) by | Model
PC2L | | or Manı | ufacture | er (JLR |) Total | Fleet, A | Alterna | tive | |-------------------------------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 47 | 39 | 35 | 35 | 27 | 27 | 27 | 26 | 21 | 13 | 13 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 52 | 31 | 27 | 27 | 10 | 10 | 10 | 9 | 9 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 46 | 38 | 34 | 34 | 27 | 27 | 27 | 26 | 21 | 13 | 13 | | Mild Hybrid Powertrains | 0.9 | 0.9 | 0.9 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 12.3 | 12.3 | 12.4 | 37.5 | 37.5 | 37.5 | 36.2 | 34.0 | 46.7 | 44.1 | | Plug-In Hybrid Powertrains | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 3.8 | 4.1 | | Battery Electric Vehicles (BEVs) | 0.9 | 18.0 | 25.6 | 25.6 | 25.6 | 25.6 | 25.6 | 28.1 | 32.4 | 36.2 | 39.0 | | BEV 1 | 0.9 | 2.0 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.8 | 4.6 | 4.4 | 4.3 | | BEV 2 | 0.0 | 14.8 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.2 | 19.1 | 19.0 | | BEV 3 | 0.0 | 1.2 | 1.2 | 1.2 | 1.2 | 1.3 | 1.3 | 4.0 | 8.6 | 12.7 | 15.8 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 85 | 30 | 23 | 23 | 18 | 1 | 1 | 1 | 1 | 1 | 1 | | 9-Speed Automatic | 13 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 37 | 37 | 37 | 19 | 36 | 36 | 35 | 29 | 13 | 12 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | • | - | • | • | • | • | • | • | • | • | | Table 514 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Karma) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetrati | on Rate | e (%) by | | Year fo | or Manu | ıfacture | er (Karn | na) Tota | al Fleet, | , Altern | ative | |--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 100.
0 | 100.
0 | 100.
0 | 100.
0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 0.0 | 0.0 | 0.0 | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | | BEV 2 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 515 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Lucid) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetrat | ion Rat | e (%) b | | l Year f
LT4 | or Man | ufactur | er (Luci | id) Tota | I Fleet, | Alterna | ative | |--|-----------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 100.
0 | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 516 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mazda) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetration | on Rate | (%) by l | Model Y | | ^r Manuf | acture | r (Mazd | a) Tota | l Fleet, | Altern | ative | |--|----------|----------|----------|----------|--------------------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 71 | 69 | 69 | 68 | 60 | 57 | 55 | 52 | 49 | 47 | 45 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 29 | 6 | 5 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | |
Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 22.5 | 22.6 | 22.8 | 20.1 | 23.1 | 22.1 | 21.0 | 19.8 | 18.7 | 17.9 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.3 | 2.4 | 4.3 | 4.2 | 16.0 | 19.7 | 23.3 | 27.0 | 31.1 | 34.7 | 37.5 | | BEV 1 | 0.3 | 0.8 | 2.4 | 2.3 | 4.8 | 5.6 | 6.3 | 7.1 | 8.0 | 8.8 | 9.4 | | BEV 2 | 0.0 | 1.4 | 1.6 | 1.6 | 9.6 | 12.1 | 14.6 | 17.0 | 19.8 | 22.3 | 24.1 | | BEV 3 | 0.0 | 0.2 | 0.3 | 0.3 | 1.6 | 2.0 | 2.4 | 2.8 | 3.3 | 3.7 | 4.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 97 | 11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 61 | 70 | 71 | 62 | 51 | 49 | 46 | 44 | 41 | 40 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 4 | 4 | 4 | 4 | Table 517 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, Alternative PC2LT4 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Non-Hybrid Turbocharged Engines | 90 | 81 | 77 | 77 | 56 | 42 | 25 | 22 | 5 | 5 | 3 | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Electric Variable Geometry Turbo | 7 | 7 | 6 | 6 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 12V Stop-Start (non-hybrid) | 63 | 54 | 53 | 53 | 44 | 39 | 25 | 22 | 5 | 5 | 3 | | | | Mild Hybrid Powertrains | 26.5 | 26.2 | 23.6 | 22.9 | 12.5 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 4.4 | 5.4 | 12.1 | 28.1 | 48.5 | 47.7 | 60.3 | 56.6 | 55.6 | | | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Battery Electric Vehicles (BEVs) | 3.1 | 12.6 | 12.1 | 11.7 | 26.4 | 26.2 | 26.2 | 30.1 | 34.7 | 38.8 | 41.8 | | | | BEV 1 | 0.0 | 9.6 | 9.3 | 8.9 | 8.1 | 8.0 | 8.0 | 7.5 | 7.1 | 6.7 | 6.4 | | | | BEV 2 | 1.3 | 1.2 | 1.2 | 1.2 | 10.8 | 10.8 | 10.8 | 11.2 | 11.6 | 12.0 | 12.2 | | | | BEV 3 | 1.8 | 1.7 | 1.7 | 1.6 | 7.0 | 7.0 | 7.0 | 10.7 | 15.1 | 18.8 | 21.7 | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.4 | 0.7 | 1.0 | 1.3 | 1.5 | | | | | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 9-Speed Automatic | 81 | 27 | 14 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 10-Speed Automatic | 0 | 45 | 54 | 65 | 52 | 40 | 20 | 17 | 0 | 0 | 0 | | | | DCT Transmissions | 16 | 16 | 16 | 15 | 9 | 5 | 5 | 5 | 5 | 4 | 2 | | | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | • | • | | | • | • | • | | • | | | | Table 518 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mitsubishi) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penet | ration R | | by Moernative | | | anufact | turer (N | litsubis | shi) Tot | al Fleet | i, | |-------------------------------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 12 | 11 | 11 | 11 | 11 | 11 | 11 | 31 | 30 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 21 | 21 | 21 | 21 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.6 | 3.5 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 5.9 | 5.7 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 36.6 | 35.9 | | Plug-In Hybrid Powertrains | 1.4 | 1.4 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 1.2 | 13.7 | 15.0 | 20.5 | 20.4 | 20.4 | 20.4 | 20.4 | 20.4 | 21.6 | | BEV 1 | 0.0 | 0.5 | 4.4 | 4.3 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.8 | | BEV 2 | 0.0 | 0.6 | 9.3 | 10.7 | 16.2 | 16.2 | 16.2 | 16.2 | 16.2 | 16.2 | 16.8 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 98 | 97 | 79 | 79 | 70 | 70 | 70 | 70 | 70 | 43 | 42 | | OVI HAHSHIISSIUMS | 30 | 31 | 13 | 13 | 70 | 70 | 70 | 70 | 70 | 40 | 44 | Table 519 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Nissan) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetration | n Rate (| (%) by l | Model \ | | Manuf | acturer | · (Nissa | ın) Tota | l Fleet | , Altern | ative | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 10 | 19 | 31 | 30 | 30 | 29 | 28 | 28 | 27 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 13 | 13 | 14 | 14 | 14 | 15 | 3 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 1.1 | 3.0 | 3.0 | 4.6 | 31.9 | 34.3 | 40.3 | 38.8 | 37.7 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 1.2 | 8.2 | 9.3 | 12.5 | 15.1 | 15.0 | 15.4 | 17.8 | 20.5 | 22.9 | 24.7 | | BEV 1 | 1.0 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.3 | 5.2 | 5.1 | 5.0 | | BEV 2 | 0.3 | 2.6 | 3.7 | 7.0 | 9.5 | 9.5 | 9.7 | 11.8 | 14.1 | 16.2 | 17.7 | | BEV 3 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.7 | 1.2 | 1.7 | 2.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 23 | 25 | 26 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 1 | 1 | 1 | 26 | 26 | 15 | 11 | 3 | 3 | 3 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | - | | | | | | | | | 35 | | | CVT Transmissions | 71 | 65 | 63
 59 | 56 | 54 | 38 | 37 | 36 | აა | 34 | Table 520 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Stellantis) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetration | n Rate (% | %) by M | odel Ye | | Manufa | cturer | (Stellar | ntis) To | tal Flee | t, Alter | native | |--|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 11 | 12 | 12 | 12 | 11 | 11 | 10 | 2 | | Cylinder Deactivation | 20 | 20 | 6 | 5 | 5 | 4 | 4 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 10 | 10 | 9 | 11 | 10 | 10 | 10 | 9 | 8 | 8 | 6 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 46 | 44 | 44 | 33 | 33 | 21 | 20 | 11 | 11 | 11 | 2 | | Mild Hybrid Powertrains | 16.4 | 16.4 | 6.5 | 4.4 | 4.5 | 4.7 | 4.7 | 0.2 | 0.2 | 0.2 | 0.2 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 20.2 | 31.5 | 31.7 | 48.1 | 48.8 | 52.2 | 50.3 | 48.7 | 49.1 | | Plug-In Hybrid Powertrains | 4.7 | 4.7 | 4.7 | 0.0 | 0.0 | 0.0 | 0.0 | 8.8 | 8.5 | 8.2 | 16.6 | | Battery Electric Vehicles (BEVs) | 0.0 | 4.8 | 7.6 | 17.7 | 18.0 | 18.0 | 18.0 | 19.2 | 22.1 | 24.7 | 26.7 | | BEV 1 | 0.0 | 2.4 | 2.4 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.7 | 2.6 | 2.5 | | BEV 2 | 0.0 | 2.1 | 4.8 | 9.8 | 10.0 | 10.0 | 10.0 | 10.9 | 12.9 | 14.7 | 16.1 | | BEV 3 | 0.0 | 0.3 | 0.3 | 5.1 | 5.1 | 5.1 | 5.1 | 5.6 | 6.5 | 7.4 | 8.1 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 65 | 61 | 38 | 30 | 30 | 14 | 12 | 5 | 0 | 0 | 0 | | 9-Speed Automatic | 28 | 27 | 27 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 12 | 19 | 19 | 21 | 14 | 19 | 18 | 7 | | DCT Transmissions | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 1 | l | 1 | ı | ı | 1 | l . | ı | l . | | Table 521 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Subaru) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetration | n Rate | (%) by I | Model \ | | · Manuf | acturer | (Suba | ru) Tota | al Fleet | , Altern | ative | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 13 | 40 | 60 | 60 | 57 | 55 | 52 | 48 | 45 | 43 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 24 | 24 | 24 | 23 | 20 | 19 | 18 | 17 | 16 | 15 | 15 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 76 | 74 | 75 | 74 | 64 | 61 | 58 | 55 | 52 | 48 | 46 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 1.3 | 1.1 | 1.0 | 1.0 | 0.9 | 0.8 | 0.8 | 0.8 | | Plug-In Hybrid Powertrains | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 5.2 | 5.1 | 5.3 | 17.6 | 21.6 | 25.7 | 29.7 | 34.2 | 38.2 | 41.2 | | BEV 1 | 0.0 | 3.1 | 3.0 | 2.9 | 3.3 | 3.4 | 3.5 | 3.6 | 3.8 | 4.0 | 4.2 | | BEV 2 | 0.0 | 1.1 | 1.1 | 1.4 | 7.9 | 10.0 | 12.0 | 14.1 | 16.5 | 18.5 | 20.1 | | BEV 3 | 0.0 | 1.0 | 1.0 | 1.0 | 6.5 | 8.3 | 10.1 | 11.9 | 13.9 | 15.6 | 17.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | | CVT Transmissions | 95 | 91 | 91 | 90 | 79 | 75 | 71 | 67 | 63 | 59 | 56 | Table 522 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Tesla) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Tesla) Total Fleet, Alternative PC2LT4 Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | |--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Battery Electric Vehicles (BEVs) | 100.
0 | | | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | BEV 2 | 18.5 | 18.5 | 18.4 | 18.3 | 18.3 | 18.3 | 18.3 | 18.2 | 18.3 | 18.3 | 18.3 | | | | BEV 3 | 56.9 | 57.1 | 57.2 | 57.4 | 57.5 | 57.5 | 57.5 | 57.6 | 57.5 | 57.5 | 57.5 | | | | BEV 4 | 24.6 | 24.5 | 24.4 | 24.3 | 24.3 | 24.2 | 24.2 | 24.2 | 24.2 | 24.2 | 24.2 | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Table 523 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Toyota) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetration | n Rate (| %) by l | Model Y
PC2L | | Manuf | acturer | (Toyot | ta) Tota | ıl Fleet, | Altern | ative | |--|---------------------------------------|----------------|-----------------|----------|----------|----------|----------|----------|-----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 25 | 24 | 31 | 31 | 33 | 32 | 31 | 29 | 28 | 27 | 25 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 7 | 7 | 17 | 18 | 24 | 27 | 26 | 25 | 24 | 23 | 22 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 25 | 25 | 26 | 26 | 23 | 23 | 22 | 21 | 20 | 19 | 19 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 24.8 | 25.1 | 25.3 | 25.8 | 21.7 | 21.3 | 20.5 | 19.6 | 18.7 | 17.9 | 17.2 | | Plug-In Hybrid Powertrains | 2.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | | Battery Electric Vehicles (BEVs) | 0.0 | 2.4 | 2.3 | 4.0 | 15.8 | 17.7 | 21.1 | 24.4 | 28.1 | 31.4 | 33.9 | | BEV 1 | 0.0 | 1.4 | 1.4 | 2.6 | 7.1 | 7.6 |
8.5 | 9.5 | 10.6 | 11.6 | 12.3 | | BEV 2 | 0.0 | 0.6 | 0.6 | 0.9 | 5.3 | 6.2 | 7.6 | 9.1 | 10.7 | 12.1 | 13.2 | | BEV 3 | 0.0 | 0.4 | 0.4 | 0.6 | 3.4 | 3.9 | 4.9 | 5.8 | 6.8 | 7.7 | 8.4 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | | | | | | | | | | 5-Speed Automatic | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 11 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 34 | 33 | 50 | 49 | 44 | 36 | 33 | 31 | 30 | 28 | 26 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 6 | 6 | 6 | 6 | 6 | 5 | 5 | 5 | 5 | 4 | 4 | | DCT Transmissions | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | CVT Transmissions | 15 | 14 | 14 | 13 | 12 | 18 | 20 | 19 | 18 | 17 | 17 | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | · | | | | | | | | | Table 524 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Volvo) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetration | on Rate | (%) by | Model `
PC2L | | r Manu | facture | r (Volv | o) Tota | l Fleet, | Alterna | ative | |-------------------------------------|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 64 | 65 | 65 | 65 | 63 | 64 | 64 | 64 | 39 | 37 | 30 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 5 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 27.2 | 26.8 | 26.4 | 26.1 | 23.8 | 23.7 | 23.7 | 23.7 | 22.4 | 21.2 | 15.6 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 1.7 | 4.7 | 6.8 | 6.8 | 6.8 | 6.8 | 27.9 | 26.2 | 29.6 | | Plug-In Hybrid Powertrains | 17.6 | 14.9 | 15.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 13.4 | 15.6 | 15.1 | 29.9 | 29.7 | 29.6 | 29.5 | 29.5 | 33.3 | 37.3 | 40.2 | | BEV 1 | 3.5 | 6.3 | 6.2 | 6.1 | 6.1 | 6.0 | 6.0 | 6.0 | 6.0 | 6.1 | 6.1 | | BEV 2 | 9.9 | 9.3 | 8.9 | 8.5 | 8.3 | 8.2 | 8.1 | 8.0 | 8.5 | 9.1 | 9.5 | | BEV 3 | 0.0 | 0.0 | 0.0 | 15.2 | 15.3 | 15.4 | 15.4 | 15.4 | 18.8 | 22.1 | 24.7 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 69 | 69 | 68 | 65 | 63 | 41 | 41 | 27 | 5 | 5 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 23 | 23 | 37 | 34 | 32 | 30 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | • | | | • | | | • | | Table 525 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (VWA) Total Fleet, Alternative PC2LT4 | Powertrain Technology Penetrati | on Rate | (%) by | Model
PC2L | | r Manu | ıfacture | er (VWA | A) Total | Fleet, | Alterna | itive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 11 | 11 | 11 | 11 | 11 | 11 | 3 | 3 | 1 | | Cylinder Deactivation | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 61 | 57 | 49 | 39 | 32 | 31 | 22 | 21 | 17 | 10 | 8 | | Variable Geometry Turbo | 19 | 20 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 81 | 78 | 57 | 46 | 43 | 41 | 33 | 31 | 20 | 13 | 9 | | Mild Hybrid Powertrains | 8.3 | 8.2 | 4.2 | 4.3 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 21.1 | 31.7 | 35.2 | 37.5 | 45.4 | 43.4 | 45.6 | 49.6 | 51.2 | | Plug-In Hybrid Powertrains | 1.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.3 | 5.0 | 4.8 | | Battery Electric Vehicles (BEVs) | 7.1 | 10.5 | 14.5 | 16.8 | 20.8 | 20.7 | 21.9 | 25.3 | 29.2 | 32.6 | 35.2 | | BEV 1 | 2.8 | 6.2 | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 | 6.1 | 6.0 | 5.8 | 5.7 | | BEV 2 | 4.1 | 4.0 | 8.1 | 8.9 | 12.9 | 12.8 | 13.4 | 15.2 | 17.3 | 19.2 | 20.6 | | BEV 3 | 0.2 | 0.2 | 0.2 | 1.5 | 1.6 | 1.6 | 2.2 | 4.0 | 5.9 | 7.6 | 8.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 60 | 59 | 38 | 35 | 33 | 19 | 5 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 1 | 2 | 2 | 1 | 14 | 21 | 25 | 14 | 7 | 3 | | DCT Transmissions | 30 | 26 | 22 | 13 | 10 | 8 | 6 | 6 | 6 | 6 | 5 | | CVT Transmissions | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 526 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (BMW) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetrati | on Rate | (%) by | Model `
PC3L | | r Manu | facture | r (BMW | /) Total | Fleet, | Alterna | ntive | |--|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 91 | 87 | 75 | 62 | 23 | 23 | 15 | 12 | 12 | 11 | 4 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 58 | 53 | 44 | 33 | 19 | 19 | 13 | 10 | 10 | 9 | 2 | | Mild Hybrid Powertrains | 29.0 | 29.9 | 28.8 | 26.3 | 1.7 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 2.1 | 15.7 | 53.6 | 53.9 | 58.6 | 57.3 | 53.5 | 50.2 | 54.0 | | Plug-In Hybrid Powertrains | 5.8 | 5.9 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 3.3 | 7.3 | 17.5 | 22.5 | 23.2 | 23.1 | 26.2 | 30.3 | 35.0 | 39.1 | 42.2 | | BEV 1 | 0.8 | 3.2 | 3.3 | 3.3 | 4.1 | 4.1 | 4.1 | 4.0 | 4.1 | 4.1 | 4.1 | | BEV 2 | 0.2 | 1.8 | 11.9 | 11.8 | 11.7 | 11.5 | 12.4 | 13.6 | 15.0 | 16.3 | 17.3 | | BEV 3 | 2.3 | 2.3 | 2.3 | 7.4 | 7.4 | 7.5 | 9.7 | 12.6 | 15.7 | 18.5 | 20.5 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.2 | 0.3 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 85 | 74 | 62 | 45 | 15 | 15 | 10 | 1 | 1 | 1 | 1 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 8 | 10 | 13 | 6 | 6 | 3 | 9 | 9 | 8 | 1 | | DCT Transmissions | 6 | 6 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 527 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Ford) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetrati | on Rate | (%) by | Model
PC3L | | r Manu | ıfacture | er (Ford | l) Total | Fleet, | Alterna | tive | |-------------------------------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 74 | 70 | 62 | 62 | 58 | 30 | 13 | 1 | 1 | 1 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 73 | 68 | 62 | 62 | 57 | 32 | 15 | 3 | 3 | 3 | 2 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 8.6 | 8.6 | 10.6 | 10.5 | 10.5 | 45.9 | 62.7 | 74.1 | 74.1 | 72.2 | 71.0 | | Plug-In Hybrid Powertrains | 1.2 | 1.1 | 1.0 | 0.0 | 0.0 | 1.2 | 1.5 | 2.4 | 2.4 | 2.3 | 2.3 | | Battery Electric Vehicles (BEVs) | 2.9 | 7.5 | 14.7 | 15.6 | 20.2 | 20.1 | 20.1 | 20.1 | 20.1 | 22.1 | 23.9 | | BEV 1 | 0.5 | 3.1 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | BEV 2 | 1.4 | 3.6 | 10.8 | 11.5 | 16.1 | 16.0 | 16.0 | 16.0 | 16.0 | 17.5 | 18.7 | | BEV 3 | 1.0 | 0.9 | 0.8 | 1.1 | 1.1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.6 | 2.2 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 29 | 29 | 23 | 16 | 13 | 4 | 4 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 54 | 51 | 49 | 56 | 54 | 27 | 10 | 3 | 3 | 2 | 2 | | DCT Transmissions | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | - | | | | | | • | | • | • | | Table 528 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (GM) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetrat | ion Rate | e (%) by | Model
PC3L | | or Man | ufactur | er (GM) | Total | Fleet, A | Alternat | ive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 1 | 7 | 8 | 8 | 8 | 7 | 7 | 6 | 0 | | Cylinder Deactivation | 4 | 4 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 47 | 46 | 35 | 33 | 28 | 28 | 28 | 22 | 20 | 5 | 5 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 5 | 5 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 82 | 82 | 66 | 43 | 36 | 27 | 27 | 22 | 20 | 6 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 1.3 | 2.9 | 3.7 | 3.7 | 3.7 | 2.4 | 1.1 | 1.1 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 5.3 | 24.7 | 28.2 | 28.3 | 28.3 | 34.2 | 36.1 | 35.9 | 39.9 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 2.1 | 2.1 | 13.7 | 13.7 | 13.8 | 14.2 | 30.8 | 32.4 | | Battery Electric Vehicles (BEVs) | 1.6 | 1.5 | 17.3 | 18.7 | 21.6 | 21.6 | 21.6 | 21.6 | 21.6 | 21.6 | 21.7 | | BEV 1 | 0.0 | 0.0 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | BEV 2 | 1.6 | 1.5 | 14.6 | 16.0 | 18.9 | 18.9 | 18.9 | 18.9 | 18.9 | 18.9 | 19.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 20 | 20 | 19 | 14 | 14 | 14 | 5 | 5 | 0 | 0 | 0 | | 9-Speed Automatic | 22 | 22 | 18 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 28 | 28 | 35 | 30 | 29 | 18 | 28 | 22 | 26 | 12 | 6 | | DCT Transmissions | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 9 | 8 | 4 | 4 | 4 | 3 | 3 | 3 | 1 | 0 | 0 | Table 529 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Honda) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration | on Rate | (%) by l | Model ' | | Manuf | acture | r (Hond | la) Tota | l Fleet, | Altern | ative | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 8 | 8 | 7 | 6 | 6 | 14 | 13 | 12 | 12 | 11 | | Cylinder Deactivation | 27 | 13 | 13 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 43 | 56 | 56 | 62 | 58 | 39 | 33 | 28 | 18 | 17 | 12 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 79 | 78 | 78 | 74 | 65 | 45 | 39 | 34 | 24 | 22 | 19 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 9.3 | 6.8 | 6.8 | 11.5 | 10.9 | 27.6 | 30.8 | 32.4 | 39.4 | 37.2 | 39.9 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 4.8 | 5.1 | 5.8 | 15.7 | 19.3 | 22.8 | 26.4 | 30.5 | 34.0 | 36.7 | | BEV 1 | 0.0 | 3.4 | 3.5 | 3.6 | 7.8 | 9.3 | 10.8 | 12.3 | 14.0 | 15.6 | 16.8 | | BEV 2 | 0.0 | 1.1 | 1.2 | 1.9 | 6.4 | 8.1 | 9.7 | 11.4 | 13.2 | 14.9 | 16.0 | | BEV 3 | 0.0 | 0.3 | 0.3 | 0.4 | 1.5 | 1.9 | 2.3 | 2.8 | 3.2 | 3.6 | 3.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 17 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 17 | 31 | 32 | 28 | 28 | 26 | 21 | 17 | 7 | 6 | 2 | | DCT Transmissions | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | CVT Transmissions | 55 | 52 | 51 | 50 | 45 | 26 | 25 | 24 | 23 | 22 | 21 | Table 530 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiH) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiH) Total Fleet, Alternative PC3LT5 | | | | | | | | | | | | | | | |---|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression
Engines | 59 | 59 | 59 | 54 | 46 | 46 | 25 | 24 | 23 | 22 | 15 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 19 | 18 | 18 | 15 | 11 | 9 | 5 | 4 | 4 | 4 | 4 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 68 | 68 | 68 | 60 | 43 | 40 | 14 | 14 | 13 | 13 | 10 | | | | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 7.2 | 7.3 | 7.3 | 7.1 | 6.7 | 6.4 | 2.2 | | | | | Strong Hybrid Powertrains Total | 10.9 | 9.8 | 10.1 | 16.0 | 21.0 | 27.6 | 52.1 | 50.3 | 48.1 | 46.1 | 51.3 | | | | | Plug-In Hybrid Powertrains | 1.9 | 1.7 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 3.3 | 7.0 | 6.8 | 11.2 | 17.9 | 17.8 | 18.6 | 21.5 | 24.8 | 27.8 | 30.0 | | | | | BEV 1 | 0.2 | 4.0 | 3.9 | 3.7 | 4.4 | 4.4 | 4.7 | 6.1 | 7.7 | 9.1 | 10.2 | | | | | BEV 2 | 2.1 | 2.1 | 2.0 | 6.5 | 12.3 | 12.3 | 12.6 | 13.7 | 14.9 | 15.9 | 16.7 | | | | | BEV 3 | 1.0 | 1.0 | 1.0 | 0.9 | 1.2 | 1.1 | 1.3 | 1.7 | 2.2 | 2.7 | 3.0 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fuel Cell Vehicles (FCVs) | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 50 | 42 | 40 | 32 | 25 | 25 | 0 | 0 | 0 | 0 | 0 | | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 0 | 2 | 4 | 4 | 2 | 3 | 3 | 3 | 3 | 3 | | | | | DCT Transmissions | 11 | 11 | 11 | 8 | 7 | 7 | 4 | 4 | 4 | 4 | 4 | | | | | CVT Transmissions | 22 | 28 | 28 | 28 | 25 | 22 | 21 | 21 | 20 | 19 | 12 | | | | Table 531 - Powertrain Technology
Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiK) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiK) Total Fleet, Alternative PC3LT5 | | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression
Engines | 45 | 57 | 58 | 59 | 50 | 50 | 50 | 34 | 30 | 25 | 13 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 24 | 23 | 19 | 19 | 17 | 17 | 17 | 17 | 16 | 9 | 8 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 32 | 32 | 30 | 30 | 27 | 27 | 27 | 27 | 26 | 18 | 7 | | | | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 0.0 | | | | | Strong Hybrid Powertrains Total | 5.0 | 5.0 | 5.0 | 5.0 | 10.2 | 10.2 | 10.2 | 22.3 | 24.2 | 30.4 | 40.9 | | | | | Plug-In Hybrid Powertrains | 3.0 | 1.6 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 7.7 | 7.4 | 11.5 | 11.1 | | | | | Battery Electric Vehicles (BEVs) | 4.4 | 6.1 | 11.4 | 12.8 | 18.3 | 18.3 | 18.3 | 19.2 | 22.1 | 24.7 | 26.7 | | | | | BEV 1 | 0.0 | 1.9 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 3.0 | 3.9 | 4.7 | 5.4 | | | | | BEV 2 | 3.7 | 3.5 | 7.9 | 9.4 | 14.9 | 14.9 | 14.9 | 15.5 | 17.2 | 18.8 | 20.0 | | | | | BEV 3 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.9 | 1.2 | 1.3 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 34 | 47 | 39 | 39 | 22 | 22 | 22 | 9 | 0 | 0 | 0 | | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 8 | 8 | | | | | DCT Transmissions | 9 | 9 | 9 | 9 | 7 | 7 | 7 | 7 | 7 | 0 | 0 | | | | | CVT Transmissions | 32 | 31 | 34 | 34 | 42 | 42 | 42 | 34 | 30 | 25 | 13 | | | | Table 532 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (JLR) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetrat | ion Rate | (%) by | Model
PC3L | | r Manı | ufacture | er (JLR |) Total | Fleet, A | Alterna | tive | |-------------------------------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 47 | 39 | 35 | 35 | 27 | 27 | 27 | 26 | 21 | 13 | 13 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 52 | 31 | 27 | 27 | 10 | 10 | 10 | 9 | 9 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 46 | 38 | 34 | 34 | 27 | 27 | 27 | 26 | 21 | 13 | 13 | | Mild Hybrid Powertrains | 0.9 | 0.9 | 0.9 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 12.3 | 12.3 | 12.4 | 37.5 | 37.5 | 37.5 | 36.2 | 34.0 | 46.7 | 44.1 | | Plug-In Hybrid Powertrains | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 3.8 | 4.1 | | Battery Electric Vehicles (BEVs) | 0.9 | 18.0 | 25.6 | 25.6 | 25.6 | 25.6 | 25.6 | 28.1 | 32.4 | 36.2 | 39.0 | | BEV 1 | 0.9 | 2.0 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.8 | 4.6 | 4.4 | 4.3 | | BEV 2 | 0.0 | 14.8 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.3 | 19.2 | 19.1 | 19.0 | | BEV 3 | 0.0 | 1.2 | 1.2 | 1.2 | 1.2 | 1.3 | 1.3 | 4.0 | 8.6 | 12.7 | 15.8 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 85 | 30 | 23 | 23 | 18 | 1 | 1 | 1 | 0 | 0 | 0 | | 9-Speed Automatic | 13 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 37 | 37 | 37 | 19 | 36 | 36 | 35 | 30 | 13 | 13 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | • | • | | • | | | | | | | Table 533 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Karma) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Karma) Total Fleet, Alternative PC3LT5 Model Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | | | | | | | | | | | | | | |--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Plug-In Hybrid Powertrains | 100.
0 | 100.
0 | 100.
0 | 100.
0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Battery Electric Vehicles (BEVs) | 0.0 | 0.0 | 0.0 | 0.0 | 100.
0 | | | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | | | | BEV 2 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | | | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Table 534 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Lucid) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetrat | ion Rat | e (%) b | | l Year f
LT5 | or Man | ufactur | er (Luci | id) Tota | I Fleet, | Alterna | ative | |--|-----------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery
Electric Vehicles (BEVs) | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 100.
0 | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 535 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mazda) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration | on Rate | (%) by I | Model Y | | ^r Manuf | acture | r (Mazd | a) Tota | l Fleet, | Altern | ative | |--|----------|----------|----------|----------|--------------------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 71 | 69 | 69 | 68 | 60 | 57 | 55 | 41 | 39 | 37 | 35 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 29 | 6 | 5 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 22.5 | 22.6 | 22.8 | 20.1 | 23.1 | 22.1 | 21.0 | 19.8 | 18.8 | 17.9 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.9 | 10.3 | 9.7 | 9.3 | | Battery Electric Vehicles (BEVs) | 0.3 | 2.4 | 4.3 | 4.2 | 16.0 | 19.7 | 23.3 | 27.0 | 31.1 | 34.7 | 37.5 | | BEV 1 | 0.3 | 0.8 | 2.4 | 2.3 | 4.8 | 5.6 | 6.3 | 7.1 | 8.0 | 8.8 | 9.4 | | BEV 2 | 0.0 | 1.4 | 1.6 | 1.6 | 9.6 | 12.1 | 14.6 | 17.0 | 19.8 | 22.3 | 24.1 | | BEV 3 | 0.0 | 0.2 | 0.3 | 0.3 | 1.6 | 2.0 | 2.4 | 2.8 | 3.3 | 3.7 | 3.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 97 | 11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 61 | 70 | 71 | 62 | 51 | 48 | 35 | 33 | 31 | 12 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | DCT Transmissions | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 4 | 4 | 4 | 21 | Table 536 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, Alternative PC3LT5 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Non-Hybrid Turbocharged Engines | 90 | 81 | 77 | 77 | 56 | 42 | 25 | 22 | 2 | 2 | 0 | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Electric Variable Geometry Turbo | 7 | 7 | 6 | 6 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 12V Stop-Start (non-hybrid) | 63 | 54 | 53 | 53 | 44 | 39 | 25 | 22 | 2 | 2 | 0 | | | | Mild Hybrid Powertrains | 26.5 | 26.2 | 23.6 | 22.9 | 12.5 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 4.4 | 5.4 | 12.1 | 28.1 | 48.5 | 47.7 | 62.8 | 59.3 | 58.2 | | | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Battery Electric Vehicles (BEVs) | 3.1 | 12.6 | 12.1 | 11.7 | 26.4 | 26.2 | 26.2 | 30.1 | 34.7 | 38.8 | 41.8 | | | | BEV 1 | 0.0 | 9.6 | 9.3 | 8.9 | 8.1 | 8.0 | 8.0 | 7.5 | 7.1 | 6.7 | 6.4 | | | | BEV 2 | 1.3 | 1.2 | 1.2 | 1.2 | 10.8 | 10.8 | 10.8 | 11.2 | 11.6 | 12.0 | 12.2 | | | | BEV 3 | 1.8 | 1.7 | 1.7 | 1.6 | 7.0 | 7.0 | 7.0 | 10.8 | 15.0 | 18.8 | 21.6 | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.4 | 0.7 | 1.0 | 1.3 | 1.5 | | | | | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | E Chand Automotic | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 9-Speed Automatic | 81 | 27 | 14 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 10-Speed Automatic | 0 | 45 | 54 | 65 | 52 | 40 | 20 | 17 | 0 | 0 | 0 | | | | DCT Transmissions | 16 | 16 | 16 | 15 | 9 | 5 | 5 | 5 | 2 | 2 | 0 | | | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Table 537 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mitsubishi) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mitsubishi) Total Fleet, Alternative PC3LT5 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression
Engines | 0 | 0 | 12 | 11 | 11 | 11 | 11 | 11 | 11 | 27 | 27 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 21 | 21 | 21 | 21 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.2 | 16.2 | | | | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 5.9 | 5.7 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 17.3 | 17.0 | | | | | Plug-In Hybrid Powertrains | 1.4 | 1.4 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.9 | 22.4 | | | | | Battery Electric Vehicles (BEVs) | 0.0 | 1.2 | 13.7 | 15.0 | 20.5 | 20.4 | 20.4 | 20.3 | 20.4 | 20.4 | 21.6 | | | | | BEV 1 | 0.0 | 0.5 | 4.4 | 4.3 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.8 | | | | | BEV 2 | 0.0 | 0.6 | 9.3 | 10.7 | 16.2 | 16.2 | 16.2 | 16.2 | 16.2 | 16.2 | 16.8 | | | | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | | , | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | DCT Transmissions | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | CVT Transmissions | 98 | 97 | 79 | 79 | 70 | 70 | 70 | 70 | 70 | 39 | 39 | | | | | OVI HAHSHIISSIUMS | 30 | 31 | 13 | 13 | 70 | 70 | 70 | 70 | 70 | 33 | 55 | | | | Table 538 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Nissan) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration | n Rate (| (%) by I | Model \ | | [·] Manuf | acturer | · (Nissa | ın) Tota | l Fleet, | , Altern | ative |
--|----------|----------|----------|----------|--------------------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 10 | 19 | 31 | 30 | 30 | 29 | 24 | 24 | 23 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 13 | 13 | 14 | 14 | 14 | 15 | 3 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.8 | 6.5 | 6.4 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 1.1 | 3.0 | 3.0 | 4.6 | 31.9 | 34.3 | 46.7 | 45.0 | 43.8 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 1.2 | 8.2 | 9.3 | 12.5 | 15.1 | 15.0 | 15.4 | 17.8 | 20.5 | 22.9 | 24.7 | | BEV 1 | 1.0 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.3 | 5.2 | 5.1 | 5.0 | | BEV 2 | 0.3 | 2.6 | 3.7 | 7.0 | 9.5 | 9.5 | 9.7 | 11.8 | 14.1 | 16.2 | 17.7 | | BEV 3 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.7 | 1.2 | 1.7 | 2.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 23 | 25 | 26 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 1 | 1 | 1 | 26 | 26 | 15 | 11 | 1 | 1 | 1 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 71 | 65 | 63 | 59 | 56 | 54 | 38 | 37 | 32 | 31 | 31 | | | | | | | | | | | | | | Table 539 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Stellantis) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Stellantis) Total Fleet, Alternative PC3LT5 202 202 202 202 202 202 202 203 203 203 | | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | | | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 11 | 12 | 12 | 12 | 11 | 11 | 10 | 2 | | | | | Cylinder Deactivation | 20 | 20 | 6 | 5 | 5 | 4 | 4 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 10 | 10 | 9 | 11 | 10 | 10 | 10 | 9 | 8 | 7 | 5 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 46 | 44 | 44 | 33 | 33 | 21 | 20 | 11 | 11 | 10 | 0 | | | | | Mild Hybrid Powertrains | 16.4 | 16.4 | 6.5 | 4.4 | 4.5 | 4.7 | 4.7 | 0.2 | 0.2 | 0.2 | 1.7 | | | | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 20.2 | 31.5 | 31.7 | 48.1 | 48.8 | 52.2 | 50.3 | 50.0 | 50.4 | | | | | Plug-In Hybrid Powertrains | 4.7 | 4.7 | 4.7 | 0.0 | 0.0 | 0.0 | 0.0 | 8.8 | 8.5 | 8.2 | 16.5 | | | | | Battery Electric Vehicles (BEVs) | 0.0 | 4.8 | 7.6 | 17.7 | 18.0 | 18.0 | 18.0 | 19.2 | 22.1 | 24.7 | 26.7 | | | | | BEV 1 | 0.0 | 2.4 | 2.4 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.7 | 2.6 | 2.5 | | | | | BEV 2 | 0.0 | 2.1 | 4.8 | 9.8 | 10.0 | 10.0 | 10.0 | 10.9 | 12.9 | 14.7 | 16.1 | | | | | BEV 3 | 0.0 | 0.3 | 0.3 | 5.1 | 5.1 | 5.1 | 5.1 | 5.6 | 6.5 | 7.4 | 8.1 | | | | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 65 | 61 | 38 | 30 | 30 | 14 | 12 | 5 | 0 | 0 | 0 | | | | | 9-Speed Automatic | 28 | 27 | 27 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 0 | 0 | 12 | 19 | 19 | 21 | 14 | 19 | 17 | 6 | | | | | DCT Transmissions | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 1 | l | 1 | ı | ı | ı | l | ı | l . | | | | | Table 540 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Subaru) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration | n Rate | (%) by I | Model Y | | Manuf | acturer | (Suba | ru) Tota | al Fleet | , Altern | ative | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 13 | 40 | 60 | 60 | 57 | 54 | 51 | 48 | 45 | 43 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 24 | 24 | 24 | 23 | 20 | 19 | 18 | 17 | 16 | 15 | 15 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 76 | 74 | 75 | 74 | 64 | 61 | 58 | 55 | 52 | 48 | 46 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 1.3 | 1.1 | 1.0 | 1.3 | 1.2 | 1.1 | 1.1 | 1.0 | | Plug-In Hybrid Powertrains | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 5.2 | 5.1 | 5.3 | 17.6 | 21.6 | 25.7 | 29.7 | 34.2 | 38.2 | 41.2 | | BEV 1 | 0.0 | 3.1 | 3.0 | 2.9 | 3.3 | 3.4 | 3.5 | 3.6 | 3.8 | 4.0 | 4.2 | | BEV 2 | 0.0 | 1.1 | 1.1 | 1.4 | 7.9 | 10.0 | 12.0 | 14.1 | 16.5 | 18.5 | 20.1 | | BEV 3 | 0.0 | 1.0 | 1.0 | 1.0 | 6.5 | 8.3 | 10.1 | 11.9 | 13.9 | 15.6 | 16.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | | CVT Transmissions | 95 | 91 | 91 | 90 | 79 | 75 | 71 | 67 | 63 | 59 | 56 | Table 541 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Tesla) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetra | tion Rat | e (%) b | y Mode
PC3 | | or Man | ufactur | er (Tes | la) Tota | l Fleet, | Alterna | ative | |--|-----------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 2 | 18.5 | 18.5 | 18.4 | 18.3 | 18.3 | 18.3 | 18.3 | 18.2 | 18.3 | 18.3 | 18.3 | | BEV 3 | 56.9 | 57.1 | 57.2 | 57.4 | 57.5 | 57.5 | 57.5 | 57.6 | 57.5 | 57.5 | 57.5 | | BEV 4 | 24.6 | 24.5 | 24.4 | 24.3 | 24.3 | 24.2 | 24.2 | 24.2 | 24.2 | 24.2 | 24.3
 | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 542 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Toyota) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration | on Rate (| %) by l | Model Y
PC3L | | Manuf | acturer | (Toyo | ta) Tota | l Fleet, | , Altern | ative | |--|-----------|----------------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 25 | 24 | 31 | 31 | 33 | 32 | 29 | 27 | 26 | 25 | 22 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 7 | 7 | 17 | 18 | 24 | 27 | 26 | 25 | 22 | 18 | 17 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 25 | 25 | 26 | 26 | 23 | 23 | 20 | 18 | 17 | 14 | 14 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 24.8 | 25.1 | 25.3 | 25.8 | 21.7 | 21.3 | 22.1 | 22.1 | 22.6 | 24.1 | 24.1 | | Plug-In Hybrid Powertrains | 2.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.4 | 0.3 | 2.8 | | Battery Electric Vehicles (BEVs) | 0.0 | 2.4 | 2.3 | 4.0 | 15.8 | 17.7 | 21.1 | 24.4 | 28.1 | 31.4 | 33.9 | | BEV 1 | 0.0 | 1.4 | 1.4 | 2.6 | 7.1 | 7.6 | 8.5 | 9.5 | 10.6 | 11.6 | 12.4 | | BEV 2 | 0.0 | 0.6 | 0.6 | 0.9 | 5.3 | 6.2 | 7.6 | 9.1 | 10.7 | 12.1 | 13.1 | | BEV 3 | 0.0 | 0.4 | 0.4 | 0.6 | 3.4 | 3.9 | 4.9 | 5.8 | 6.8 | 7.7 | 8.4 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 5-Speed Automatic | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 11 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 34 | 33 | 50 | 49 | 44 | 36 | 17 | 7 | 4 | 3 | 3 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 6 | 6 | 6 | 6 | 6 | 5 | 12 | 19 | 19 | 16 | 13 | | DCT Transmissions | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | CVT Transmissions | 15 | 14 | 14 | 13 | 12 | 18 | 27 | 26 | 26 | 25 | 23 | Table 543 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Volvo) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetration | on Rate | (%) by | Model `
PC3L | | r Manu | facture | r (Volv | o) Tota | l Fleet, | Alterna | ative | |--|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 64 | 65 | 65 | 65 | 63 | 64 | 64 | 64 | 39 | 37 | 23 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 5 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 27.2 | 26.8 | 26.4 | 26.1 | 23.8 | 23.7 | 23.7 | 23.7 | 22.4 | 21.2 | 8.2 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 1.7 | 4.7 | 6.8 | 6.8 | 6.8 | 6.8 | 27.9 | 26.2 | 37.0 | | Plug-In Hybrid Powertrains | 17.6 | 14.9 | 15.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 13.4 | 15.6 | 15.1 | 29.9 | 29.7 | 29.6 | 29.5 | 29.5 | 33.3 | 37.3 | 40.2 | | BEV 1 | 3.5 | 6.3 | 6.2 | 6.1 | 6.1 | 6.0 | 6.0 | 6.0 | 6.0 | 6.1 | 6.1 | | BEV 2 | 9.9 | 9.3 | 8.9 | 8.5 | 8.3 | 8.2 | 8.1 | 8.0 | 8.5 | 9.1 | 9.5 | | BEV 3 | 0.0 | 0.0 | 0.0 | 15.2 | 15.3 | 15.4 | 15.4 | 15.4 | 18.8 | 22.1 | 24.6 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 69 | 69 | 68 | 65 | 63 | 41 | 41 | 27 | 5 | 5 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 23 | 23 | 37 | 34 | 32 | 23 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 544 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (VWA) Total Fleet, Alternative PC3LT5 | Powertrain Technology Penetrati | on Rate | (%) by | Model
PC3L | | r Manu | ıfacture | er (VWA | () Total | Fleet, | Alterna | itive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 11 | 11 | 11 | 11 | 11 | 11 | 3 | 3 | 1 | | Cylinder Deactivation | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 61 | 57 | 49 | 39 | 32 | 31 | 22 | 21 | 17 | 7 | 5 | | Variable Geometry Turbo | 19 | 20 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 81 | 78 | 57 | 46 | 43 | 41 | 26 | 25 | 14 | 4 | 1 | | Mild Hybrid Powertrains | 8.3 | 8.2 | 4.2 | 4.3 | 0.4 | 0.2 | 6.5 | 6.1 | 5.9 | 5.5 | 5.3 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 21.1 | 31.7 | 35.2 | 37.5 | 45.4 | 43.4 | 45.6 | 52.7 | 54.2 | | Plug-In Hybrid Powertrains | 1.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.3 | 5.0 | 4.8 | | Battery Electric Vehicles (BEVs) | 7.1 | 10.5 | 14.5 | 16.8 | 20.8 | 20.7 | 21.9 | 25.3 | 29.2 | 32.6 | 35.2 | | BEV 1 | 2.8 | 6.2 | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 | 6.1 | 6.0 | 5.8 | 5.7 | | BEV 2 | 4.1 | 4.0 | 8.1 | 8.9 | 12.9 | 12.8 | 13.4 | 15.2 | 17.3 | 19.2 | 20.6 | | BEV 3 | 0.2 | 0.2 | 0.2 | 1.5 | 1.6 | 1.6 | 2.2 | 4.0 | 5.9 | 7.6 | 8.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 60 | 59 | 38 | 35 | 33 | 19 | 5 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 1 | 2 | 2 | 1 | 14 | 21 | 25 | 14 | 4 | 1 | | DCT Transmissions | 30 | 26 | 22 | 13 | 10 | 8 | 6 | 6 | 6 | 5 | 5 | | CVT Transmissions | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 545 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (BMW) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetration | on Rate | (%) by | Model `
PC6L | | r Manu | facture | r (BMW | /) Total | Fleet, | Alterna | itive | |--|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 91 | 87 | 75 | 62 | 23 | 23 | 14 | 11 | 8 | 8 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 58 | 53 | 44 | 33 | 19 | 19 | 11 | 9 | 8 | 8 | 0 | | Mild Hybrid Powertrains | 29.0 | 29.9 | 28.8 | 26.3 | 1.7 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 |
2.1 | 15.7 | 53.6 | 53.9 | 60.2 | 58.8 | 56.6 | 53.1 | 56.5 | | Plug-In Hybrid Powertrains | 5.8 | 5.9 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 1.3 | | Battery Electric Vehicles (BEVs) | 3.3 | 7.3 | 17.5 | 22.5 | 23.2 | 23.1 | 26.2 | 30.3 | 35.0 | 39.1 | 42.2 | | BEV 1 | 0.8 | 3.2 | 3.3 | 3.3 | 4.1 | 4.1 | 4.0 | 4.0 | 4.0 | 4.1 | 4.1 | | BEV 2 | 0.2 | 1.8 | 11.9 | 11.8 | 11.7 | 11.5 | 12.4 | 13.6 | 15.0 | 16.3 | 17.3 | | BEV 3 | 2.3 | 2.3 | 2.3 | 7.4 | 7.4 | 7.5 | 9.7 | 12.7 | 15.8 | 18.5 | 20.5 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.2 | 0.3 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 85 | 74 | 62 | 45 | 15 | 15 | 10 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 8 | 10 | 13 | 6 | 6 | 1 | 9 | 8 | 8 | 0 | | DCT Transmissions | 6 | 6 | 3 | 3 | 3 | 3 | 2 | 2 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 546 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Ford) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetrati | on Rate | (%) by | Model
PC6L | | r Manu | ıfacture | er (Ford | l) Total | Fleet, | Alterna | tive | |-------------------------------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 74 | 70 | 62 | 62 | 58 | 30 | 13 | 1 | 1 | 1 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 73 | 68 | 62 | 62 | 57 | 32 | 15 | 3 | 3 | 3 | 2 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 8.6 | 8.6 | 10.6 | 10.5 | 10.5 | 45.9 | 62.7 | 73.4 | 73.4 | 71.5 | 70.2 | | Plug-In Hybrid Powertrains | 1.2 | 1.1 | 1.0 | 0.0 | 0.0 | 1.2 | 1.5 | 3.2 | 3.2 | 3.0 | 3.0 | | Battery Electric Vehicles (BEVs) | 2.9 | 7.5 | 14.7 | 15.6 | 20.2 | 20.1 | 20.1 | 20.1 | 20.1 | 22.1 | 23.9 | | BEV 1 | 0.5 | 3.1 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | BEV 2 | 1.4 | 3.6 | 10.8 | 11.5 | 16.1 | 16.0 | 16.0 | 16.0 | 16.0 | 17.5 | 18.7 | | BEV 3 | 1.0 | 0.9 | 0.8 | 1.1 | 1.1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.6 | 2.2 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 29 | 29 | 23 | 16 | 13 | 4 | 4 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 54 | 51 | 49 | 56 | 54 | 27 | 10 | 3 | 3 | 2 | 2 | | DCT Transmissions | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | • | - | • | • | • | • | • | • | • | • | | Table 547 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (GM) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetrat | ion Rate | e (%) by | Model
PC6L | | or Manı | ufactur | er (GM) | Total | Fleet, A | Alternat | ive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 1 | 7 | 8 | 8 | 8 | 7 | 7 | 6 | 0 | | Cylinder Deactivation | 4 | 4 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 47 | 46 | 35 | 33 | 28 | 28 | 28 | 22 | 20 | 5 | 5 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 5 | 5 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 82 | 82 | 66 | 43 | 36 | 27 | 26 | 22 | 21 | 6 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 1.3 | 2.9 | 3.7 | 3.7 | 3.7 | 2.4 | 1.1 | 1.1 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 5.3 | 24.7 | 28.2 | 28.3 | 28.3 | 34.1 | 36.0 | 35.8 | 39.8 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 2.1 | 2.1 | 13.7 | 13.8 | 13.8 | 14.3 | 30.9 | 32.5 | | Battery Electric Vehicles (BEVs) | 1.6 | 1.5 | 17.3 | 18.7 | 21.6 | 21.6 | 21.6 | 21.6 | 21.6 | 21.6 | 21.7 | | BEV 1 | 0.0 | 0.0 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | BEV 2 | 1.6 | 1.5 | 14.6 | 16.0 | 18.9 | 18.9 | 18.9 | 18.9 | 18.9 | 18.9 | 19.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 20 | 20 | 19 | 14 | 14 | 14 | 5 | 5 | 0 | 0 | 0 | | 9-Speed Automatic | 22 | 22 | 18 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 28 | 28 | 35 | 30 | 29 | 18 | 28 | 22 | 26 | 12 | 6 | | DCT Transmissions | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 9 | 8 | 4 | 4 | 4 | 3 | 3 | 3 | 1 | 0 | 0 | Table 548 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Honda) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetration | on Rate | (%) by l | Model ` | | ^r Manuf | facture | r (Hond | la) Tota | ıl Fleet, | Altern | ative | |--|----------|----------|----------|----------|--------------------|----------|----------|----------|-----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 8 | 8 | 7 | 6 | 6 | 12 | 6 | 6 | 5 | 5 | | Cylinder Deactivation | 27 | 13 | 13 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 43 | 56 | 56 | 62 | 58 | 39 | 19 | 15 | 5 | 5 | 2 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 79 | 78 | 78 | 74 | 65 | 45 | 25 | 21 | 11 | 10 | 7 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 9.3 | 6.8 | 6.8 | 11.5 | 10.9 | 27.6 | 46.3 | 52.5 | 58.5 | 55.5 | 55.9 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | | Battery Electric Vehicles (BEVs) | 0.0 | 4.8 | 5.1 | 5.8 | 15.7 | 19.3 | 22.8 | 26.4 | 30.5 | 34.0 | 36.7 | | BEV 1 | 0.0 | 3.4 | 3.5 | 3.6 | 7.8 | 9.3 | 10.8 | 12.3 | 14.0 | 15.6 | 16.8 | | BEV 2 | 0.0 | 1.1 | 1.2 | 1.9 | 6.4 | 8.1 | 9.8 | 11.4 | 13.3 | 14.9 | 16.0 | | BEV 3 | 0.0 | 0.3 | 0.3 | 0.4 | 1.5 | 1.9 | 2.3 | 2.8 | 3.2 | 3.6 | 3.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 17 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 17 | 31 | 32 | 28 | 28 | 26 | 19 | 15 | 5 | 5 | 2 | | DCT Transmissions | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 55 | 52 | 51 | 50 | 45 | 26 | 12 | 6 | 6 | 5 | 5 | Table 549 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiH) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetr | ation Ra | | | el Year
PC6L1 | | nufactı | ırer (Hy | /undai | KiH) To | tal Flee | et, | |--|----------|----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 59 | 59 | 59 | 54 | 46 | 46 | 25 | 24 | 23 | 19 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 19 | 18 | 18 | 15 | 11 | 9 | 5 | 4 | 4 | 3 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 68 | 68 | 68 | 60 | 43 | 40 | 14 | 14 | 13 | 9 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 7.2 | 7.3 | 7.3 | 7.1 | 6.8 | 6.4 | 0.0 | | Strong Hybrid Powertrains Total | 10.9 | 9.8 | 10.1 | 16.0 | 21.0 | 27.6 | 50.7 | 49.0 | 46.9 | 48.7 | 68.2 | | Plug-In Hybrid Powertrains | 1.9 | 1.7 | 1.8 | 0.0 | 0.0 | 0.0 | 1.4 | 1.3 | 1.3 | 1.2 | 1.7 | | Battery Electric Vehicles (BEVs) | 3.3 | 7.0 | 6.8 | 11.2 | 17.9 | 17.8 | 18.6 | 21.5 | 24.8 | 27.8 | 30.0 | | BEV 1 | 0.2 | 4.0 | 3.9 | 3.7 | 4.4 | 4.4 | 4.7 | 6.1 | 7.7 | 9.1 | 10.2 | | BEV 2 | 2.1 | 2.1 | 2.0 | 6.5 | 12.3 | 12.3 | 12.6 | 13.7 | 14.9 | 16.0 | 16.7 | | BEV 3 | 1.0 | 1.0 | 1.0 | 0.9 | 1.2 | 1.1 | 1.3 | 1.7 | 2.2 | 2.7 | 3.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 50 | 42 | 40 | 32 | 25 | 25 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 2 | 4 | 4 | 2 | 3 | 3 | 3 | 0 | 0 | | DCT Transmissions | 11 | 11 | 11 | 8 | 7 | 7 | 4 | 4 | 4 | 3 | 0 | | CVT Transmissions | 22 | 28 | 28 | 28 | 25 | 22 | 21 | 21 | 20 | 19 | 0 | Table 550 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Hyundai KiK) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetr | ation Ra | | by Mod
ernative | | | nufactı | ırer (Hy | /undai | KiK) To | tal Flee | et, | |--|----------|----------|--------------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 45 | 57 | 58 | 59 | 50 | 50 | 50 | 27 | 24 | 17 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 24 | 23 | 19 | 19 | 17 | 17 | 17 | 17 | 16 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 32 | 32 | 30 | 30 | 27 | 27 | 27 | 27 | 26 | 17 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 0.0 | | Strong Hybrid Powertrains Total | 5.0 | 5.0 | 5.0 | 5.0 | 10.2 | 10.2 | 10.2 | 28.6 | 29.9 | 45.5 | 61.1 | | Plug-In Hybrid Powertrains | 3.0 | 1.6 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 7.9 | 12.0 | 12.3 | | Battery Electric Vehicles (BEVs) | 4.4 | 6.1 | 11.4 | 12.8 | 18.3 | 18.3 | 18.3 | 19.2 | 22.1 | 24.7 | 26.7 | | BEV 1 | 0.0 | 1.9 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 3.0 | 3.9 | 4.7 | 5.4 | | BEV 2 | 3.7 | 3.5 | 7.9 | 9.4 | 14.9 | 14.9 | 14.9 | 15.5 | 17.3 | 18.8 | 20.0 | | BEV 3 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.9 | 1.2 | 1.3 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 34 | 47 | 39 | 39 | 22 | 22 | 22 | 9 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | | DCT Transmissions | 9 | 9 | 9 | 9 | 7 | 7 | 8 | 7 | 7 | 0 | 0 | | CVT Transmissions | 32 | 31 | 34 | 34 | 42 | 42 | 42 | 27 | 24 | 17 | 0 | Table 551 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (JLR) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetrat | ion Rate | (%) by | Model
PC6L | | or Manu | ufactur | er (JLR |) Total | Fleet, A | Alterna | tive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 47 | 39 | 35 | 35 | 27 | 27 | 27 | 26 | 21 | 13 | 13 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 52 | 31 | 27 | 27 | 10 | 10 | 10 | 9 | 9 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 46 | 38 | 34 | 34 | 27 | 27 | 27 | 26 | 21 | 13 | 13 | | Mild Hybrid Powertrains | 0.9 | 0.9 | 0.9 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 12.3 | 12.3 | 12.4 | 37.5 | 37.5 | 37.5 | 36.2 | 34.0 | 46.7 | 44.1 | | Plug-In Hybrid Powertrains | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 3.8 | 4.1 | | Battery Electric Vehicles (BEVs) | 0.9 | 18.0 | 25.6 | 25.6 | 25.6 | 25.6 | 25.6 | 28.1 | 32.4 | 36.2 | 39.1 | | BEV 1 | 0.9 | 2.0 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.8 | 4.6 | 4.4 | 4.3 | | BEV 2 | 0.0 | 14.8 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.2 | 19.1 | 19.0 | | BEV 3 | 0.0 | 1.2 | 1.2 | 1.2 | 1.2 | 1.3 | 1.3 | 4.0 | 8.6 | 12.7 | 15.8 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 85 | 30 | 23 | 23 | 18 | 1 | 1 | 1 | 0 | 0 | 0 | | 9-Speed Automatic | 13 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 37 | 37 | 37 | 19 | 36 | 36 | 35 | 30 | 13 | 13 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 552 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Karma) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetrati | on Rate | e (%) by | Model
PC6 | | or Manu | ıfacture | er (Karn | na) Tota | al Fleet, | , Altern | ative | |--|-----------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 100.
0 | 100.
0 | 100.
0 | 100.
0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 0.0 | 0.0 | 0.0 | 0.0 | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | | BEV 2 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 553 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Lucid) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetrat | ion Rat | e (%) b | | I Year f
LT8 | or Man | ufactur | er (Luc | id) Tota | ıl Fleet, | Alterna | ative |
--|-----------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 100.
0 | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 554 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mazda) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetration | on Rate | (%) by l | Model \ | | r Manuf | facture | r (Mazd | a) Tota | l Fleet, | Altern | ative | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 71 | 69 | 69 | 68 | 60 | 42 | 40 | 2 | 2 | 2 | 2 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 29 | 6 | 5 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 22.5 | 22.6 | 22.8 | 20.1 | 38.4 | 36.7 | 36.4 | 34.4 | 32.5 | 31.1 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34.5 | 32.6 | 30.9 | 29.6 | | Battery Electric Vehicles (BEVs) | 0.3 | 2.4 | 4.3 | 4.2 | 16.0 | 19.7 | 23.3 | 27.0 | 31.1 | 34.7 | 37.5 | | BEV 1 | 0.3 | 0.8 | 2.4 | 2.3 | 4.8 | 5.6 | 6.3 | 7.1 | 8.0 | 8.8 | 9.4 | | BEV 2 | 0.0 | 1.4 | 1.6 | 1.6 | 9.6 | 12.1 | 14.6 | 17.0 | 19.8 | 22.3 | 24.1 | | BEV 3 | 0.0 | 0.2 | 0.3 | 0.3 | 1.6 | 2.0 | 2.4 | 2.8 | 3.3 | 3.7 | 4.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 97 | 11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 61 | 70 | 71 | 62 | 36 | 33 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | DCT Transmissions | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 0 | 0 | 0 | 0 | Table 555 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetra | tion Rate | | | Year f | | ufactur | er (Mer | cedes- | Benz) 1 | Total Fl | eet, | |-------------------------------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 90 | 81 | 77 | 77 | 56 | 42 | 25 | 22 | 2 | 2 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 7 | 7 | 6 | 6 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 63 | 54 | 53 | 53 | 44 | 39 | 25 | 22 | 2 | 2 | 0 | | Mild Hybrid Powertrains | 26.5 | 26.2 | 23.6 | 22.9 | 12.5 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 4.4 | 5.4 | 12.1 | 28.1 | 48.5 | 47.7 | 62.8 | 59.3 | 58.2 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 3.1 | 12.6 | 12.1 | 11.7 | 26.4 | 26.2 | 26.2 | 30.1 | 34.7 | 38.8 | 41.8 | | BEV 1 | 0.0 | 9.6 | 9.3 | 8.9 | 8.1 | 8.0 | 8.0 | 7.5 | 7.0 | 6.7 | 6.4 | | BEV 2 | 1.3 | 1.2 | 1.2 | 1.2 | 10.8 | 10.8 | 10.8 | 11.2 | 11.6 | 11.9 | 12.2 | | BEV 3 | 1.8 | 1.7 | 1.7 | 1.6 | 7.0 | 7.0 | 7.0 | 10.8 | 15.1 | 18.9 | 21.7 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.4 | 0.7 | 1.0 | 1.3 | 1.5 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 81 | 27 | 14 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 45 | 54 | 65 | 52 | 40 | 20 | 17 | 0 | 0 | 0 | | DCT Transmissions | 16 | 16 | 16 | 15 | 9 | 5 | 5 | 5 | 2 | 2 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | • | • | | | • | • | • | | • | | Table 556 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Mitsubishi) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penet | ration R | | | del Yea
PC6L1 | | anufact | turer (N | litsubis | shi) Tot | al Fleet | i, | |-------------------------------------|----------|----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 12 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 21 | 21 | 21 | 21 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 5.9 | 5.7 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 37.3 | 36.4 | | Plug-In Hybrid Powertrains | 1.4 | 1.4 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.1 | 19.2 | | Battery Electric Vehicles (BEVs) | 0.0 | 1.2 | 13.7 | 15.0 | 20.5 | 20.4 | 20.4 | 20.3 | 20.4 | 20.4 | 21.6 | | BEV 1 | 0.0 | 0.5 | 4.4 | 4.3 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.8 | | BEV 2 | 0.0 | 0.6 | 9.3 | 10.7 | 16.2 | 16.2 | 16.2 | 16.2 | 16.2 | 16.2 | 16.8 | | BEV 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed
Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 98 | 97 | 79 | 79 | 70 | 70 | 70 | 70 | 70 | 23 | 23 | | | | | | | | | | | | | | Table 557 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Nissan) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetratio | n Rate (| (%) by l | Model \
PC6L | | [·] Manuf | acturer | · (Nissa | ın) Tota | ıl Fleet, | Altern | ative | |---|----------|----------|-----------------|----------|--------------------|----------|----------|----------|-----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 10 | 19 | 31 | 30 | 30 | 29 | 19 | 11 | 3 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 13 | 13 | 14 | 14 | 14 | 15 | 3 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.8 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 1.1 | 3.0 | 3.0 | 4.6 | 40.2 | 42.3 | 59.3 | 65.3 | 72.3 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | | Battery Electric Vehicles (BEVs) | 1.2 | 8.2 | 9.3 | 12.5 | 15.1 | 15.0 | 15.4 | 17.8 | 20.5 | 22.9 | 24.7 | | BEV 1 | 1.0 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.3 | 5.2 | 5.1 | 5.0 | | BEV 2 | 0.3 | 2.6 | 3.7 | 7.0 | 9.5 | 9.5 | 9.7 | 11.8 | 14.1 | 16.1 | 17.7 | | BEV 3 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.7 | 1.2 | 1.7 | 2.0 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5.000 1 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 23 | 25 | 26 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 1 | 1 | 1 | 26 | 26 | 15 | 11 | 1 | 1 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 71 | 65 | 63 | 59 | 56 | 54 | 30 | 29 | 19 | 11 | 3 | Table 558 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Stellantis) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetration | Rate (% | 6) by M | odel Ye
PC6L | | Manufa | cturer (| (Stellar | itis) To | tal Flee | t, Alter | native | |-------------------------------------|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 11 | 12 | 12 | 12 | 11 | 11 | 10 | 0 | | Cylinder Deactivation | 20 | 20 | 6 | 5 | 5 | 4 | 4 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 10 | 10 | 9 | 11 | 10 | 10 | 10 | 9 | 8 | 7 | 5 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 46 | 44 | 44 | 33 | 33 | 21 | 20 | 11 | 11 | 10 | 0 | | Mild Hybrid Powertrains | 16.4 | 16.4 | 6.5 | 4.4 | 4.5 | 4.7 | 4.7 | 0.2 | 0.2 | 0.2 | 0.2 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 20.2 | 31.5 | 31.7 | 48.0 | 48.7 | 51.3 | 33.5 | 33.7 | 35.3 | | Plug-In Hybrid Powertrains | 4.7 | 4.7 | 4.7 | 0.0 | 0.0 | 0.1 | 0.1 | 9.8 | 25.3 | 24.4 | 33.2 | | Battery Electric Vehicles (BEVs) | 0.0 | 4.8 | 7.6 | 17.7 | 18.0 | 18.0 | 18.0 | 19.2 | 22.1 | 24.7 | 26.7 | | BEV 1 | 0.0 | 2.4 | 2.4 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.7 | 2.6 | 2.5 | | BEV 2 | 0.0 | 2.1 | 4.8 | 9.8 | 10.0 | 10.0 | 10.0 | 10.9 | 12.9 | 14.7 | 16.1 | | BEV 3 | 0.0 | 0.3 | 0.3 | 5.1 | 5.1 | 5.1 | 5.1 | 5.6 | 6.5 | 7.4 | 8.1 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 65 | 61 | 38 | 30 | 30 | 14 | 12 | 5 | 0 | 0 | 0 | | 9-Speed Automatic | 28 | 27 | 27 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 12 | 19 | 19 | 21 | 14 | 19 | 17 | 5 | | DCT Transmissions | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 559 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Subaru) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetration | n Rate | (%) by l | Model Y | | Manuf | acturer | (Suba | ru) Tota | al Fleet | , Altern | ative |
--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 13 | 40 | 60 | 60 | 57 | 53 | 30 | 14 | 13 | 12 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 24 | 24 | 24 | 23 | 20 | 19 | 18 | 8 | 1 | 1 | 1 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 76 | 74 | 75 | 74 | 64 | 61 | 58 | 36 | 13 | 12 | 12 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.9 | 0.9 | 0.8 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 1.3 | 1.1 | 1.0 | 2.8 | 28.5 | 45.6 | 42.8 | 40.7 | | Plug-In Hybrid Powertrains | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 5.0 | 4.7 | 4.9 | | Battery Electric Vehicles (BEVs) | 0.0 | 5.2 | 5.1 | 5.3 | 17.6 | 21.6 | 25.7 | 29.7 | 34.2 | 38.2 | 41.2 | | BEV 1 | 0.0 | 3.1 | 3.0 | 2.9 | 3.3 | 3.4 | 3.5 | 3.6 | 3.8 | 4.0 | 4.2 | | BEV 2 | 0.0 | 1.1 | 1.1 | 1.4 | 7.9 | 10.0 | 12.1 | 14.1 | 16.5 | 18.6 | 20.1 | | BEV 3 | 0.0 | 1.0 | 1.0 | 1.0 | 6.5 | 8.3 | 10.1 | 11.9 | 13.9 | 15.7 | 16.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | | CVT Transmissions | 95 | 91 | 91 | 90 | 79 | 75 | 69 | 36 | 14 | 13 | 12 | Table 560 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Tesla) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetrat | ion Rat | e (%) b | y Mode
PC6 | | or Man | ufactur | er (Tes | la) Tota | l Fleet, | Alterna | ntive | |--|-----------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 100.
0 | BEV 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | BEV 2 | 18.5 | 18.5 | 18.4 | 18.3 | 18.3 | 18.3 | 18.2 | 18.2 | 18.2 | 18.3 | 18.3 | | BEV 3 | 56.9 | 57.1 | 57.2 | 57.4 | 57.5 | 57.5 | 57.5 | 57.6 | 57.6 | 57.5 | 57.5 | | BEV 4 | 24.6 | 24.5 | 24.4 | 24.3 | 24.3 | 24.2 | 24.2 | 24.2 | 24.2 | 24.2 | 24.3 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 561 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Toyota) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetration | n Rate (| %) by l | Model Y
PC6L | | Manuf | acturer | (Toyot | ta) Tota | ıl Fleet, | Altern | ative | |--|----------|----------------|-----------------|----------|----------|----------|----------|----------|-----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 25 | 24 | 31 | 31 | 33 | 32 | 27 | 26 | 20 | 14 | 7 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 7 | 7 | 17 | 18 | 24 | 27 | 26 | 24 | 19 | 13 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 25 | 25 | 26 | 26 | 23 | 23 | 19 | 17 | 17 | 7 | 1 | | Mild Hybrid Powertrains | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 24.8 | 25.1 | 25.3 | 25.8 | 21.7 | 21.3 | 23.6 | 24.0 | 30.1 | 36.0 | 49.2 | | Plug-In Hybrid Powertrains | 2.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 1.1 | 4.4 | 10.1 | | Battery Electric Vehicles (BEVs) | 0.0 | 2.4 | 2.3 | 4.0 | 15.8 | 17.7 | 21.1 | 24.4 | 28.1 | 31.4 | 33.9 | | BEV 1 | 0.0 | 1.4 | 1.4 | 2.6 | 7.1 | 7.6 | 8.5 | 9.4 | 10.5 | 11.6 | 12.4 | | BEV 2 | 0.0 | 0.6 | 0.6 | 0.9 | 5.3 | 6.2 | 7.6 | 9.1 | 10.7 | 12.1 | 13.2 | | BEV 3 | 0.0 | 0.4 | 0.4 | 0.6 | 3.4 | 3.9 | 4.9 | 5.8 | 6.8 | 7.7 | 8.4 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 5-Speed Automatic | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 11 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 34 | 33 | 50 | 49 | 44 | 36 | 14 | 4 | 1 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 6 | 6 | 6 | 6 | 6 | 5 | 19 | 25 | 24 | 15 | 0 | | DCT Transmissions | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | CVT Transmissions | 15 | 14 | 14 | 13 | 12 | 18 | 22 | 22 | 16 | 13 | 7 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Table 562 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (Volvo) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetration | on Rate | (%) by | Model `
PC6L | | r Manu | facture | r (Volv | o) Tota | l Fleet, | Alterna | ative | |--|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 64 | 65 | 65 | 65 | 63 | 64 | 64 | 64 | 39 | 37 | 18 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 5 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid Powertrains | 27.2 | 26.8 | 26.4 | 26.1 | 23.8 | 23.7 | 23.7 | 23.7 | 22.4 | 21.2 | 3.7 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 1.7 | 4.7 | 6.8 | 6.8 | 6.8 | 6.8 | 27.9 | 26.1 | 41.3 | | Plug-In Hybrid Powertrains | 17.6 | 14.9 | 15.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | | Battery Electric Vehicles (BEVs) | 13.4 | 15.6 | 15.1 | 29.9 | 29.7 | 29.6 | 29.5 | 29.5 | 33.3 | 37.3 | 40.2 | | BEV 1 | 3.5 | 6.3 | 6.2 | 6.1 | 6.1 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.1 | | BEV 2 | 9.9 | 9.3 | 8.9 | 8.5 | 8.3 | 8.2 | 8.1 | 8.0 | 8.5 | 9.0 | 9.5 | | BEV 3 | 0.0 | 0.0 | 0.0 | 15.2 | 15.3 | 15.4 | 15.4 | 15.4 | 18.8 | 22.2 | 24.6 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 69 | 69 | 68 | 65 | 63 | 41 | 41 | 27 | 5 | 5 | 0 | |
9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 23 | 23 | 37 | 34 | 32 | 18 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 563 - Powertrain Technology Penetration Rate (%) by Model Year for Manufacturer (VWA) Total Fleet, Alternative PC6LT8 | Powertrain Technology Penetrati | on Rate | (%) by | Model
PC6L | | r Manu | ıfacture | er (VWA | () Total | Fleet, | Alterna | tive | |--|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | Model Year | 202
2 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | | Non-Hybrid High Compression
Engines | 0 | 0 | 11 | 11 | 11 | 11 | 11 | 11 | 3 | 3 | 1 | | Cylinder Deactivation | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 61 | 57 | 49 | 39 | 32 | 31 | 15 | 15 | 11 | 1 | 0 | | Variable Geometry Turbo | 19 | 20 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 81 | 78 | 57 | 46 | 43 | 41 | 26 | 25 | 14 | 4 | 1 | | Mild Hybrid Powertrains | 8.3 | 8.2 | 4.2 | 4.3 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.0 | 0.0 | | Strong Hybrid Powertrains Total | 0.0 | 0.0 | 21.1 | 31.7 | 35.2 | 37.5 | 51.7 | 49.4 | 51.3 | 58.2 | 59.5 | | Plug-In Hybrid Powertrains | 1.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.3 | 5.0 | 4.8 | | Battery Electric Vehicles (BEVs) | 7.1 | 10.5 | 14.5 | 16.8 | 20.8 | 20.7 | 21.9 | 25.3 | 29.2 | 32.6 | 35.2 | | BEV 1 | 2.8 | 6.2 | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 | 6.1 | 6.0 | 5.8 | 5.7 | | BEV 2 | 4.1 | 4.0 | 8.1 | 8.9 | 12.9 | 12.8 | 13.4 | 15.2 | 17.3 | 19.2 | 20.6 | | BEV 3 | 0.2 | 0.2 | 0.2 | 1.5 | 1.6 | 1.6 | 2.2 | 4.0 | 5.9 | 7.6 | 8.9 | | BEV 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Cell Vehicles (FCVs) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 60 | 59 | 38 | 35 | 33 | 19 | 5 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 1 | 2 | 2 | 1 | 14 | 21 | 25 | 14 | 4 | 1 | | DCT Transmissions | 30 | 26 | 22 | 13 | 10 | 8 | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | #### Mass Reduction Penetration Rate, by Model Year Table 564 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Total Fleet, No Action Alternative (Baseline) | Mass Reduction Penetration | Rate an | | Weights
n Alteri | | | | anufact | urer (To | tal) Tot | al Fleet | , No | |--------------------------------------|-----------|-----------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 7 | 6 | 5 | 1 | | Mass Reduction Level 1 (%) | 24 | 24 | 21 | 21 | 22 | 22 | 22 | 25 | 26 | 27 | 31 | | Mass Reduction Level 2 (%) | 13 | 13 | 11 | 6 | 6 | 4 | 3 | 3 | 2 | 2 | 2 | | Mass Reduction Level 3 (%) | 39 | 39 | 44 | 49 | 50 | 51 | 51 | 51 | 51 | 51 | 52 | | Mass Reduction Level 4 (%) | 8 | 8 | 8 | 9 | 9 | 10 | 11 | 11 | 12 | 12 | 12 | | Mass Reduction Level 5 (%) | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,04
2 | 4,03
9 | 4,03
4 | 4,03
0 | 4,02
3 | 4,01
7 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | # Table 565 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Passenger Car Fleet, No Action Alternative (Baseline) | Mass Reduction Penetration | | nd Curb
leet, No | | | | | anufact | urer (To | otal) Pas | ssenger | Car | |--------------------------------------|-----------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 10 | 10 | 9 | 9 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Mass Reduction Level 1 (%) | 28 | 28 | 25 | 23 | 25 | 24 | 23 | 24 | 24 | 24 | 25 | | Mass Reduction Level 2 (%) | 12 | 12 | 10 | 6 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | | Mass Reduction Level 3 (%) | 36 | 36 | 41 | 45 | 46 | 46 | 46 | 46 | 47 | 47 | 47 | | Mass Reduction Level 4 (%) | 12 | 12 | 13 | 15 | 16 | 17 | 20 | 20 | 21 | 22 | 22 | | Mass Reduction Level 5 (%) | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,04
2 | 4,03
9 | 4,03
4 | 4,03
0 | 4,02
3 | 4,01
7 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | # Table 566 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Light Truck Fleet, No Action Alternative (Baseline) | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Light Truck Fleet, No Action Alternative (Baseline) | | | | | | | | | | | | | |---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | Mass Reduction Level 0 (%) | 19 | 18 | 17 | 15 | 14 | 14 | 13 | 10 | 8 | 6 | 1 | | | Mass Reduction Level 1 (%) | 21 | 21 | 19 | 21 | 21 | 21 | 21 | 25 | 26 | 29 | 33 | | | Mass Reduction Level 2 (%) | 13 | 13 | 12 | 6 | 6 | 3 | 2 | 2 | 2 | 2 | 2 | | | Mass Reduction Level 3 (%) | 41 | 41 | 45 | 52 | 52 | 54 | 54 | 54 | 54 | 54 | 54 | | | Mass Reduction Level 4 (%) | 5 | 5 | 6 | 6 | 6 | 6 | 7 | 8 | 8 | 8 | 8 | | | Mass Reduction Level 5 (%) | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,04
2 | 4,03
9 | 4,03
4 | 4,03
0 | 4,02
3 | 4,01
7 | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | # Table 567 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Domestic Car Fleet, No Action Alternative (Baseline) | Mass Reduction Penetratio | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Domestic Car Fleet, No Action Alternative (Baseline) | | | | | | | | | | | | | | |--------------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 4 | 4 | 4 | 3 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 19 | 19 | 13 | 9 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | | | | Mass Reduction Level 2 (%) | 17 | 17 | 14 | 9 | 7 | 7 | 7 | 7 | 5 | 5 | 5 | | | | | Mass Reduction Level 3 (%) | 42 | 42 | 52 | 56 | 57 | 58 | 58 | 58 | 59 | 59 | 59 | | | | | Mass Reduction Level 4 (%) | 15 | 15 | 15 | 20 | 20 | 20 | 21 | 21 | 23 | 23 | 24 | | | | | Mass Reduction Level 5 (%) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,04
2 | 4,03
9 | 4,03
4 | 4,03
0 | 4,02
3 | 4,01
7 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | #### Table 568 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Imported Car Fleet, No Action Alternative (Baseline) | Mass Reduction Penetration I | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Imported Car Fleet, No Action Alternative (Baseline) | | | | | | | | | | | | | | |--------------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 17 | 17 | 15 | 14 | 10 | 9 | 7 | 5 | 4 | 2 | 0 | | | | | Mass Reduction Level 1 (%) | 36 | 36 | 37 | 37 | 39 | 38 | 36 | 38 | 39 | 39 | 40 | | | | | Mass Reduction Level 2 (%) | 7 | 7 | 6 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | | | | | Mass Reduction Level 3 (%) | 29 | 29 | 31 | 35 | 35 | 35 | 34 | 34 | 34 | 34 | 35 | | | | | Mass Reduction Level 4 (%) | 10 | 9 | 11 | 11 | 12 | 14 | 19 | 19 | 20 | 21 | 21 | | | | | Mass Reduction Level 5 (%) | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Avg Curb Weight - Fleet
(pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,04
2 | 4,03
9 | 4,03
4 | 4,03
0 | 4,02
3 | 4,01
7 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | #### Table 569 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Total Fleet, Alternative PC1LT3 | Mass Reduction Penetration | n Rate a | | _ | hts by N
tive PC | | ear for l | Manufa | cturer (| Total) T | otal Fle | et, | |--------------------------------------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 16 | 15 | 14 | 13 | 12 | 11 | 11 | 7 | 6 | 4 | 0 | | Mass Reduction Level 1 (%) | 24 | 24 | 21 | 21 | 22 | 22 | 22 | 24 | 22 | 23 | 26 | | Mass Reduction Level 2 (%) | 13 | 13 | 11 | 6 | 6 | 4 | 3 | 3 | 2 | 2 | 2 | | Mass Reduction Level 3 (%) | 39 | 39 | 44 | 49 | 50 | 47 | 48 | 46 | 48 | 43 | 40 | | Mass Reduction Level 4 (%) | 8 | 8 | 8 | 9 | 9 | 13 | 14 | 18 | 19 | 25 | 28 | | Mass Reduction Level 5 (%) | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,03
4 | 4,03
1 | 4,01
8 | 4,00
7 | 3,99
0 | 3,97
7 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 8 | 7 | 17 | 23 | 34 | 40 | # Table 570 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC1LT3 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC1LT3 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 10 | 10 | 9 | 9 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Mass Reduction Level 1 (%) | 28 | 28 | 25 | 23 | 25 | 24 | 23 | 24 | 24 | 24 | 24 | | | | | Mass Reduction Level 2 (%) | 12 | 12 | 10 | 6 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | | | | | Mass Reduction Level 3 (%) | 36 | 36 | 41 | 45 | 46 | 46 | 47 | 45 | 43 | 41 | 41 | | | | | Mass Reduction Level 4 (%) | 12 | 12 | 13 | 15 | 16 | 17 | 17 | 20 | 23 | 26 | 27 | | | | | Mass Reduction Level 5 (%) | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,03
4 | 4,03
1 | 4,01
8 | 4,00
7 | 3,99
0 | 3,97
7 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 8 | 7 | 17 | 23 | 34 | 40 | | | | # Table 571 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC1LT3 | Mass Reduction Penetration I | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC1LT3 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 19 | 18 | 17 | 15 | 14 | 14 | 13 | 9 | 7 | 5 | 0 | | | | | Mass Reduction Level 1 (%) | 21 | 21 | 19 | 21 | 21 | 21 | 21 | 24 | 21 | 23 | 27 | | | | | Mass Reduction Level 2 (%) | 13 | 13 | 12 | 6 | 6 | 3 | 2 | 2 | 2 | 2 | 2 | | | | | Mass Reduction Level 3 (%) | 41 | 41 | 45 | 52 | 52 | 48 | 48 | 47 | 51 | 43 | 39 | | | | | Mass Reduction Level 4 (%) | 5 | 5 | 6 | 6 | 6 | 12 | 13 | 17 | 17 | 24 | 29 | | | | | Mass Reduction Level 5 (%) | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,03
4 | 4,03
1 | 4,01
8 | 4,00
7 | 3,99
0 | 3,97
7 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 8 | 7 | 17 | 23 | 34 | 40 | | | | #### Table 572 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC1LT3 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC1LT3 | | | | | | | | | | | | | | |--------------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 4 | 4 | 4 | 3 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 19 | 19 | 13 | 9 | 10 | 10 | 10 | 10 | 9 | 9 | 9 | | | | | Mass Reduction Level 2 (%) | 17 | 17 | 14 | 9 | 7 | 7 | 7 | 7 | 5 | 5 | 5 | | | | | Mass Reduction Level 3 (%) | 42 | 42 | 52 | 56 | 57 | 57 | 57 | 54 | 50 | 49 | 48 | | | | | Mass Reduction Level 4 (%) | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 25 | 31 | 32 | 33 | | | | | Mass Reduction Level 5 (%) | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 | 5 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,03
4 | 4,03
1 | 4,01
8 | 4,00
7 | 3,99
0 | 3,97
7 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 8 | 7 | 17 | 23 | 34 | 40 | | | | #### Table 573 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC1LT3 | Mass Reduction Penetration F | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC1LT3 | | | | | | | | | | | | | | |--------------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 17 | 17 | 15 | 14 | 10 | 9 | 7 | 5 | 4 | 2 | 0 | | | | | Mass Reduction Level 1 (%) | 36 | 36 | 37 | 37 | 39 | 38 | 36 | 38 | 39 | 38 | 39 | | | | | Mass Reduction Level 2 (%) | 7 | 7 | 6 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | | | | | Mass Reduction Level 3 (%) | 29 | 29 | 31 | 35 | 35 | 34 | 37 | 36 | 36 | 33 | 34 | | | | | Mass Reduction Level 4 (%) | 10 | 9 | 11 | 11 | 12 | 13 | 13 | 15 | 16 | 20 | 21 | | | | | Mass Reduction Level 5 (%) | 0 | 1 | 1 | 1 | 1 | 3 | 4 | 4 | 4 | 4 | 4 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,03
4 | 4,03
1 | 4,01
8 | 4,00
7 | 3,99
0 | 3,97
7 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 8 | 7 | 17 | 23 | 34 | 40 | | | | #### Table 574 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetratio | n Rate a | | _ | hts by N
tive PC | | ear for I | Manufa | cturer (| Γotal) Τ | otal Fle | et, | |--------------------------------------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 16 | 15 | 14 | 13 | 12 | 11 | 11 | 7 | 6 | 4 | 0 | | Mass Reduction Level 1 (%) | 24 | 24 | 21 | 21 | 22 | 22 | 20 | 22 | 19 | 20 | 21 | | Mass Reduction Level 2 (%) | 13 | 13 | 11 | 6 | 6 | 4 | 3 | 3 | 2 | 2 | 4 | | Mass Reduction Level 3 (%) | 39 | 39 | 44 | 49 | 50 | 46 | 45 | 43 | 44 | 38 | 36 | | Mass Reduction Level 4 (%) | 8 | 8 | 8 | 9 | 9 | 15 | 18 | 22 | 25 | 32 | 36 | | Mass Reduction Level 5 (%) | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,03
2 | 4,02
4 | 4,00
9 | 3,99
5 | 3,97
6 | 3,95
9 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 10 | 15 | 25 | 35 | 48 | 58 | # Table 575 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC2LT4 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 10 | 10 | 9 | 9 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Mass Reduction Level 1 (%) | 28 | 28 | 25 | 23 | 25 | 24 | 21 | 22 | 22 | 21 | 18 | | | | | Mass Reduction
Level 2 (%) | 12 | 12 | 10 | 6 | 5 | 5 | 5 | 5 | 4 | 4 | 5 | | | | | Mass Reduction Level 3 (%) | 36 | 36 | 41 | 45 | 46 | 44 | 45 | 42 | 38 | 35 | 35 | | | | | Mass Reduction Level 4 (%) | 12 | 12 | 13 | 15 | 16 | 18 | 20 | 23 | 30 | 34 | 38 | | | | | Mass Reduction Level 5 (%) | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,03
2 | 4,02
4 | 4,00
9 | 3,99
5 | 3,97
6 | 3,95
9 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 10 | 15 | 25 | 35 | 48 | 58 | | | | # Table 576 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC2LT4 | Mass Reduction Penetration R | ate and | | Veights
Alterna | _ | | for Mar | nufactui | er (Tota | al) Light | t Truck | Fleet, | |--------------------------------------|-----------|-----------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 19 | 18 | 17 | 15 | 14 | 14 | 13 | 9 | 7 | 5 | 0 | | Mass Reduction Level 1 (%) | 21 | 21 | 19 | 21 | 21 | 21 | 20 | 22 | 18 | 20 | 22 | | Mass Reduction Level 2 (%) | 13 | 13 | 12 | 6 | 6 | 3 | 2 | 2 | 2 | 2 | 4 | | Mass Reduction Level 3 (%) | 41 | 41 | 45 | 52 | 52 | 47 | 45 | 44 | 47 | 40 | 36 | | Mass Reduction Level 4 (%) | 5 | 5 | 6 | 6 | 6 | 13 | 17 | 22 | 23 | 31 | 35 | | Mass Reduction Level 5 (%) | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,03
2 | 4,02
4 | 4,00
9 | 3,99
5 | 3,97
6 | 3,95
9 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 10 | 15 | 25 | 35 | 48 | 58 | #### Table 577 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC2LT4 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--------------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 4 | 4 | 4 | 3 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 19 | 19 | 13 | 9 | 10 | 10 | 10 | 10 | 9 | 9 | 2 | | | | | Mass Reduction Level 2 (%) | 17 | 17 | 14 | 9 | 7 | 7 | 7 | 7 | 5 | 5 | 6 | | | | | Mass Reduction Level 3 (%) | 42 | 42 | 52 | 56 | 57 | 54 | 54 | 50 | 42 | 38 | 36 | | | | | Mass Reduction Level 4 (%) | 15 | 15 | 15 | 20 | 20 | 24 | 24 | 28 | 40 | 43 | 51 | | | | | Mass Reduction Level 5 (%) | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 | 5 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,03
2 | 4,02
4 | 4,00
9 | 3,99
5 | 3,97
6 | 3,95
9 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 10 | 15 | 25 | 35 | 48 | 58 | | | | #### Table 578 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC2LT4 | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Mass Reduction Level 0 (%) | 17 | 17 | 15 | 14 | 10 | 9 | 7 | 5 | 4 | 2 | 0 | | | | Mass Reduction Level 1 (%) | 36 | 36 | 37 | 37 | 39 | 38 | 33 | 34 | 34 | 33 | 34 | | | | Mass Reduction Level 2 (%) | 7 | 7 | 6 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | Mass Reduction Level 3 (%) | 29 | 29 | 31 | 35 | 35 | 34 | 37 | 34 | 34 | 32 | 33 | | | | Mass Reduction Level 4 (%) | 10 | 9 | 11 | 11 | 12 | 13 | 17 | 19 | 21 | 25 | 25 | | | | Mass Reduction Level 5 (%) | 0 | 1 | 1 | 1 | 1 | 3 | 4 | 5 | 5 | 5 | 5 | | | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,03
2 | 4,02
4 | 4,00
9 | 3,99
5 | 3,97
6 | 3,95
9 | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 10 | 15 | 25 | 35 | 48 | 58 | | | #### Table 579 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Total Fleet, Alternative PC3LT5 | Mass Reduction Penetratio | n Rate a | | _ | nts by N | | ear for I | Manufa | cturer (| Γotal) Τ | otal Fle | et, | |--------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 16 | 15 | 14 | 13 | 12 | 11 | 11 | 7 | 6 | 4 | 0 | | Mass Reduction Level 1 (%) | 24 | 24 | 21 | 21 | 22 | 22 | 20 | 22 | 19 | 19 | 19 | | Mass Reduction Level 2 (%) | 13 | 13 | 11 | 6 | 6 | 4 | 3 | 3 | 2 | 2 | 2 | | Mass Reduction Level 3 (%) | 39 | 39 | 44 | 49 | 50 | 43 | 39 | 37 | 38 | 31 | 28 | | Mass Reduction Level 4 (%) | 8 | 8 | 8 | 9 | 9 | 17 | 24 | 28 | 32 | 40 | 45 | | Mass Reduction Level 5 (%) | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,02
8 | 4,01
5 | 4,00
0 | 3,98
3 | 3,96
1 | 3,93
4 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 14 | 24 | 34 | 47 | 62 | 82 | # Table 580 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC3LT5 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC3LT5 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 10 | 10 | 9 | 9 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Mass Reduction Level 1 (%) | 28 | 28 | 25 | 23 | 25 | 24 | 21 | 22 | 21 | 20 | 17 | | | | | Mass Reduction Level 2 (%) | 12 | 12 | 10 | 6 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | | | | | Mass Reduction Level 3 (%) | 36 | 36 | 41 | 45 | 46 | 42 | 37 | 34 | 29 | 25 | 23 | | | | | Mass Reduction Level 4 (%) | 12 | 12 | 13 | 15 | 16 | 20 | 28 | 31 | 38 | 43 | 49 | | | | | Mass Reduction Level 5 (%) | 1 | 2 | 2 | 2 | 2 | 4 | 5 | 6 | 6 | 6 | 7 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,02
8 | 4,01
5 | 4,00
0 | 3,98
3 | 3,96
1 | 3,93
4 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 14 | 24 | 34 | 47 | 62 | 82 | | | | # Table 581 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC3LT5 | Mass Reduction Penetration F | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC3LT5 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 19 | 18 | 17 | 15 | 14 | 14 | 13 | 9 | 7 | 5 | 0 | | | | | Mass Reduction Level 1 (%) | 21 | 21 | 19 | 21 | 21 | 21 | 20 | 22 | 17 | 19 | 20 | | | | | Mass Reduction Level 2 (%) | 13 | 13 | 12 | 6 | 6 | 3 | 2 | 2 | 2 | 2 | 1 | | | | | Mass Reduction Level 3 (%) | 41 | 41 | 45 | 52 | 52 | 44 | 40 | 38 | 42 | 33 | 30 | | | | | Mass Reduction Level 4 (%) | 5 | 5 | 6 | 6 | 6 | 16 | 22 | 27 | 29 | 38 | 44 | | | | | Mass Reduction Level 5 (%) | 0 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,02
8 | 4,01
5 | 4,00
0 | 3,98
3 | 3,96
1 | 3,93
4 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 14 | 24 | 34 | 47 | 62 | 82 | | | | # Table 582 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC3LT5 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC3LT5 | | | | | | | | | | | | | | |--------------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------
-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 4 | 4 | 4 | 3 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 19 | 19 | 13 | 9 | 10 | 10 | 10 | 10 | 9 | 9 | 2 | | | | | Mass Reduction Level 2 (%) | 17 | 17 | 14 | 9 | 7 | 7 | 7 | 7 | 5 | 5 | 5 | | | | | Mass Reduction Level 3 (%) | 42 | 42 | 52 | 56 | 57 | 51 | 41 | 37 | 29 | 24 | 22 | | | | | Mass Reduction Level 4 (%) | 15 | 15 | 15 | 20 | 20 | 26 | 36 | 40 | 52 | 56 | 63 | | | | | Mass Reduction Level 5 (%) | 3 | 3 | 3 | 3 | 3 | 5 | 6 | 6 | 6 | 6 | 8 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,02
8 | 4,01
5 | 4,00
0 | 3,98
3 | 3,96
1 | 3,93
4 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 14 | 24 | 34 | 47 | 62 | 82 | | | | #### Table 583 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC3LT5 | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC3LT5 | | | | | | | | | | | | | | |--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Mass Reduction Level 0 (%) | 17 | 17 | 15 | 14 | 10 | 9 | 7 | 5 | 4 | 2 | 0 | | | | Mass Reduction Level 1 (%) | 36 | 36 | 37 | 37 | 39 | 38 | 33 | 34 | 33 | 31 | 32 | | | | Mass Reduction Level 2 (%) | 7 | 7 | 6 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | | | | Mass Reduction Level 3 (%) | 29 | 29 | 31 | 35 | 35 | 34 | 34 | 30 | 29 | 26 | 24 | | | | Mass Reduction Level 4 (%) | 10 | 9 | 11 | 11 | 12 | 13 | 20 | 21 | 25 | 31 | 35 | | | | Mass Reduction Level 5 (%) | 0 | 1 | 1 | 1 | 1 | 3 | 4 | 6 | 6 | 6 | 6 | | | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,02
8 | 4,01
5 | 4,00
0 | 3,98
3 | 3,96
1 | 3,93
4 | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 14 | 24 | 34 | 47 | 62 | 82 | | | # Table 584 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Total Fleet, Alternative PC6LT8 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Total Fleet, Alternative PC6LT8 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 16 | 15 | 14 | 13 | 12 | 11 | 11 | 7 | 6 | 4 | 0 | | | | | Mass Reduction Level 1 (%) | 24 | 24 | 21 | 21 | 22 | 22 | 20 | 21 | 18 | 17 | 14 | | | | | Mass Reduction Level 2 (%) | 13 | 13 | 11 | 6 | 6 | 4 | 3 | 2 | 2 | 2 | 1 | | | | | Mass Reduction Level 3 (%) | 39 | 39 | 44 | 49 | 50 | 43 | 39 | 37 | 37 | 26 | 16 | | | | | Mass Reduction Level 4 (%) | 8 | 8 | 8 | 9 | 9 | 17 | 24 | 29 | 34 | 46 | 63 | | | | | Mass Reduction Level 5 (%) | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,02
8 | 4,01
5 | 3,99
8 | 3,97
7 | 3,94
5 | 3,89
5 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 14 | 24 | 36 | 53 | 78 | 121 | | | | # Table 585 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC6LT8 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Passenger Car Fleet, Alternative PC6LT8 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 10 | 10 | 9 | 9 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Mass Reduction Level 1 (%) | 28 | 28 | 25 | 23 | 25 | 24 | 21 | 22 | 21 | 19 | 15 | | | | | Mass Reduction Level 2 (%) | 12 | 12 | 10 | 6 | 5 | 5 | 5 | 3 | 2 | 2 | 1 | | | | | Mass Reduction Level 3 (%) | 36 | 36 | 41 | 45 | 46 | 42 | 36 | 34 | 29 | 21 | 11 | | | | | Mass Reduction Level 4 (%) | 12 | 12 | 13 | 15 | 16 | 20 | 30 | 32 | 40 | 49 | 64 | | | | | Mass Reduction Level 5 (%) | 1 | 2 | 2 | 2 | 2 | 4 | 5 | 6 | 7 | 8 | 10 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,02
8 | 4,01
5 | 3,99
8 | 3,97
7 | 3,94
5 | 3,89
5 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 14 | 24 | 36 | 53 | 78 | 121 | | | | # Table 586 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC6LT8 | Mass Reduction Penetration I | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Light Truck Fleet, Alternative PC6LT8 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 19 | 18 | 17 | 15 | 14 | 14 | 13 | 9 | 7 | 5 | 0 | | | | | Mass Reduction Level 1 (%) | 21 | 21 | 19 | 21 | 21 | 21 | 20 | 21 | 16 | 16 | 13 | | | | | Mass Reduction Level 2 (%) | 13 | 13 | 12 | 6 | 6 | 3 | 2 | 2 | 2 | 2 | 1 | | | | | Mass Reduction Level 3 (%) | 41 | 41 | 45 | 52 | 52 | 44 | 40 | 38 | 40 | 28 | 19 | | | | | Mass Reduction Level 4 (%) | 5 | 5 | 6 | 6 | 6 | 16 | 22 | 28 | 32 | 45 | 62 | | | | | Mass Reduction Level 5 (%) | 0 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 5 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,02
8 | 4,01
5 | 3,99
8 | 3,97
7 | 3,94
5 | 3,89
5 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 14 | 24 | 36 | 53 | 78 | 121 | | | | # Table 587 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC6LT8 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Domestic Car Fleet, Alternative PC6LT8 | | | | | | | | | | | | | | |--------------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 4 | 4 | 4 | 3 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 19 | 19 | 13 | 9 | 10 | 10 | 10 | 10 | 9 | 9 | 2 | | | | | Mass Reduction Level 2 (%) | 17 | 17 | 14 | 9 | 7 | 7 | 7 | 3 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 42 | 42 | 52 | 56 | 57 | 51 | 41 | 42 | 33 | 27 | 15 | | | | | Mass Reduction Level 4 (%) | 15 | 15 | 15 | 20 | 20 | 26 | 36 | 40 | 51 | 56 | 73 | | | | | Mass Reduction Level 5 (%) | 3 | 3 | 3 | 3 | 3 | 5 | 6 | 6 | 7 | 8 | 10 | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,02
8 | 4,01
5 | 3,99
8 | 3,97
7 | 3,94
5 | 3,89
5 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 14 | 24 | 36 | 53 | 78 | 121 | | | | #### Table 588 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC6LT8 | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Total) Imported Car Fleet, Alternative PC6LT8 | | | | | | | | | | | | | |--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | Mass Reduction Level 0 (%) | 17 | 17 | 15 | 14 | 10 | 9 | 7 | 5 | 4 | 2 | 0 | | | Mass Reduction Level 1 (%) | 36 | 36 | 37 | 37 | 39 | 38 | 33 | 34 | 32 | 29 | 28 | | | Mass Reduction Level 2 (%) | 7 | 7 | 6 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1 | | | Mass Reduction Level 3 (%) | 29 | 29 | 31 | 35 | 35 | 34 | 31 | 27 | 25 | 16 | 6 | | | Mass Reduction Level 4 (%) | 10 | 9 | 11 | 11 | 12 | 13 | 23 | 25 | 29 | 42 | 55 | | | Mass Reduction Level 5 (%) | 0 | 1 | 1 | 1 | 1 | 3 | 4 | 6 | 7 | 8 | 10 | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,01
9 | 4,03
1 | 4,03
6 | 4,03
9 | 4,04
2 | 4,02
8 | 4,01
5 | 3,99
8 | 3,97
7 | 3,94
5 | 3,89
5 | | | Diff. from Baseline - Fleet
(pounds) | 0 | 0 | 0 | 0 | 0 | 14 | 24 | 36 | 53 | 78 | 121 | | # Table A.-589 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (BMW) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (BMW) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Mass Reduction Level 0 (%) | 43 | 42 | 32 | 31 | 14 | 14 | 5 | 3 | 1 | 1 | 0 | | | | Mass Reduction Level 1 (%) | 35 | 35 | 41 | 41 | 58 | 58 | 67 | 69 | 71 | 71 | 71 | | | | Mass Reduction Level 2 (%) | 22 | 23 | 23 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | | | | Mass Reduction Level 3 (%) | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,30
1 | 4,32
2 | 4,32
3 | 4,33
9 | 4,32
0 | 4,32
6 | 4,31
6 | 4,31
6 | 4,31
2 | 4,30
7 | 4,29
7 | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -2 | -1 | 0 | 6 | | | # Table 0-590 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Ford) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Ford) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--------------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 13 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 6 | 6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | | | | Mass Reduction Level 2 (%) | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 64 | 64 | 71 | 71 | 71 | 28 | 19 | 13 | 12 | 12 | 5 | | | | | Mass Reduction Level 4 (%) | 10 | 10 | 10 | 10 | 10 | 53 | 61 | 77 | 78 | 78 | 85 | | | | | Mass Reduction Level 5 (%) | 0 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | Avg Curb Weight - Fleet (pounds) | 4,39
6 | 4,37
3 | 4,37
2 | 4,37
5 | 4,37
7 | 4,30
1 | 4,28
9 | 4,23
5 | 4,23
2 | 4,23
1 | 4,21
9 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 77 | 90 | 129 | 132 | 132 | 144 | | | | # Table 0-591 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (GM) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (GM) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Mass Reduction Level 0 (%) | 4 | 4 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 1 (%) | 36 | 35 | 11 | 6 | 3 | 3 | 3 | 3 | 1 | 1 | 0 | | | | Mass Reduction Level 2 (%) | 39 | 40 | 41 | 12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 3 (%) | 21 | 21 | 41 | 74 | 74 | 87 | 87 | 75 | 72 | 37 | 30 | | | | Mass Reduction Level 4 (%) | 0 | 0 | 4 | 4 | 8 | 8 | 8 | 20 | 26 | 61 | 68 | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,31
0 | 4,33
2 | 4,30
7 | 4,28
8 | 4,28
4 | 4,26
9 | 4,27
2 | 4,25
9 | 4,24
8 | 4,18
0 | 4,16
4 | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 16 | 21 | 85 | 100 | | | #### Table 0-592 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Honda) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetratio | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Honda) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 2 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 2 (%) | 12 | 12 | 11 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | | | Mass Reduction Level 3 (%) | 86 | 87 | 87 | 91 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | | | | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Avg Curb Weight - Fleet (pounds) | 3,55
9 | 3,57
8 | 3,59
3 | 3,60
2 | 3,60
9 | 3,61
0 | 3,61
2 | 3,61
4 | 3,61
2 | 3,60
8 | 3,60
6 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -2 | -1 | 0 | 1 | | | | # Table 0-593 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Hyundai KiH) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Hyundai KiH) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Mass Reduction Level 0 (%) | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 1 (%) | 6 | 6 | 6 | 6 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 2 (%) | 12 | 11 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 3 (%) | 65 | 66 | 67 | 80 | 80 | 77 | 76 | 76 | 76 | 76 | 75 | | | | Mass Reduction Level 4 (%) | 16 | 14 | 13 | 13 | 13 | 13 | 12 | 12 | 12 | 12 | 13 | | | | Mass Reduction Level 5 (%) | 0 | 2 | 2 | 2 | 2 | 8 | 12 | 12 | 12 | 12 | 12 | | | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,52
4 | 3,53
6 | 3,54
8 | 3,54
9 | 3,55
5 | 3,53
8 | 3,52
8 | 3,52
9 | 3,52
8 | 3,52
4 | 3,52
3 | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 8 | 13 | 12 | 13 | 13 | 14 | | | # Table 0-594 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Hyundai KiK) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Hyundai KiK) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 2 (%) | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 3 (%) | 83 | 84 | 87 | 87 | 88 | 86 | 86 | 62 | 62 | 35 | 35 | | | | Mass Reduction Level 4 (%) | 14 | 13 | 13 | 13 | 12 | 12 | 12 | 30 | 30 | 57 | 57 | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 8 | 8 | 8 | 8 | | | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,48
5 | 3,50
3 | 3,51
5 | 3,52
8 | 3,53
4 | 3,53
2 | 3,53
5 | 3,49
6 | 3,49
4 | 3,45
1 | 3,44
9 | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 6 | 6 | 46 | 46 | 86 | 87 | | | # Table 0-595 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (JLR) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetrati | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (JLR) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 62 | 62 | 62 | 62 | 62 | 62 | 63 | 63 | 63 | 51 | 24 | | | | | Mass Reduction Level 2 (%) | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 0 | | | | | Mass Reduction Level 3 (%) | 18 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | | | | | Mass Reduction Level 4 (%) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 |
57 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Avg Curb Weight - Fleet (pounds) | 4,73
6 | 4,73
5 | 4,73
7 | 4,73
9 | 4,73
9 | 4,74
0 | 4,74
0 | 4,74
0 | 4,74
0 | 4,69
3 | 4,54
3 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 46 | 197 | | | | #### Table 0-596 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Karma) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetratio | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Karma) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Avg Curb Weight - Fleet (pounds) | 5,25
0 | 5,25
0 | 5,25
0 | 5,25
0 | 5,06
4 | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | #### Table 0-597 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Lucid) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetratio | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Lucid) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | | | | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Avg Curb Weight - Fleet (pounds) | 5,22
0 5,01
9 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | #### Table 0-598 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Mazda) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Mazda) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | | Mass Reduction Level 0 (%) | 47 | 48 | 48 | 48 | 49 | 49 | 49 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 15 | 15 | 16 | 16 | 16 | 16 | 16 | 64 | 64 | 64 | 64 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 34 | 34 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | | | | | Mass Reduction Level 4 (%) | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Avg Curb Weight - Fleet (pounds) | 3,65
1 | 3,65
9 | 3,66
5 | 3,67
1 | 3,67
4 | 3,67
6 | 3,67
7 | 3,61
0 | 3,61
0 | 3,60
8 | 3,60
7 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | | | | #### Table 0-599 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Mercedes-Benz) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | | |---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Mass Reduction Level 0 (%) | 54 | 54 | 54 | 54 | 44 | 38 | 16 | 10 | 8 | 7 | 7 | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 10 | 15 | 37 | 43 | 45 | 46 | 46 | | | | Mass Reduction Level 2 (%) | 18 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | | | | Mass Reduction Level 3 (%) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | | Mass Reduction Level 4 (%) | 28 | 28 | 28 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | | | | Mass Reduction Level 5 (%) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,26
6 | 4,27
6 | 4,28
4 | 4,29
2 | 4,28
1 | 4,27
3 | 4,23
6 | 4,22
8 | 4,22
3 | 4,22
0 | 4,21
9 | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | | | #### Table 0-600 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Mitsubishi) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration I | Rate and | | Neights
Alterna | - | | for Ma | nufactu | rer (Mit | subishi |) Total I | Fleet, | |--------------------------------------|-----------|-----------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 81 | 81 | 82 | 83 | 83 | 83 | 83 | 83 | 83 | 34 | 22 | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mass Reduction Level 3 (%) | 19 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 61 | | Mass Reduction Level 4 (%) | 0 | 0 | 18 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,29
5 | 3,30
8 | 3,30
3 | 3,31
2 | 3,31
7 | 3,32
1 | 3,32
2 | 3,32
4 | 3,32
2 | 3,19
1 | 3,16
1 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 64 | 79 | # Table 0-601 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Nissan) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Nissan) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | |--------------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | Mass Reduction Level 0 (%) | 17 | 15 | 15 | 15 | 14 | 14 | 14 | 14 | 2 | 2 | 0 | | | Mass Reduction Level 1 (%) | 40 | 40 | 39 | 40 | 41 | 41 | 17 | 17 | 25 | 25 | 16 | | | Mass Reduction Level 2 (%) | 44 | 43 | 37 | 25 | 22 | 21 | 9 | 5 | 0 | 0 | 0 | | | Mass Reduction Level 3 (%) | 0 | 0 | 5 | 5 | 9 | 8 | 8 | 8 | 3 | 3 | 0 | | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 12 | 12 | 12 | 47 | 50 | 64 | 65 | 79 | | | Mass Reduction Level 5 (%) | 0 | 2 | 2 | 2 | 2 | 4 | 5 | 5 | 5 | 5 | 5 | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,74
0 | 3,74
4 | 3,75
9 | 3,75
1 | 3,75
7 | 3,75
7 | 3,66
6 | 3,65
9 | 3,61
1 | 3,60
6 | 3,57
0 | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | -1 | 62 | 61 | 77 | 78 | 108 | | #### Table 0-602 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Stellantis) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration | Rate an | | Weights
Alterna | _ | | r for Ma | ınufactı | ırer (Ste | ellantis) | Total F | leet, | |--------------------------------------|-----------|-----------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 22 | 20 | 20 | 14 | 13 | 13 | 13 | 0 | 0 | 0 | 0 | | Mass Reduction Level 1 (%) | 43 | 43 | 39 | 42 | 42 | 42 | 42 | 48 | 28 | 28 | 13 | | Mass Reduction Level 2 (%) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | | Mass Reduction Level 3 (%) | 21 | 21 | 25 | 28 | 28 | 28 | 27 | 35 | 51 | 49 | 39 | | Mass Reduction Level 4 (%) | 13 | 13 | 14 | 14 | 14 | 14 | 14 | 14 | 18 | 21 | 30 | |
Mass Reduction Level 5 (%) | 0 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,53
9 | 4,53
2 | 4,53
2 | 4,52
0 | 4,52
0 | 4,52
2 | 4,52
3 | 4,49
0 | 4,44
2 | 4,43
7 | 4,41
0 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 68 | 72 | 98 | # Table 0-603 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Subaru) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Subaru) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | |--------------------------------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Mass Reduction Level 1 (%) | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | | | Mass Reduction Level 2 (%) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Mass Reduction Level 3 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,63
4 | 3,63
9 | 3,64
3 | 3,64
6 | 3,64
7 | 3,64
9 | 3,64
9 | 3,65
0 | 3,64
9 | 3,64
8 | 3,64
7 | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | # Table 0-604 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Tesla) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetrati | Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Tesla) Total Fleet, Alternative PC2LT4 | | | | | | | | | | | | | |--------------------------------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 3 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Mass Reduction Level 4 (%) | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | | | | Mass Reduction Level 5 (%) | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,30
0 | 4,30
0 | 4,30
0 | 4,30
1 | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | # Table 0-605 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Toyota) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration | Rate a | | _ | ts by Me | | ar for M | anufac | turer (T | oyota) 1 | Total Fle | eet, | |--------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 25 | 25 | 26 | 26 | 26 | 27 | 27 | 27 | 27 | 20 | 0 | | Mass Reduction Level 1 (%) | 20 | 20 | 19 | 19 | 18 | 18 | 18 | 18 | 18 | 25 | 45 | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mass Reduction Level 3 (%) | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,92
4 | 3,94
5 | 3,96
0 | 3,97
5 | 3,98
2 | 3,98
7 | 3,99
0 | 3,99
2 | 3,99
0 | 3,97
3 | 3,93
9 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -2 | -1 | 0 | 1 | #### Table 0-606 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (Volvo) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration | n Rate a | | _ | nts by M
tive PC | | ear for N | /lanufac | turer (\ | /olvo) T | otal Fle | et, | |--------------------------------------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 28 | 28 | 27 | 27 | 8 | 8 | 8 | 0 | 0 | 0 | 0 | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 19 | 19 | 19 | 27 | 27 | 27 | 27 | | Mass Reduction Level 2 (%) | 72 | 72 | 73 | 73 | 73 | 73 | 73 | 73 | 73 | 73 | 73 | | Mass Reduction Level 3 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,37
8 | 4,37
9 | 4,37
9 | 4,38
0 | 4,35
4 | 4,35
4 | 4,35
4 | 4,34
1 | 4,34
1 | 4,34
0 | 4,34
0 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | # Table 0-607 - Mass Reduction Penetration Rate and Curb Weights by Model Year for Manufacturer (VWA) Total Fleet, Alternative PC2LT4 | Mass Reduction Penetration | n Rate a | | b Weigl
Alterna | _ | | ear for l | Manufa | cturer (| VWA) T | otal Fle | et, | |--------------------------------------|-----------|-----------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Mass Reduction Level 0 (%) | 59 | 60 | 42 | 27 | 23 | 21 | 19 | 14 | 9 | 2 | 0 | | Mass Reduction Level 1 (%) | 20 | 19 | 36 | 51 | 54 | 55 | 41 | 47 | 34 | 30 | 31 | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mass Reduction Level 3 (%) | 20 | 17 | 18 | 18 | 19 | 19 | 32 | 32 | 32 | 36 | 36 | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 4 | 22 | 28 | 29 | | Mass Reduction Level 5 (%) | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,02
4 | 4,03
1 | 4,01
7 | 4,00
5 | 4,00
2 | 3,99
9 | 3,97
8 | 3,97
0 | 3,91
1 | 3,87
5 | 3,86
8 | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | -1 | -15 | -15 | 35 | 46 | 48 | #### Powertrain Technology Penetration Rate, by Alternative Table 608 - Powertrain Technology Penetration Rate (%) for Manufacturer (Total), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Ra | te (%) for Manufacturer | (Total), MY | 2032 Tota | I Fleet by A | Alternative | |--------------------------------------|-------------------------|-------------|-----------|--------------|-------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 19 | 15 | 13 | 11 | 3 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 22 | 12 | 10 | 7 | 2 | | Variable Geometry Turbo | 0 | 1 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 26 | 14 | 11 | 8 | 2 | | Mild Hybrid | 1.4 | 2.0 | 0.6 | 1.3 | 0.4 | | Strong Hybrid | 21.5 | 30.9 | 33.1 | 35.2 | 41.7 | | Plug-In Hybrid | 2.9 | 6.2 | 7.5 | 7.9 | 11.9 | | Battery Electric Vehicles (BEVs) | 32.26 | 32.25 | 32.26 | 32.27 | 32.27 | | BEV 1 | 6.72 | 6.72 | 6.72 | 6.74 | 6.73 | | BEV 2 | 17.11 | 17.11 | 17.10 | 17.10 | 17.10 | | BEV 3 | 7.64 | 7.64 | 7.64 | 7.63 | 7.64 | | BEV 4 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 13 | 7 | 5 | 1 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 13 | 7 | 5 | 5 | 2 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 16 | 13 | 12 | 13 | 3 | Table 609 - Powertrain Technology Penetration Rate (%) for Manufacturer (Total), MY 2032 Passenger Car Fleet by Alternative | Powertrain Technology Penetration | Rate (%) for Manufacture Alternative | r (Total), MY | 2032 Passo | enger Car F | leet by | |-------------------------------------|--------------------------------------|---------------|------------|-------------|---------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 27 | 26 | 25 | 23 | 6 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 17 | 12 | 10 | 8 | 0 | | Variable Geometry Turbo | 0 | 2 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 19 | 15 | 14 | 10 | 2 | | Mild Hybrid | 2.1 | 3.4 | 0.3 | 3.6 | 0.8 | | Strong Hybrid | 12.7 | 15.5 | 19.2 | 22.9 | 37.6 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.1 | 1.4 | | Battery Electric
Vehicles (BEVs) | 42.24 | 42.24 | 42.24 | 42.23 | 42.24 | | BEV 1 | 13.67 | 13.67 | 13.67 | 13.67 | 13.67 | | BEV 2 | 17.42 | 17.42 | 17.42 | 17.41 | 17.41 | | BEV 3 | 8.68 | 8.68 | 8.68 | 8.68 | 8.68 | | BEV 4 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | | Fuel Cell Vehicles (FCVs) | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 5 Occasión de continu | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 8 | 6 | 3 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 4 | 4 | 4 | 4 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 30 | 29 | 27 | 26 | 6 | Table 610 - Powertrain Technology Penetration Rate (%) for Manufacturer (Total), MY 2032 Light Truck Fleet by Alternative | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | |-------------------------------------|----------------------|--------|--------|--------|--------| | Non-Hybrid High Compression Engines | 16 | 10 | 7 | 6 | 1 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 25 | 12 | 9 | 7 | 3 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 30 | 13 | 9 | 7 | 2 | | Mild Hybrid | 1.1 | 1.4 | 0.8 | 0.2 | 0.2 | | Strong Hybrid | 25.7 | 38.2 | 39.7 | 41.0 | 43.7 | | Plug-In Hybrid | 4.3 | 9.1 | 11.0 | 11.6 | 16.9 | | Battery Electric Vehicles (BEVs) | 27.54 | 27.54 | 27.53 | 27.52 | 27.52 | | BEV 1 | 3.43 | 3.43 | 3.43 | 3.43 | 3.43 | | BEV 2 | 16.96 | 16.96 | 16.96 | 16.95 | 16.95 | | BEV 3 | 7.14 | 7.14 | 7.14 | 7.14 | 7.14 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 15 | 7 | 6 | 1 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 17 | 9 | 6 | 6 | 3 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 9 | 6 | 5 | 6 | 1 | Table 611 - Powertrain Technology Penetration Rate (%) for Manufacturer (Total), MY 2032 Domestic Car Fleet by Alternative | Powertrain Technology Penetration | Rate (%) for Manufacture Alternative | er (Total), M\ | / 2032 Dom | estic Car Fl | eet by | |-------------------------------------|--------------------------------------|----------------|------------|--------------|--------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 27 | 27 | 27 | 25 | 6 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 18 | 11 | 10 | 7 | 1 | | Variable Geometry Turbo | 0 | 4 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 22 | 14 | 13 | 10 | 5 | | Mild Hybrid | 0.2 | 4.8 | 0.2 | 4.0 | 1.4 | | Strong Hybrid | 9.1 | 12.9 | 18.2 | 21.4 | 39.1 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.2 | 0.9 | | Battery Electric Vehicles (BEVs) | 45.06 | 45.06 | 45.06 | 45.05 | 45.06 | | BEV 1 | 11.28 | 11.28 | 11.27 | 11.27 | 11.27 | | BEV 2 | 16.66 | 16.66 | 16.65 | 16.65 | 16.65 | | BEV 3 | 12.33 | 12.33 | 12.33 | 12.33 | 12.33 | | BEV 4 | 4.80 | 4.80 | 4.80 | 4.80 | 4.80 | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 5 | 3 | 1 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 7 | 7 | 4 | 2 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 33 | 31 | 31 | 29 | 6 | Table 612 - Powertrain Technology Penetration Rate (%) for Manufacturer (Total), MY 2032 Imported Car Fleet by Alternative | Powertrain Technology Penetration Rate (%) for Manufacturer (Total), MY 2032 Imported Car Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Non-Hybrid High Compression Engines | 26 | 26 | 23 | 21 | 6 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 15 | 12 | 11 | 9 | 0 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 16 | 16 | 15 | 10 | 0 | | | | | Mild Hybrid | 3.9 | 2.1 | 0.5 | 3.2 | 0.3 | | | | | Strong Hybrid | 16.1 | 18.1 | 20.1 | 24.4 | 36.2 | | | | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | | | | | Battery Electric Vehicles (BEVs) | 39.49 | 39.49 | 39.49 | 39.48 | 39.48 | | | | | BEV 1 | 16.01 | 16.01 | 16.01 | 16.01 | 16.01 | | | | | BEV 2 | 18.16 | 18.16 | 18.16 | 18.15 | 18.16 | | | | | BEV 3 | 5.12 | 5.12 | 5.12 | 5.12 | 5.12 | | | | | BEV 4 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 11 | 9 | 4 | 1 | 0 | | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 1 | 1 | 5 | 5 | 0 | | | | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | | | | CVT Transmissions | 27 | 27 | 24 | 23 | 6 | | | | Table 613 - Powertrain Technology Penetration Rate (%) for Manufacturer (BMW), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Rate | te (%) for Manufacturer | (BMW), MY | 2032 Tota | Fleet by A | Iternative | |--|-------------------------|-----------|-----------|------------|------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 10 | 4 | 4 | 4 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 9 | 2 | 2 | 2 | 0 | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid | 47.6 | 54.0 | 54.0 | 54.0 | 56.5 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | | Battery Electric Vehicles (BEVs) | 42.17 | 42.17 | 42.17 | 42.17 | 42.17 | | BEV 1 | 4.10 | 4.10 | 4.11 | 4.12 | 4.12 | | BEV 2 | 17.24 | 17.24 | 17.26 | 17.28 | 17.28 | | BEV 3 | 20.54 | 20.55 | 20.53 | 20.49 | 20.50 | | BEV 4 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 7 | 1 | 1 | 1 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 1 | 1 | 1 | 1 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | Table 614 - Powertrain Technology Penetration Rate (%) for Manufacturer (Ford), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Ra | te (%) for Manufacturer | (Ford), MY | 2032 Total | Fleet by A | Iternative | |--------------------------------------|-------------------------|------------|------------|------------|------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 2 | 2 | 2 | 2 | 2 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 36 | 4 | 1 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 35 | 5 | 3 | 2 | 2 | | Mild Hybrid | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | | Strong Hybrid | 36.4 | 68.8 | 64.7 | 65.0 | 64.3 | | Plug-In Hybrid | 0.7 | 1.1 | 2.3 | 2.3 | 3.0 | | Battery Electric Vehicles (BEVs) | 23.87 | 23.87 | 23.87 | 23.87 | 23.87 | | BEV 1 | 2.95 | 2.95 | 2.96 | 2.96 | 2.96 | | BEV 2 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | | BEV 3 | 2.16 | 2.16 | 2.16 | 2.16 | 2.16 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 10 | 2 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 28 | 3 | 3 | 2 | 2 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | Table 615 - Powertrain Technology Penetration Rate (%) for Manufacturer (GM), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Ra | te (%) for Manufacture | (GM), MY | 2032 Total | Fleet by A | Iternative | |--------------------------------------|------------------------|----------|------------|------------|------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 8 | 1 | 0 | 0 | 0 | | Cylinder Deactivation |
0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 28 | 6 | 6 | 5 | 5 | | Variable Geometry Turbo | 0 | 5 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 1 | 1 | 1 | 1 | 1 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 26 | 0 | 1 | 0 | 0 | | Mild Hybrid | 3.7 | 8.2 | 1.1 | 1.1 | 1.1 | | Strong Hybrid | 22.6 | 25.9 | 31.6 | 31.3 | 31.2 | | Plug-In Hybrid | 19.3 | 30.0 | 30.6 | 32.4 | 32.5 | | Battery Electric Vehicles (BEVs) | 21.74 | 21.74 | 21.74 | 21.74 | 21.74 | | BEV 1 | 2.73 | 2.73 | 2.73 | 2.74 | 2.73 | | BEV 2 | 18.96 | 18.96 | 18.96 | 18.96 | 18.96 | | BEV 3 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 14 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 19 | 11 | 7 | 6 | 6 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 4 | 2 | 0 | 0 | 0 | Table 616 - Powertrain Technology Penetration Rate (%) for Manufacturer (Honda), MY 2032 Total Fleet by Alternative | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | |-------------------------------------|----------------------|--------|--------|--------|--------| | Non-Hybrid High Compression Engines | 11 | 11 | 11 | 11 | 5 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 41 | 29 | 20 | 12 | 2 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 48 | 36 | 26 | 19 | 7 | | Mild Hybrid | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | | Strong Hybrid | 10.6 | 22.9 | 31.7 | 39.9 | 55.9 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | | Battery Electric Vehicles (BEVs) | 36.74 | 36.74 | 36.74 | 36.74 | 36.74 | | BEV 1 | 16.77 | 16.77 | 16.77 | 16.80 | 16.79 | | BEV 2 | 16.06 | 16.06 | 16.06 | 16.04 | 16.05 | | BEV 3 | 3.91 | 3.91 | 3.91 | 3.90 | 3.90 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 19 | 19 | 10 | 2 | 2 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 33 | 21 | 21 | 21 | 5 | Table 617 - Powertrain Technology Penetration Rate (%) for Manufacturer (Hyundai KiH), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Rate (%) for Manufacturer (Hyundai KiH), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Non-Hybrid High Compression Engines | 39 | 34 | 20 | 15 | 0 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 7 | 5 | 5 | 4 | 0 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 33 | 29 | 18 | 10 | 0 | | | | | Mild Hybrid | 6.2 | 4.0 | 0.0 | 2.2 | 0.0 | | | | | Strong Hybrid | 18.1 | 19.0 | 29.0 | 20.3 | 17.4 | | | | | Plug-In Hybrid | 0.0 | 2.1 | 6.9 | 0.0 | 1.7 | | | | | Battery Electric Vehicles (BEVs) | 29.96 | 29.96 | 29.96 | 29.96 | 29.96 | | | | | BEV 1 | 10.21 | 10.21 | 10.21 | 10.22 | 10.22 | | | | | BEV 2 | 16.74 | 16.74 | 16.74 | 16.73 | 16.73 | | | | | BEV 3 | 3.01 | 3.01 | 3.01 | 3.01 | 3.01 | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | | | | | | | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 21 | 19 | 0 | 0 | 0 | | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 2 | 1 | 9 | 3 | 0 | | | | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | | | | CVT Transmissions | 18 | 16 | 12 | 12 | 0 | | | | Table 618 - Powertrain Technology Penetration Rate (%) for Manufacturer (Hyundai KiK), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Rate (%) for Manufacturer (Hyundai KiK), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Non-Hybrid High Compression Engines | 49 | 37 | 25 | 13 | 0 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 16 | 13 | 9 | 8 | 0 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 24 | 16 | 8 | 7 | 0 | | | | | Mild Hybrid | 0.9 | 7.6 | 5.7 | 0.0 | 0.0 | | | | | Strong Hybrid | 9.2 | 12.3 | 14.5 | 15.6 | 35.0 | | | | | Plug-In Hybrid | 0.0 | 5.8 | 11.2 | 11.1 | 12.3 | | | | | Battery Electric Vehicles (BEVs) | 26.65 | 26.65 | 26.65 | 26.65 | 26.65 | | | | | BEV 1 | 5.34 | 5.34 | 5.35 | 5.36 | 5.35 | | | | | BEV 2 | 20.00 | 20.00 | 19.99 | 19.98 | 19.98 | | | | | BEV 3 | 1.31 | 1.31 | 1.32 | 1.32 | 1.31 | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 20 | 9 | 9 | 0 | 0 | | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 0 | 0 | 0 | 8 | 0 | | | | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | | | | CVT Transmissions | 37 | 37 | 25 | 13 | 0 | | | | Table 619 - Powertrain Technology Penetration Rate (%) for Manufacturer (JLR), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Ra | te (%) for Manufacturer | (JLR), MY | 2032 Tota | Fleet by A | Iternative | |--------------------------------------|-------------------------|-----------|-----------|------------|------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 18 | 13 | 13 | 13 | 13 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 18 | 13 | 13 | 13 | 13 | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid | 42.6 | 44.6 | 44.1 | 44.1 | 44.1 | | Plug-In Hybrid | 0.0 | 3.6 | 4.1 | 4.1 | 4.1 | | Battery Electric Vehicles (BEVs) | 39.05 | 39.05 | 39.05 | 39.05 | 39.05 | | BEV 1 | 4.27 | 4.27 | 4.27 | 4.27 | 4.27 | | BEV 2 | 18.99 | 19.00 | 19.00 | 19.01 | 19.01 | | BEV 3 | 15.80 | 15.78 | 15.79 | 15.77 | 15.77 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 1 | 1 | 1 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 18 | 12 | 12 | 13 | 13 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | Table 620 - Powertrain Technology Penetration Rate (%) for Manufacturer (Karma), MY 2032 Total Fleet by Alternative | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | |-------------------------------------|----------------------|--------|--------|--------|--------| | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | BEV 1 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | | BEV 2 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | | BEV 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | DCT
Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | Table 621 - Powertrain Technology Penetration Rate (%) for Manufacturer (Lucid), MY 2032 Total Fleet by Alternative | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | |-------------------------------------|----------------------|--------|--------|--------|--------| | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | BEV 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | BEV 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | BEV 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | BEV 4 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | Table 622 - Powertrain Technology Penetration Rate (%) for Manufacturer (Mazda), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Ra | te (%) for Manufacturer | (Mazda), MY | 2032 Tota | I Fleet by A | Alternative | |--------------------------------------|-------------------------|-------------|-----------|--------------|-------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 45 | 45 | 45 | 35 | 2 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid | 17.9 | 17.9 | 17.9 | 17.9 | 19.2 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 9.3 | 29.6 | | Battery Electric Vehicles (BEVs) | 37.48 | 37.48 | 37.48 | 37.48 | 37.48 | | BEV 1 | 9.43 | 9.43 | 9.43 | 9.44 | 9.44 | | BEV 2 | 24.10 | 24.10 | 24.10 | 24.09 | 24.09 | | BEV 3 | 3.96 | 3.95 | 3.95 | 3.95 | 3.95 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 40 | 40 | 40 | 12 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 1 | 1 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 4 | 4 | 4 | 21 | 0 | Table 623 - Powertrain Technology Penetration Rate (%) for Manufacturer (Mercedes-Benz), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Rate (%) for Manufacturer (Mercedes-Benz), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | | | | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | | | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | | | | Non-Hybrid Turbocharged Engines | 16 | 3 | 3 | 0 | 0 | | | | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | | | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | | | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | | | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | | | | 12V Stop-Start (non-hybrid) | 16 | 3 | 3 | 0 | 0 | | | | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Strong Hybrid | 41.7 | 55.6 | 55.6 | 58.2 | 58.2 | | | | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 41.83 | 41.83 | 41.83 | 41.83 | 41.83 | | | | | BEV 1 | 6.40 | 6.40 | 6.41 | 6.44 | 6.43 | | | | | BEV 2 | 12.24 | 12.24 | 12.24 | 12.24 | 12.24 | | | | | BEV 3 | 21.69 | 21.69 | 21.68 | 21.65 | 21.66 | | | | | BEV 4 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | | | | 10-Speed Automatic | 14 | 0 | 0 | 0 | 0 | | | | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | | | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | | | | Table 624 - Powertrain Technology Penetration Rate (%) for Manufacturer (Mitsubishi), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Rate | e (%) for Manufacturer (M | litsubishi), N | IY 2032 Tot | al Fleet by | Alternative | |--|---------------------------|----------------|-------------|-------------|-------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 57 | 49 | 30 | 27 | 11 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 12 | 12 | 12 | 12 | 12 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid | 0.0 | 18.7 | 3.5 | 16.2 | 0.0 | | Strong Hybrid | 9.5 | 17.3 | 35.9 | 17.0 | 4.0 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 22.4 | 19.2 | | Battery Electric Vehicles (BEVs) | 21.57 | 21.57 | 21.57 | 21.57 | 21.57 | | BEV 1 | 4.76 | 4.77 | 4.77 | 4.78 | 4.78 | | BEV 2 | 16.81 | 16.80 | 16.80 | 16.79 | 16.79 | | BEV 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 69 | 61 | 42 | 39 | 23 | Table 625 - Powertrain Technology Penetration Rate (%) for Manufacturer (Nissan), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Rat Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | |--|----------------------|--------|--------|--------|--------| | Non-Hybrid High Compression Engines | 39 | 30 | 27 | 23 | 3 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 10 | 10 | 3 | 1 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 12 | 4 | 0 | 0 | 0 | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 6.4 | 2.8 | | Strong Hybrid | 9.0 | 28.1 | 24.9 | 31.1 | 42.2 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | | Battery Electric Vehicles (BEVs) | 24.68 | 24.68 | 24.68 | 24.68 | 24.68 | | BEV 1 | 4.96 | 4.96 | 4.96 | 4.96 | 4.96 | | BEV 2 | 17.70 | 17.70 | 17.70 | 17.71 | 17.71 | | BEV 3 | 2.02 | 2.03 | 2.02 | 2.01 | 2.02 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 22 | 13 | 3 | 1 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 45 | 34 | 34 | 31 | 3 | Table 626 - Powertrain Technology Penetration Rate (%) for Manufacturer (Stellantis), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Rate | e (%) for Manufacturer (S | Stellantis), M | Y 2032 Tot | al Fleet by | Alternative | |--|---------------------------|----------------|------------|-------------|-------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 16 | 5 | 2 | 2 | 0 | | Cylinder Deactivation | 1 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 17 | 6 | 6 | 5 | 5 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 25 | 5 | 2 | 0 | 0 | | Mild Hybrid | 1.0 | 0.2 | 0.2 | 1.7 | 0.2 | | Strong Hybrid | 37.1 | 49.1 | 49.1 | 50.4 | 35.3 | | Plug-In Hybrid | 2.3 | 13.1 | 16.6 | 16.5 | 33.2 | | Battery Electric Vehicles (BEVs) | 26.66 | 26.66 | 26.66 | 26.66 | 26.66 | | BEV 1 | 2.53 | 2.53 | 2.54 | 2.54 | 2.54 | | BEV 2 | 16.06 | 16.06 | 16.06 | 16.06 | 16.06 | | BEV 3 | 8.06 | 8.06 | 8.06 | 8.05 | 8.06 | | BEV 4 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 13 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 21 | 11 | 7 | 6 | 5 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | Table 627 - Powertrain Technology Penetration Rate (%) for Manufacturer (Subaru), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Rat | | 1 | 1 | 1 | 1 | |---------------------------------------|----------------------|--------|--------|--------|--------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 43 | 43 | 43 | 43 | 12 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 15 | 15 | 15 | 15 | 1 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 46 | 46 | 46 | 46 | 12 | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | | Strong Hybrid | 0.8 | 0.8 | 0.8 | 1.0 | 40.7 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 4.9 | | Battery Electric Vehicles (BEVs) | 41.25 | 41.25 | 41.25 | 41.25 | 41.25 | | BEV 1 | 4.18 | 4.18 | 4.19 | 4.21 | 4.20 | | BEV 2 | 20.11 | 20.11 | 20.11 | 20.10 | 20.11 | | BEV 3 | 16.96 | 16.96 | 16.95 | 16.93 | 16.94 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 56 | 56 | 56 | 56 | 12 | Table 628 - Powertrain Technology Penetration Rate (%) for Manufacturer (Tesla), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Ra | te (%) for Manufacturer | (Tesla), MY | 2032 Tota | I Fleet by A | Alternative | |--------------------------------------|-------------------------|-------------|-----------|--------------|-------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 0 | 0 | 0 | 0 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Battery Electric Vehicles (BEVs) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | BEV 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | BEV 2 | 18.28 | 18.28 | 18.28 | 18.29 | 18.29 | | BEV 3 | 57.48 | 57.48 | 57.47 | 57.45 | 57.46 | | BEV 4 | 24.24 | 24.24 | 24.25 | 24.26 | 24.25 | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | Table 629 - Powertrain Technology Penetration Rate (%) for Manufacturer (Toyota), MY 2032 Total Fleet by Alternative | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | |-------------------------------------|----------------------|--------|--------|--------|--------| | Non-Hybrid High Compression Engines | 26 | 26 | 25 | 22 | 7 | | Cylinder Deactivation | 1 | 1 | 1 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 22 | 22 | 22 | 17 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 18 | 18 | 19 | 14 | 1 | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid | 17.1 | 17.1 | 17.2 | 24.1 | 43.1 | | Plug-In Hybrid | 0.0 | 0.0 | 1.1 | 2.8 | 10.1 | | Battery Electric Vehicles (BEVs) | 33.92 | 33.92 | 33.92 | 33.92 | 33.92 | | BEV 1 | 12.33 | 12.33 | 12.34 | 12.37 | 12.36 | | BEV 2 | 13.18 | 13.18 | 13.17 | 13.15 | 13.15 | | BEV 3 | 8.42 | 8.42 | 8.42 | 8.41 | 8.41 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 27 | 27 | 26 | 3 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 4 | 4 | 4 | 13 | 0 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 17 | 17 | 17 | 23 | 7 | Table 630 - Powertrain Technology Penetration Rate (%) for Manufacturer (Volvo), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Ra | te (%) for Manufacturer | (Volvo), MY | 2032 Tota | I Fleet by A | Alternative | |--------------------------------------|-------------------------|-------------|-----------|--------------|-------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 0 | 0 | 0 | 0 | 0 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 54 | 42 | 30 | 23 | 18 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 0 | 0 | 0 | 0 | 0 | | Mild Hybrid | 20.2 | 20.2 | 15.6 | 8.2 | 3.7 | | Strong Hybrid | 5.8 | 17.9 | 29.6 | 37.0 | 41.3 | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | Battery Electric Vehicles (BEVs) | 40.20 | 40.20 | 40.19 | 40.20 | 40.20 | | BEV 1 | 6.06 | 6.06 | 6.07 | 6.07 | 6.07 | | BEV 2 | 9.44 | 9.43 | 9.45 | 9.50 | 9.48 | | BEV 3 | 24.70 | 24.70 | 24.68 | 24.62 | 24.64 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 54 | 9 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 0 | 33 | 30 | 23 | 18 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | Table 631 - Powertrain Technology Penetration Rate (%) for Manufacturer (VWA), MY 2032 Total Fleet by Alternative | Powertrain Technology Penetration Ra | te (%) for Manufacturer | (VWA), MY | 2032 Tota | I Fleet by A | Alternative | |--------------------------------------|-------------------------|-----------|-----------|--------------|-------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Hybrid High Compression Engines | 9 | 3 | 1 | 1 | 1 | | Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Dynamic Cylinder Deactivation | 0 | 0 | 0 | 0 | 0 | | Non-Hybrid Turbocharged Engines | 22 | 13 | 8 | 5 | 0 | | Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Electric Variable Geometry Turbo | 0 | 0 | 0 | 0 | 0 | | Diesel Engines | 0 | 0 | 0 | 0 | 0 | | Compressed Natural Gas | 0 | 0 | 0 | 0 | 0 | | 12V Stop-Start (non-hybrid) | 26 | 16 | 9 | 1 | 1 | | Mild Hybrid | 5.5 | 0.1 | 0.1 | 5.3 | 0.0 | | Strong Hybrid | 33.8 | 43.8 | 51.2 | 54.2 | 59.5 | | Plug-In Hybrid | 0.0 | 4.8 | 4.8 | 4.8 | 4.8 | | Battery Electric Vehicles (BEVs) | 35.18 | 35.19 | 35.19 | 35.19 | 35.18 | | BEV 1 | 5.69 | 5.69 | 5.69 | 5.69 | 5.69 | | BEV 2 | 20.58 | 20.57 | 20.58 | 20.60 | 20.59 | | BEV 3 | 8.90 | 8.91 | 8.90 | 8.88 | 8.89 | | BEV 4 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 6-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 7-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 8-Speed Automatic | 22 | 3 | 0 | 0 | 0 | | 9-Speed Automatic | 0 | 0 | 0 | 0 | 0 | | 10-Speed Automatic | 4 | 8 | 3 | 1 | 1 | | DCT Transmissions | 0 | 0 | 0 | 0 | 0 | | CVT Transmissions | 0 | 0 | 0 | 0 | 0 | ## Mass Reduction Penetration Rate, by Alternative Table 632 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Total), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Total), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 1 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 31 | 26 | 21 | 19 | 14 | | | | | Mass Reduction Level 2 (%) | 2 | 2 | 4 | 2 | 1 | | | | | Mass Reduction Level 3 (%) | 52 | 40 | 36 | 28 | 16 | | | | | Mass Reduction Level 4 (%) | 12 | 28 | 36 | 45 | 63 | | | | | Mass Reduction Level 5 (%) | 2 | 3 | 3 | 5 | 6 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,017 | 3,977 | 3,959 | 3,934 | 3,895 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 40 | 58
 82 | 121 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,414 | 3,401 | 3,377 | 3,355 | 3,324 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 13 | 36 | 59 | 90 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,301 | 4,249 | 4,235 | 4,211 | 4,167 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 53 | 67 | 91 | 134 | | | | ## Table 633 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Total), MY 2032 Passenger Car Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Total), MY 2032 Passenger Car Fleet by Alternative | | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | Mass Reduction Level 1 (%) | 25 | 24 | 18 | 17 | 15 | | | | | | Mass Reduction Level 2 (%) | 4 | 4 | 5 | 4 | 1 | | | | | | Mass Reduction Level 3 (%) | 47 | 41 | 35 | 23 | 11 | | | | | | Mass Reduction Level 4 (%) | 22 | 27 | 38 | 49 | 64 | | | | | | Mass Reduction Level 5 (%) | 2 | 4 | 5 | 7 | 10 | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,017 | 3,977 | 3,959 | 3,934 | 3,895 | | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 40 | 58 | 82 | 121 | | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,414 | 3,401 | 3,377 | 3,355 | 3,324 | | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 13 | 36 | 59 | 90 | | | | | | Avg Curb Weight - Light Truck (pounds) | 4,301 | 4,249 | 4,235 | 4,211 | 4,167 | | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 53 | 67 | 91 | 134 | | | | | Table 634 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Total), MY 2032 Light Truck Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Total), MY 2032 Light Truck Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 1 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 33 | 27 | 22 | 20 | 13 | | | | | Mass Reduction Level 2 (%) | 2 | 2 | 4 | 1 | 1 | | | | | Mass Reduction Level 3 (%) | 54 | 39 | 36 | 30 | 19 | | | | | Mass Reduction Level 4 (%) | 8 | 29 | 35 | 44 | 62 | | | | | Mass Reduction Level 5 (%) | 2 | 2 | 2 | 4 | 5 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,017 | 3,977 | 3,959 | 3,934 | 3,895 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 40 | 58 | 82 | 121 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,414 | 3,401 | 3,377 | 3,355 | 3,324 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 13 | 36 | 59 | 90 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,301 | 4,249 | 4,235 | 4,211 | 4,167 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 53 | 67 | 91 | 134 | | | | Table 635 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Total), MY 2032 Domestic Car Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Total), MY 2032 Domestic Car Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 10 | 9 | 2 | 2 | 2 | | | | | Mass Reduction Level 2 (%) | 5 | 5 | 6 | 5 | 0 | | | | | Mass Reduction Level 3 (%) | 59 | 48 | 36 | 22 | 15 | | | | | Mass Reduction Level 4 (%) | 24 | 33 | 51 | 63 | 73 | | | | | Mass Reduction Level 5 (%) | 3 | 5 | 5 | 8 | 10 | | | | | Avg Curb Weight - Fleet (pounds) | 4,017 | 3,977 | 3,959 | 3,934 | 3,895 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 40 | 58 | 82 | 121 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,414 | 3,401 | 3,377 | 3,355 | 3,324 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 13 | 36 | 59 | 90 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,301 | 4,249 | 4,235 | 4,211 | 4,167 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 53 | 67 | 91 | 134 | | | | Table 636 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Total), MY 2032 Imported Car Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Total), MY 2032 Imported Car Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 40 | 39 | 34 | 32 | 28 | | | | | Mass Reduction Level 2 (%) | 2 | 2 | 3 | 2 | 1 | | | | | Mass Reduction Level 3 (%) | 35 | 34 | 33 | 24 | 6 | | | | | Mass Reduction Level 4 (%) | 21 | 21 | 25 | 35 | 55 | | | | | Mass Reduction Level 5 (%) | 1 | 4 | 5 | 6 | 10 | | | | | Avg Curb Weight - Fleet (pounds) | 4,017 | 3,977 | 3,959 | 3,934 | 3,895 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 40 | 58 | 82 | 121 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,414 | 3,401 | 3,377 | 3,355 | 3,324 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 13 | 36 | 59 | 90 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,301 | 4,249 | 4,235 | 4,211 | 4,167 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 53 | 67 | 91 | 134 | | | | Table 637 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (BMW), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (BMW), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 72 | 71 | 71 | 71 | 58 | | | | | Mass Reduction Level 2 (%) | 24 | 24 | 24 | 24 | 0 | | | | | Mass Reduction Level 3 (%) | 4 | 4 | 4 | 4 | 0 | | | | | Mass Reduction Level 4 (%) | 0 | 1 | 1 | 1 | 42 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,303 | 4,297 | 4,297 | 4,295 | 4,199 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 6 | 6 | 8 | 104 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,759 | 3,759 | 3,759 | 3,759 | 3,647 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 0 | 112 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,800 | 4,789 | 4,789 | 4,789 | 4,706 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 11 | 11 | 11 | 94 | | | | Table 638 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Ford), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb W | eights for Manufacture | (Ford), MY | ' 2032 Tota | I Fleet by A | Alternative | |--|------------------------|------------|-------------|--------------|-------------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | Mass Reduction Level 1 (%) | 14 | 5 | 5 | 5 | 5 | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | Mass Reduction Level 3 (%) | 71 | 30 | 5 | 5 | 5 | | Mass Reduction Level 4 (%) | 10 | 60 | 85 | 85 | 84 | | Mass Reduction Level 5 (%) | 5 | 5 | 5 | 5 | 6 | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,362 | 4,255 | 4,219 | 4,218 | 4,216 | | Diff. from Baseline - Fleet (pounds) | 0 | 108 | 144 | 144 | 147 | | Avg Curb Weight - Passenger Car (pounds) | 3,792 | 3,754 | 3,685 | 3,685 | 3,654 | | Diff. from Baseline - Passenger Car (pounds) | 0 | 38 | 107 | 107 | 138 | | Avg Curb Weight - Light Truck (pounds) | 4,420 | 4,305 | 4,273 | 4,273 | 4,273 | | Diff. from Baseline - Light Trucks (pounds) | 0 | 115 | 147 | 147 | 147 | Table 639 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (GM), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (GM), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 1 | 1 | 0 | 0 | 0 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 88 | 30 | 30 | 28 | 28 | | | | | Mass Reduction Level 4 (%) | 11 | 67 | 68 | 66 | 66 | | | | | Mass Reduction Level 5 (%) | 0 | 1 | 1 | 5 | 5 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,264 | 4,168 | 4,164 | 4,155 | 4,155 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 96 | 100 | 110 | 109 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,197 | 3,110 | 3,095 | 3,055 | 3,055 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 87 | 102 | 142 | 142 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,536 | 4,437 | 4,437 | 4,437 | 4,437 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 99 | 99 | 99 | 99 | | | | Table 640 - Mass Reduction
Penetration Rate and Curb Weights for Manufacturer (Honda), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Honda), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 2 (%) | 7 | 7 | 7 | 7 | 0 | | | | | Mass Reduction Level 3 (%) | 92 | 92 | 92 | 47 | 21 | | | | | Mass Reduction Level 4 (%) | 1 | 1 | 1 | 44 | 74 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 1 | 5 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,607 | 3,607 | 3,606 | 3,546 | 3,488 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 1 | 61 | 119 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,154 | 3,154 | 3,154 | 3,095 | 3,042 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 58 | 111 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,017 | 4,017 | 4,017 | 3,957 | 3,893 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 0 | 60 | 123 | | | | Table 641 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Hyundai KiH), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Hyundai KiH), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 75 | 75 | 75 | 12 | 0 | | | | | Mass Reduction Level 4 (%) | 23 | 13 | 13 | 67 | 76 | | | | | Mass Reduction Level 5 (%) | 2 | 12 | 12 | 21 | 24 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,537 | 3,523 | 3,523 | 3,412 | 3,393 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 14 | 14 | 125 | 144 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,215 | 3,198 | 3,198 | 3,145 | 3,112 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 17 | 17 | 69 | 103 | | | | | Avg Curb Weight - Light Truck (pounds) | 3,928 | 3,918 | 3,918 | 3,737 | 3,737 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 10 | 10 | 190 | 190 | | | | Table 642 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Hyundai KiK), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Hyundai KiK), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 88 | 41 | 35 | 20 | 11 | | | | | Mass Reduction Level 4 (%) | 12 | 57 | 57 | 59 | 66 | | | | | Mass Reduction Level 5 (%) | 0 | 2 | 8 | 20 | 23 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,536 | 3,465 | 3,449 | 3,402 | 3,388 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 72 | 87 | 135 | 149 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,140 | 3,087 | 3,058 | 3,051 | 3,024 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 53 | 82 | 89 | 116 | | | | | Avg Curb Weight - Light Truck (pounds) | 3,958 | 3,867 | 3,867 | 3,779 | 3,779 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 92 | 92 | 180 | 180 | | | | Table 643 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (JLR), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (JLR), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 62 | 24 | 24 | 24 | 24 | | | | | Mass Reduction Level 2 (%) | 18 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 19 | 19 | 19 | 18 | 18 | | | | | Mass Reduction Level 4 (%) | 1 | 57 | 57 | 58 | 58 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,740 | 4,543 | 4,543 | 4,541 | 4,541 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 197 | 197 | 198 | 198 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,655 | 3,655 | 3,655 | 3,589 | 3,589 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 66 | 66 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,763 | 4,562 | 4,562 | 4,562 | 4,562 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 201 | 201 | 201 | 201 | | | | Table 644 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Karma), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Karma), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 100 | 100 | 100 | 100 | 100 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 5,064 | 5,064 | 5,064 | 5,064 | 5,064 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | | | | | Avg Curb Weight - Passenger Car (pounds) | 5,064 | 5,064 | 5,064 | 5,064 | 5,064 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 0 | 0 | | | | | Avg Curb Weight - Light Truck (pounds) | 0 | 0 | 0 | 0 | 0 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 0 | 0 | 0 | | | | Table 645 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Lucid), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Lucid), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 4 (%) | 100 | 100 | 100 | 100 | 100 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 5,019 | 5,019 | 5,019 | 5,019 | 5,019 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | | | | | Avg Curb Weight - Passenger Car (pounds) | 5,019 | 5,019 | 5,019 | 5,019 | 5,019 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 0 | 0 | | | | | Avg Curb Weight - Light Truck (pounds) | 0 | 0 | 0 | 0 | 0 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 0 | 0 | 0 | | | | Table 646 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Mazda), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Mazda), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 64 | 64 | 64 | 64 | 0 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 33 | 33 | 33 | 0 | 0 | | | | | Mass Reduction Level 4 (%) | 3 | 3 | 3 | 3 | 51 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 33 | 49 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,608 | 3,608 | 3,607 | 3,522 | 3,312 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 85 | 296 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,007 | 3,007 | 3,007 | 2,823 | 2,815 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 184 | 192 | | | | | Avg Curb Weight - Light Truck (pounds) | 3,692 | 3,692 | 3,692 | 3,622 | 3,382 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 0 | 70 | 310 | | | | Table 647 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Mercedes-Benz), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Mercedes-Benz), MY 2032 Total Fleet by Alternative | | | | | | | | | |---
----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 7 | 7 | 7 | 7 | 7 | | | | | Mass Reduction Level 1 (%) | 46 | 46 | 46 | 33 | 33 | | | | | Mass Reduction Level 2 (%) | 17 | 17 | 17 | 17 | 9 | | | | | Mass Reduction Level 3 (%) | 1 | 1 | 1 | 1 | 1 | | | | | Mass Reduction Level 4 (%) | 29 | 29 | 29 | 41 | 49 | | | | | Mass Reduction Level 5 (%) | 1 | 1 | 1 | 1 | 1 | | | | | Avg Curb Weight - Fleet (pounds) | 4,219 | 4,219 | 4,219 | 4,182 | 4,167 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 37 | 53 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,945 | 3,945 | 3,945 | 3,863 | 3,849 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 83 | 97 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,430 | 4,430 | 4,430 | 4,430 | 4,413 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 0 | 0 | 17 | | | | # Table 648 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Mitsubishi), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Mitsubishi), MY 2032 Total Fleet by Alternative | | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Mass Reduction Level 0 (%) | 22 | 22 | 22 | 22 | 22 | | | | | | Mass Reduction Level 1 (%) | 61 | 0 | 0 | 0 | 0 | | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | Mass Reduction Level 3 (%) | 0 | 0 | 61 | 61 | 0 | | | | | | Mass Reduction Level 4 (%) | 17 | 78 | 17 | 17 | 78 | | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,240 | 3,083 | 3,161 | 3,160 | 3,082 | | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 157 | 79 | 80 | 158 | | | | | | Avg Curb Weight - Passenger Car (pounds) | 2,946 | 2,808 | 2,877 | 2,877 | 2,808 | | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 138 | 69 | 69 | 138 | | | | | | Avg Curb Weight - Light Truck (pounds) | 3,530 | 3,354 | 3,442 | 3,442 | 3,354 | | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 176 | 88 | 88 | 176 | | | | | Table 649 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Nissan), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Nissan), MY 2032 Total Fleet by Alternative | | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | Mass Reduction Level 1 (%) | 55 | 55 | 16 | 2 | 0 | | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | Mass Reduction Level 3 (%) | 9 | 9 | 0 | 0 | 0 | | | | | | Mass Reduction Level 4 (%) | 32 | 32 | 79 | 93 | 93 | | | | | | Mass Reduction Level 5 (%) | 5 | 5 | 5 | 5 | 7 | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,678 | 3,678 | 3,570 | 3,521 | 3,512 | | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 108 | 157 | 166 | | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,208 | 3,208 | 3,081 | 3,081 | 3,064 | | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 127 | 127 | 144 | | | | | | Avg Curb Weight - Light Truck (pounds) | 4,191 | 4,191 | 4,105 | 4,005 | 4,005 | | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 86 | 186 | 186 | | | | | Table 650 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Stellantis), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Stellantis), MY 2032 Total Fleet by Alternative | | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Mass Reduction Level 0 (%) | 5 | 0 | 0 | 0 | 0 | | | | | | Mass Reduction Level 1 (%) | 49 | 28 | 13 | 13 | 13 | | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 15 | 0 | 0 | | | | | | Mass Reduction Level 3 (%) | 28 | 46 | 39 | 54 | 39 | | | | | | Mass Reduction Level 4 (%) | 14 | 23 | 30 | 30 | 45 | | | | | | Mass Reduction Level 5 (%) | 3 | 3 | 3 | 3 | 3 | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,509 | 4,431 | 4,410 | 4,401 | 4,383 | | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 78 | 98 | 108 | 125 | | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,755 | 3,743 | 3,631 | 3,618 | 3,593 | | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 11 | 123 | 136 | 162 | | | | | | Avg Curb Weight - Light Truck (pounds) | 4,603 | 4,516 | 4,508 | 4,499 | 4,482 | | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 86 | 95 | 103 | 120 | | | | | Table 651 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Subaru), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Subaru), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 99 | 99 | 99 | 99 | 99 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 1 | 1 | 1 | 1 | 0 | | | | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 1 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,648 | 3,648 | 3,647 | 3,647 | 3,646 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 1 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,276 | 3,276 | 3,276 | 3,276 | 3,270 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 0 | 6 | | | | | Avg Curb Weight - Light Truck (pounds) | 3,703 | 3,703 | 3,703 | 3,703 | 3,703 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 0 | 0 | 0 | | | | Table 652 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Tesla), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Tesla), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 4 (%) | 85 | 85 | 85 | 85 | 85 | | | | | Mass Reduction Level 5 (%) | 15 | 15 | 15 | 15 | 15 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,301 | 4,301 | 4,301 | 4,301 | 4,301 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 0 | 0 | | | | | Avg Curb Weight - Passenger Car (pounds) | 4,294 | 4,294 | 4,294 | 4,294 | 4,294 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 0 | 0 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,416 | 4,416 | 4,416 | 4,416 | 4,416 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 0 | 0 | 0 | | | | Table 653 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Toyota), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Toyota), MY 2032 Total Fleet by Alternative | | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | Mass Reduction Level 1 (%) | 45 | 45 | 45 | 45 | 18 | | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | Mass Reduction Level 3 (%) | 55 | 55 | 55 | 55 | 25 | | | | | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 0 | 56 | | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 1 | | | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,940 | 3,940 | 3,939 | 3,938 | 3,803 | | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 1 | 2 | 137 | | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,350 | 3,350 | 3,350 | 3,350 | 3,316 | | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 0 | 34 | | | | | | Avg Curb Weight - Light Truck (pounds) | 4,265 | 4,265 | 4,265 | 4,265 | 4,073 | | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 0 | 0 | 192 | | | | | Table 654 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Volvo), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (Volvo), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass
Reduction Level 1 (%) | 27 | 27 | 27 | 27 | 27 | | | | | Mass Reduction Level 2 (%) | 73 | 73 | 73 | 44 | 44 | | | | | Mass Reduction Level 3 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 4 (%) | 0 | 0 | 0 | 29 | 29 | | | | | Mass Reduction Level 5 (%) | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 4,340 | 4,340 | 4,340 | 4,269 | 4,269 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | 0 | 0 | 72 | 72 | | | | | Avg Curb Weight - Passenger Car (pounds) | 4,279 | 4,279 | 4,279 | 4,235 | 4,235 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | 0 | 0 | 44 | 44 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,362 | 4,362 | 4,362 | 4,281 | 4,281 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 0 | 82 | 82 | | | | Table 655 - Mass Reduction Penetration Rate and Curb Weights for Manufacturer (VWA), MY 2032 Total Fleet by Alternative | Mass Reduction Penetration Rate and Curb Weights for Manufacturer (VWA), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mass Reduction Level 0 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 1 (%) | 55 | 55 | 31 | 19 | 19 | | | | | Mass Reduction Level 2 (%) | 0 | 0 | 0 | 0 | 0 | | | | | Mass Reduction Level 3 (%) | 22 | 40 | 36 | 36 | 18 | | | | | Mass Reduction Level 4 (%) | 20 | 2 | 29 | 42 | 59 | | | | | Mass Reduction Level 5 (%) | 3 | 3 | 3 | 3 | 3 | | | | | | | | | | | | | | | Avg Curb Weight - Fleet (pounds) | 3,916 | 3,937 | 3,868 | 3,828 | 3,808 | | | | | Diff. from Baseline - Fleet (pounds) | 0 | -21 | 48 | 88 | 108 | | | | | Avg Curb Weight - Passenger Car (pounds) | 3,384 | 3,442 | 3,432 | 3,411 | 3,353 | | | | | Diff. from Baseline - Passenger Car (pounds) | 0 | -58 | -48 | -27 | 31 | | | | | Avg Curb Weight - Light Truck (pounds) | 4,208 | 4,208 | 4,108 | 4,060 | 4,060 | | | | | Diff. from Baseline - Light Trucks (pounds) | 0 | 0 | 100 | 149 | 149 | | | | ## **Electrification Rates** Table 656 - Electrification Rates (%) for Manufacturer (Total), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (Total), MY 2032 Total Fleet by Alternative | | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Mild Hybrid | 1.4 | 2.0 | 0.6 | 1.3 | 0.4 | | | | | | Strong Hybrid | 21.9 | 32.8 | 36.9 | 40.7 | 51.0 | | | | | | Plug-In Hybrid | 30.5 | 33.8 | 35.1 | 35.5 | 39.4 | | | | | | Battery Electric Vehicles (BEVs) | 32.26 | 32.25 | 32.26 | 32.27 | 32.27 | | | | | | BEV 1 | 6.72 | 6.72 | 6.72 | 6.74 | 6.73 | | | | | | BEV 2 | 17.11 | 17.11 | 17.10 | 17.10 | 17.10 | | | | | | BEV 3 | 7.64 | 7.64 | 7.64 | 7.63 | 7.64 | | | | | | BEV 4 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | | | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | | | | | ## Table 657 - Electrification Rates (%) for Manufacturer (Total), MY 2032 Passenger Car Fleet by Alternative | Electrification Rates (%) for Manufacturer (Total), MY 2032 Passenger Car Fleet by Alternative | | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Mild Hybrid | 2.1 | 3.4 | 0.3 | 3.6 | 8.0 | | | | | | Strong Hybrid | 12.8 | 16.1 | 20.6 | 25.1 | 49.8 | | | | | | Plug-In Hybrid | 21.6 | 21.6 | 21.7 | 21.7 | 22.8 | | | | | | Battery Electric Vehicles (BEVs) | 42.24 | 42.24 | 42.24 | 42.23 | 42.24 | | | | | | BEV 1 | 13.67 | 13.67 | 13.67 | 13.67 | 13.67 | | | | | | BEV 2 | 17.42 | 17.42 | 17.42 | 17.41 | 17.41 | | | | | | BEV 3 | 8.68 | 8.68 | 8.68 | 8.68 | 8.68 | | | | | | BEV 4 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | | | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | | | | ## Table 658 - Electrification Rates (%) for Manufacturer (Total), MY 2032 Light Truck Fleet by Alternative | Electrification Rates (%) for Manufacturer (Total), MY 2032 Light Truck Fleet by Alternative | | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Mild Hybrid | 1.1 | 1.4 | 0.8 | 0.2 | 0.2 | | | | | | Strong Hybrid | 26.2 | 40.7 | 44.6 | 48.2 | 51.6 | | | | | | Plug-In Hybrid | 34.7 | 39.6 | 41.5 | 42.0 | 47.3 | | | | | | Battery Electric Vehicles (BEVs) | 27.54 | 27.54 | 27.53 | 27.52 | 27.52 | | | | | | BEV 1 | 3.43 | 3.43 | 3.43 | 3.43 | 3.43 | | | | | | BEV 2 | 16.96 | 16.96 | 16.96 | 16.95 | 16.95 | | | | | | BEV 3 | 7.14 | 7.14 | 7.14 | 7.14 | 7.14 | | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | ## Table 659 - Electrification Rates (%) for Manufacturer (Total), MY 2032 Domestic Car Fleet by Alternative | Electrification Rates (%) for Manufacturer (Total), MY 2032 Domestic Car Fleet by Alternative | | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Mild Hybrid | 0.2 | 4.8 | 0.2 | 4.0 | 1.4 | | | | | | Strong Hybrid | 9.1 | 12.9 | 18.2 | 22.9 | 47.8 | | | | | | Plug-In Hybrid | 18.5 | 18.5 | 18.5 | 18.7 | 19.4 | | | | | | Battery Electric Vehicles (BEVs) | 45.06 | 45.06 | 45.06 | 45.05 | 45.06 | | | | | | BEV 1 | 11.28 | 11.28 | 11.27 | 11.27 | 11.27 | | | | | | BEV 2 | 16.66 | 16.66 | 16.65 | 16.65 | 16.65 | | | | | | BEV 3 | 12.33 | 12.33 | 12.33 | 12.33 | 12.33 | | | | | | BEV 4 | 4.80 | 4.80 | 4.80 | 4.80 | 4.80 | | | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | ## Table 660 - Electrification Rates (%) for Manufacturer (Total), MY 2032 Imported Car Fleet by Alternative | Electrification Rates (%) for Manufacturer (Total), MY 2032 Imported Car Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 3.9 | 2.1 | 0.5 | 3.2 | 0.3 | | | | | Strong Hybrid | 16.3 | 19.3 | 23.0 | 27.2 | 51.8 | | | | | Plug-In Hybrid | 24.7 | 24.7 | 24.7 | 24.7 | 26.0 | | | | | Battery Electric Vehicles (BEVs) | 39.49 | 39.49 | 39.49 | 39.48 | 39.48 | | | | | BEV 1 | 16.01 | 16.01 | 16.01 | 16.01 | 16.01 | | | | | BEV 2 | 18.16 | 18.16 | 18.16 | 18.15 | 18.16 | | | | | BEV 3 | 5.12 | 5.12 | 5.12 | 5.12 | 5.12 | | | | | BEV 4 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | | | | Table 661 - Electrification Rates (%) for Manufacturer (BMW), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (BMW), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Strong Hybrid | 47.6 | 54.0 | 54.0 | 54.0 | 56.5 | | | | | Plug-In Hybrid | 29.8 | 29.8 | 29.8 | 29.8 | 31.1 | | | | | Battery Electric Vehicles (BEVs) | 42.17 | 42.17 | 42.17 | 42.17 | 42.17 | | | | | BEV 1 | 4.10 | 4.10 | 4.11 | 4.12 | 4.12 | | | | | BEV 2 | 17.24 | 17.24 | 17.26 | 17.28 | 17.28 | | | | | BEV 3 | 20.54 | 20.55 | 20.53 | 20.49 | 20.50 | | | | | BEV 4 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Table 662 - Electrification Rates (%) for Manufacturer (Ford), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (Ford), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | | | | | Strong Hybrid | 36.4 | 68.8 | 70.6 | 71.0 | 70.2 | | | | | Plug-In Hybrid | 60.0 | 60.4 | 61.5 | 61.5 | 62.2 | | | | | Battery Electric Vehicles (BEVs) | 23.87 | 23.87 | 23.87 | 23.87 | 23.87 | | | | | BEV 2 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | | | | | BEV 3 | 2.16 | 2.16 | 2.16 | 2.16 | 2.16 | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Table 663 - Electrification Rates (%) for Manufacturer (GM), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (GM), MY 2032 Total Fleet by Alternative | | | | | | | | | |---|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 3.7 | 8.2 | 1.1 | 1.1 | 1.1 | | | | | Strong Hybrid | 22.6 | 35.0 | 40.2 | 39.9 | 39.8 | | | | | Plug-In Hybrid | 46.8 | 57.5 | 58.0 | 59.8 | 59.9 | | | | | Battery
Electric Vehicles (BEVs) | 21.74 | 21.74 | 21.74 | 21.74 | 21.74 | | | | | BEV 1 | 2.73 | 2.73 | 2.73 | 2.74 | 2.73 | | | | | BEV 2 | 18.96 | 18.96 | 18.96 | 18.96 | 18.96 | | | | | BEV 3 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Table 664 - Electrification Rates (%) for Manufacturer (Honda), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (Honda), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | | | | | Strong Hybrid | 10.6 | 22.9 | 31.7 | 39.9 | 55.9 | | | | | Plug-In Hybrid | 40.3 | 40.3 | 40.3 | 40.3 | 40.7 | | | | | Battery Electric Vehicles (BEVs) | 36.74 | 36.74 | 36.74 | 36.74 | 36.74 | | | | | BEV 1 | 16.77 | 16.77 | 16.77 | 16.80 | 16.79 | | | | | BEV 2 | 16.06 | 16.06 | 16.06 | 16.04 | 16.05 | | | | | BEV 3 | 3.91 | 3.91 | 3.91 | 3.90 | 3.90 | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | ## Table 665 - Electrification Rates (%) for Manufacturer (Hyundai KiH), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (Hyundai KiH), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 6.2 | 4.0 | 0.0 | 2.2 | 0.0 | | | | | Strong Hybrid | 24.1 | 28.1 | 38.1 | 51.3 | 68.2 | | | | | Plug-In Hybrid | 11.9 | 14.1 | 18.9 | 11.9 | 13.1 | | | | | Battery Electric Vehicles (BEVs) | 29.96 | 29.96 | 29.96 | 29.96 | 29.96 | | | | | BEV 1 | 10.21 | 10.21 | 10.21 | 10.22 | 10.22 | | | | | BEV 2 | 16.74 | 16.74 | 16.74 | 16.73 | 16.73 | | | | | BEV 3 | 3.01 | 3.01 | 3.01 | 3.01 | 3.01 | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | | | | ## Table 666 - Electrification Rates (%) for Manufacturer (Hyundai KiK), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (Hyundai KiK), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 0.9 | 7.6 | 5.7 | 0.0 | 0.0 | | | | | Strong Hybrid | 9.2 | 17.4 | 28.6 | 40.9 | 61.1 | | | | | Plug-In Hybrid | 16.6 | 22.5 | 27.8 | 27.8 | 28.0 | | | | | Battery Electric Vehicles (BEVs) | 26.65 | 26.65 | 26.65 | 26.65 | 26.65 | | | | | BEV 1 | 5.34 | 5.34 | 5.35 | 5.36 | 5.35 | | | | | BEV 2 | 20.00 | 20.00 | 19.99 | 19.98 | 19.98 | | | | | BEV 3 | 1.31 | 1.31 | 1.32 | 1.32 | 1.31 | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Table 667 - Electrification Rates (%) for Manufacturer (JLR), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (JLR), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Strong Hybrid | 42.6 | 44.6 | 44.1 | 44.1 | 44.1 | | | | | Plug-In Hybrid | 37.8 | 41.4 | 41.9 | 41.9 | 41.9 | | | | | Battery Electric Vehicles (BEVs) | 39.05 | 39.05 | 39.05 | 39.05 | 39.05 | | | | | BEV 1 | 4.27 | 4.27 | 4.27 | 4.27 | 4.27 | | | | | BEV 2 | 18.99 | 19.00 | 19.00 | 19.01 | 19.01 | | | | | BEV 3 | 15.80 | 15.78 | 15.79 | 15.77 | 15.77 | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Table 668 - Electrification Rates (%) for Manufacturer (Karma), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (Karma), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Strong Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | | | BEV 1 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | | | | | BEV 2 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | | | | | BEV 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | ## Table 669 - Electrification Rates (%) for Manufacturer (Lucid), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (Lucid), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Strong Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Battery Electric Vehicles (BEVs) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | | | BEV 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | BEV 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | BEV 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | BEV 4 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Table 670 - Electrification Rates (%) for Manufacturer (Mazda), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (Mazda), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Strong Hybrid | 17.9 | 17.9 | 17.9 | 17.9 | 31.1 | | | | | Plug-In Hybrid | 17.9 | 17.9 | 17.9 | 27.2 | 47.2 | | | | | Battery Electric Vehicles (BEVs) | 37.48 | 37.48 | 37.48 | 37.48 | 37.48 | | | | | BEV 1 | 9.43 | 9.43 | 9.43 | 9.44 | 9.44 | | | | | BEV 2 | 24.10 | 24.10 | 24.10 | 24.09 | 24.09 | | | | | BEV 3 | 3.96 | 3.95 | 3.95 | 3.95 | 3.95 | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | ## Table 671 - Electrification Rates (%) for Manufacturer (Mercedes-Benz), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for Manufacturer (Mercedes-Benz), MY 2032 Total Fleet by Alternative | | | | | | | | | |--|----------------------|--------|--------|--------|--------|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Strong Hybrid | 41.7 | 55.6 | 55.6 | 58.2 | 58.2 | | | | | Plug-In Hybrid | 47.5 | 47.5 | 47.5 | 47.5 | 47.5 | | | | | Battery Electric Vehicles (BEVs) | 41.83 | 41.83 | 41.83 | 41.83 | 41.83 | | | | | BEV 1 | 6.40 | 6.40 | 6.41 | 6.44 | 6.43 | | | | | BEV 2 | 12.24 | 12.24 | 12.24 | 12.24 | 12.24 | | | | | BEV 3 | 21.69 | 21.69 | 21.68 | 21.65 | 21.66 | | | | | BEV 4 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | | | | | | | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Table 672 - Electrification Rates (%) for Manufacturer (Mitsubishi), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for M | Electrification Rates (%) for Manufacturer (Mitsubishi), MY 2032 Total Fleet by Alternative | | | | | | | | | | | |----------------------------------|---|--------|--------|--------|--------|--|--|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | Mild Hybrid | 0.0 | 18.7 | 3.5 | 16.2 | 0.0 | | | | | | | | Strong Hybrid | 9.5 | 17.3 | 35.9 | 17.0 | 36.4 | | | | | | | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 22.4 | 19.2 | | | | | | | | Battery Electric Vehicles (BEVs) | 21.57 | 21.57 | 21.57 | 21.57 | 21.57 | | | | | | | | BEV 1 | 4.76 | 4.77 | 4.77 | 4.78 | 4.78 | | | | | | | | BEV 2 | 16.81 | 16.80 | 16.80 | 16.79 | 16.79 | | | | | | | | BEV 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | Table 673 - Electrification Rates (%) for Manufacturer (Nissan), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for | Electrification Rates (%) for Manufacturer (Nissan), MY 2032 Total Fleet by Alternative | | | | | | | | | | | |----------------------------------|---|--------|--------|--------
--------|--|--|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 6.4 | 2.8 | | | | | | | | Strong Hybrid | 9.0 | 28.1 | 37.7 | 43.8 | 72.3 | | | | | | | | Plug-In Hybrid | 34.3 | 34.3 | 34.3 | 34.3 | 34.5 | | | | | | | | Battery Electric Vehicles (BEVs) | 24.68 | 24.68 | 24.68 | 24.68 | 24.68 | | | | | | | | BEV 1 | 4.96 | 4.96 | 4.96 | 4.96 | 4.96 | | | | | | | | BEV 2 | 17.70 | 17.70 | 17.70 | 17.71 | 17.71 | | | | | | | | BEV 3 | 2.02 | 2.03 | 2.02 | 2.01 | 2.02 | | | | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | Table 674 - Electrification Rates (%) for Manufacturer (Stellantis), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for M | Electrification Rates (%) for Manufacturer (Stellantis), MY 2032 Total Fleet by Alternative | | | | | | | | | | | |----------------------------------|---|--------|--------|--------|--------|--|--|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | Mild Hybrid | 1.0 | 0.2 | 0.2 | 1.7 | 0.2 | | | | | | | | Strong Hybrid | 37.1 | 49.1 | 49.1 | 50.4 | 35.3 | | | | | | | | Plug-In Hybrid | 9.3 | 20.1 | 23.6 | 23.5 | 40.2 | | | | | | | | Battery Electric Vehicles (BEVs) | 26.66 | 26.66 | 26.66 | 26.66 | 26.66 | | | | | | | | BEV 1 | 2.53 | 2.53 | 2.54 | 2.54 | 2.54 | | | | | | | | BEV 2 | 16.06 | 16.06 | 16.06 | 16.06 | 16.06 | | | | | | | | BEV 3 | 8.06 | 8.06 | 8.06 | 8.05 | 8.06 | | | | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | Table 675 - Electrification Rates (%) for Manufacturer (Subaru), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for | Electrification Rates (%) for Manufacturer (Subaru), MY 2032 Total Fleet by Alternative | | | | | | | | | | | |----------------------------------|---|--------|--------|--------|--------|--|--|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | | | | | | | | Strong Hybrid | 0.8 | 0.8 | 0.8 | 1.0 | 40.7 | | | | | | | | Plug-In Hybrid | 2.6 | 2.6 | 2.6 | 2.6 | 7.6 | | | | | | | | Battery Electric Vehicles (BEVs) | 41.25 | 41.25 | 41.25 | 41.25 | 41.25 | | | | | | | | BEV 1 | 4.18 | 4.18 | 4.19 | 4.21 | 4.20 | | | | | | | | BEV 2 | 20.11 | 20.11 | 20.11 | 20.10 | 20.11 | | | | | | | | BEV 3 | 16.96 | 16.96 | 16.95 | 16.93 | 16.94 | | | | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | Table 676 - Electrification Rates (%) for Manufacturer (Tesla), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for | Electrification Rates (%) for Manufacturer (Tesla), MY 2032 Total Fleet by Alternative | | | | | | | | | | | |----------------------------------|--|--------|--------|--------|--------|--|--|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | Strong Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | Plug-In Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | Battery Electric Vehicles (BEVs) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | | | | | | BEV 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | BEV 2 | 18.28 | 18.28 | 18.28 | 18.29 | 18.29 | | | | | | | | BEV 3 | 57.48 | 57.48 | 57.47 | 57.45 | 57.46 | | | | | | | | BEV 4 | 24.24 | 24.24 | 24.25 | 24.26 | 24.25 | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | ## Table 677 - Electrification Rates (%) for Manufacturer (Toyota), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for | Manufacturer (Toyota |), MY 2032 | 2 Total Fle | et by Alter | native | |----------------------------------|----------------------|------------|-------------|-------------|--------| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Mild Hybrid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Strong Hybrid | 17.1 | 17.1 | 17.2 | 24.1 | 49.2 | | Plug-In Hybrid | 22.6 | 22.6 | 23.7 | 25.4 | 32.7 | | Battery Electric Vehicles (BEVs) | 33.92 | 33.92 | 33.92 | 33.92 | 33.92 | | BEV 1 | 12.33 | 12.33 | 12.34 | 12.37 | 12.36 | | BEV 2 | 13.18 | 13.18 | 13.17 | 13.15 | 13.15 | | BEV 3 | 8.42 | 8.42 | 8.42 | 8.41 | 8.41 | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | Fuel Cell Vehicles (FCVs) | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | Table 678 - Electrification Rates (%) for Manufacturer (Volvo), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for | Electrification Rates (%) for Manufacturer (Volvo), MY 2032 Total Fleet by Alternative | | | | | | | | | | | |----------------------------------|--|--------|--------|--------|--------|--|--|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | Mild Hybrid | 20.2 | 20.2 | 15.6 | 8.2 | 3.7 | | | | | | | | Strong Hybrid | 5.8 | 17.9 | 29.6 | 37.0 | 41.3 | | | | | | | | Plug-In Hybrid | 39.5 | 39.5 | 39.5 | 39.5 | 39.6 | | | | | | | | Battery Electric Vehicles (BEVs) | 40.20 | 40.20 | 40.19 | 40.20 | 40.20 | | | | | | | | BEV 1 | 6.06 | 6.06 | 6.07 | 6.07 | 6.07 | | | | | | | | BEV 2 | 9.44 | 9.43 | 9.45 | 9.50 | 9.48 | | | | | | | | BEV 3 | 24.70 | 24.70 | 24.68 | 24.62 | 24.64 | | | | | | | | BEV 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | Table 679 - Electrification Rates (%) for Manufacturer (VWA), MY 2032 Total Fleet by Alternative | Electrification Rates (%) for | Electrification Rates (%) for Manufacturer (VWA), MY 2032 Total Fleet by Alternative | | | | | | | | | | | |----------------------------------|--|--------|--------|--------|--------|--|--|--|--|--|--| | Alternative | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | Mild Hybrid | 5.5 | 0.1 | 0.1 | 5.3 | 0.0 | | | | | | | | Strong Hybrid | 33.8 | 43.8 | 51.2 | 54.2 | 59.5 | | | | | | | | Plug-In Hybrid | 53.4 | 58.2 | 58.2 | 58.2 | 58.2 | | | | | | | | Battery Electric Vehicles (BEVs) | 35.18 | 35.19 | 35.19 | 35.19 | 35.18 | | | | | | | | BEV 1 | 5.69 | 5.69 | 5.69 | 5.69 | 5.69 | | | | | | | | BEV 2 | 20.58 | 20.57 | 20.58 | 20.60 | 20.59 | | | | | | | | BEV 3 | 8.90 | 8.91 | 8.90 | 8.88 | 8.89 | | | | | | | | BEV 4 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | Fuel Cell Vehicles (FCVs) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | ## Required and Achieved CAFE Levels, Comparison Table 0-680 - Required and Achieved CAFE Levels (mpg) for Total Fleet for Alternative PC2LT4 | Required and Achieved CAFE Le | Required and Achieved CAFE Levels (mpg) for Total Fleet for Alternative PC2LT4 | | | | | | | | | | |-------------------------------|--|----------|------------|--|--|--|--|--|--|--| | | Total | | | | | | | | | | | Model Year | Required | Achieved | Difference | | | | | | | | | 2022 | 35.8 | 34.1 | -1.7 | | | | | | | | | 2023 | 36.1 | 35.5 | -0.6 | | | | | | | | | 2024 | 39.0 | 38.4 | -0.5 | | | | | | | | | 2025 | 42.2 | 40.9 | -1.3 | | | | | | | | | 2026 | 46.8 | 43.8 | -3.0 | | | | | | | | | 2027 | 48.4 | 45.9 | -2.5 | | | | | | | | | 2028 | 50.1 | 47.3 | -2.8 | | | | | | | | | 2029 | 51.9 | 49.1 | -2.8 | | | | | | | | | 2030 | 53.8 | 50.7 | -3.0 | | | | | | | | | 2031 | 55.7 | 52.8 | -3.0 | | | | | | | | | 2032 | 57.8 | 54.4 | -3.4 | | | | | | | | Table 0-681 - Required and Achieved CAFE Levels (mpg) for Passenger Car Fleet for Alternative PC2LT4 | Required and Achieved CAFE Levels | (mpg) for Passeng | er Car Fleet for Alt | ernative PC2LT4 | | |-----------------------------------|-------------------|----------------------|-----------------|--| | | Total | | | | | Model Year | Required | Achieved | Difference | | | 2022 | 44.1 | 43.7 | -0.4 | | | 2023 | 44.8 | 46.6 | 1.8 | | | 2024 | 48.7 | 51.3 | 2.6 | | | 2025 | 52.9 | 54.3 | 1.4 | | | 2026 | 58.8 | 59.5 | 0.7 | | | 2027 | 60.0 | 61.3 | 1.3 | | | 2028 | 61.2 | 63.2 | 2.0 | | | 2029 | 62.5 | 65.4 | 3.0 | | | 2030 | 63.7 | 67.5 | 3.7 | | | 2031 | 65.1 | 69.6 | 4.5 | | | 2032 | 66.4 | 71.4 | 5.0 | | Table 0-682 - Required and Achieved CAFE Levels (mpg) for Light Truck Fleet for Alternative PC2LT4 | Required and Achieved CAFE Levels (mpg) for Light Truck Fleet for Alternative PC2LT4 | | | | | | | | | | |--|----------|----------|------------|--|--|--|--|--|--| | | Total | | | | | | | | | | Model Year | Required | Achieved | Difference | | | | | | | | 2022 | 32.1 | 30.1 | -2.0 | | | | | | | | 2023 | 32.6 | 31.3 | -1.3 | | | | | | | | 2024 | 35.3 | 34.0 | -1.3 | | | | | | | | 2025 | 38.3 | 36.4 | -1.9 | | | | | | | | 2026 | 42.6 | 38.9 | -3.8 | | | | | | | | 2027 | 44.4 | 41.1 | -3.3 | | | | | | | | 2028 | 46.2 | 42.4 | -3.9 | | | | | | | | 2029 | 48.2 | 44.1 | -4.1 | | | | | | | | 2030 | 50.2 | 45.5 | -4.6 | | | | | | | | 2031 | 52.2 | 47.4 | -4.9 | | | | | | | | 2032 | 54.4 | 48.9 | -5.5 | | | | | | | Table 0-683 - Required and Achieved CAFE Levels (mpg) for Total Fleet for Alternative PC2LT4 | Required | Required
and Achieved CAFE Levels (mpg) for Total Fleet for Alternative PC2LT4 | | | | | | | | | | | | | |------------|--|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|--| | BMW | | | | Ford | Ford | | | GM | | | Honda | | | | Model Year | Required | Achieved | Difference | | | 2022 | 37.6 | 32.9 | -4.7 | 31.4 | 29.0 | -2.4 | 32.5 | 29.1 | -3.4 | 39.1 | 37.8 | -1.3 | | | 2023 | 37.9 | 34.8 | -3.1 | 31.8 | 30.1 | -1.8 | 32.9 | 29.0 | -3.9 | 39.4 | 40.2 | 0.8 | | | 2024 | 41.0 | 38.0 | -3.0 | 34.3 | 33.5 | -0.7 | 35.2 | 33.7 | -1.5 | 42.7 | 40.2 | -2.5 | | | 2025 | 44.4 | 41.5 | -3.0 | 37.2 | 34.3 | -2.9 | 38.2 | 37.1 | -1.1 | 46.2 | 41.7 | -4.4 | | | 2026 | 49.3 | 46.5 | -2.8 | 41.4 | 36.4 | -5.0 | 42.3 | 38.3 | -3.9 | 51.2 | 45.7 | -5.5 | | | 2027 | 50.8 | 46.4 | -4.4 | 42.9 | 41.1 | -1.8 | 43.8 | 39.8 | -4.0 | 52.8 | 49.0 | -3.7 | | | 2028 | 52.4 | 48.4 | -4.0 | 44.7 | 43.0 | -1.7 | 45.6 | 40.0 | -5.5 | 54.5 | 51.3 | -3.2 | | | 2029 | 54.1 | 50.7 | -3.3 | 46.5 | 45.1 | -1.4 | 47.2 | 40.4 | -6.8 | 56.2 | 53.3 | -2.9 | | | 2030 | 55.9 | 53.1 | -2.8 | 48.4 | 45.2 | -3.2 | 49.1 | 40.7 | -8.4 | 58.1 | 56.1 | -2.1 | | | 2031 | 57.8 | 55.3 | -2.5 | 50.3 | 45.9 | -4.3 | 51.0 | 43.3 | -7.8 | 60.1 | 58.2 | -1.9 | | | 2032 | 59.7 | 58.6 | -1.1 | 52.3 | 46.7 | -5.7 | 53.0 | 44.0 | -9.0 | 62.0 | 60.6 | -1.4 | | Table 0-684 - Required and Achieved CAFE Levels (mpg) for Total Fleet for Alternative PC2LT4 | Required and Achieved CAFE Levels (mpg) for Total Fleet for Alternative PC2LT4 | | | | | | | | | | | | | |--|-------------|----------|------------|-------------|----------|------------|----------|----------|------------|----------|----------|------------| | Model Year | Hyundai KiH | | | Hyundai KiK | | | JLR | | | Karma | | | | | Required | Achieved | Difference | | 2022 | 39.6 | 39.1 | -0.5 | 39.5 | 38.5 | -1.0 | 32.9 | 27.4 | -5.5 | 40.6 | 66.7 | 26.1 | | 2023 | 40.0 | 40.8 | 0.8 | 39.8 | 40.5 | 0.7 | 33.4 | 34.2 | 0.8 | 41.1 | 66.7 | 25.6 | | 2024 | 43.3 | 41.0 | -2.3 | 43.1 | 44.7 | 1.6 | 36.2 | 36.7 | 0.5 | 44.3 | 66.7 | 22.4 | | 2025 | 46.8 | 44.9 | -1.9 | 46.7 | 44.7 | -2.0 | 39.4 | 36.8 | -2.6 | 48.1 | 66.7 | 18.6 | | 2026 | 51.9 | 49.0 | -3.0 | 51.7 | 49.3 | -2.4 | 43.7 | 38.9 | -4.8 | 53.5 | 138.6 | 85.1 | | 2027 | 53.5 | 50.1 | -3.4 | 53.3 | 49.2 | -4.1 | 45.5 | 39.8 | -5.7 | 55.2 | 138.6 | 83.4 | | 2028 | 55.1 | 53.6 | -1.5 | 55.0 | 49.2 | -5.9 | 47.4 | 39.8 | -7.6 | 56.3 | 138.6 | 82.3 | | 2029 | 56.8 | 54.9 | -1.9 | 56.7 | 52.7 | -4.0 | 49.4 | 40.7 | -8.7 | 57.5 | 138.6 | 81.1 | | 2030 | 58.6 | 56.6 | -2.0 | 58.5 | 54.1 | -4.4 | 51.4 | 42.8 | -8.5 | 58.6 | 138.6 | 80.0 | | 2031 | 60.5 | 58.5 | -2.0 | 60.5 | 57.4 | -3.1 | 53.6 | 46.4 | -7.2 | 59.8 | 138.6 | 78.8 | | 2032 | 62.3 | 60.4 | -1.9 | 62.4 | 59.5 | -2.9 | 55.8 | 49.0 | -6.7 | 61.1 | 138.6 | 77.5 | Table 0-685 - Required and Achieved CAFE Levels (mpg) for Total Fleet for Alternative PC2LT4 | Require | d and A | Achieve | d CAFE | Levels | s (mpg |) for T | otal Fl | eet for | Alteri | native | PC2LT | 4 | |------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Lucid | | | Mazd | а | | Merce | edes-B | enz | Mitsu | bishi | | | Model Year | Required | Achieved | Difference | | 2022 | 40.6 | 166.5 | 125.9 | 37.3 | 35.1 | -2.2 | 36.8 | 31.6 | -5.3 | 42.0 | 38.6 | -3.4 | | 2023 | 41.1 | 166.5 | 125.4 | 37.8 | 41.2 | 3.4 | 37.2 | 36.7 | -0.5 | 42.5 | 38.8 | -3.6 | | 2024 | 44.3 | 166.5 | 122.2 | 41.0 | 42.4 | 1.4 | 40.2 | 37.3 | -2.9 | 45.9 | 45.1 | -0.8 | | 2025 | 48.1 | 166.5 | 118.4 | 44.4 | 42.5 | -2.0 | 43.6 | 37.8 | -5.9 | 49.8 | 48.0 | -1.7 | | 2026 | 53.5 | 166.5 | 113.0 | 49.4 | 46.8 | -2.6 | 48.4 | 43.4 | -5.0 | 55.2 | 53.4 | -1.8 | | 2027 | 55.2 | 166.5 | 111.3 | 51.3 | 49.2 | -2.1 | 49.9 | 44.9 | -5.0 | 56.9 | 53.3 | -3.6 | | 2028 | 56.3 | 166.5 | 110.2 | 53.3 | 50.8 | -2.5 | 51.5 | 47.4 | -4.2 | 58.7 | 53.3 | -5.4 | | 2029 | 57.5 | 166.5 | 109.0 | 55.4 | 53.2 | -2.2 | 53.3 | 49.4 | -3.8 | 60.5 | 53.2 | -7.3 | | 2030 | 58.6 | 166.5 | 107.9 | 57.6 | 55.6 | -2.0 | 55.0 | 53.6 | -1.4 | 62.5 | 53.3 | -9.2 | | 2031 | 59.8 | 166.5 | 106.7 | 59.9 | 57.7 | -2.2 | 56.9 | 55.8 | -1.1 | 64.6 | 63.6 | -1.0 | | 2032 | 61.1 | 170.6 | 109.5 | 62.3 | 59.3 | -2.9 | 58.8 | 57.8 | -1.0 | 66.6 | 64.4 | -2.2 | Table 0-686 - Required and Achieved CAFE Levels (mpg) for Total Fleet for Alternative PC2LT4 | Require | d and A | Achiev | ed CA | FE Lev | /els (m | pg) fo | r Tota | l Fleet | for Alt | ternati | ve PC2L | .T4 | |------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Nissa | n | | Stella | ntis | | Suba | ru | | Tesla | | | | Model Year | Required | Achieved | Difference | | 2022 | 38.9 | 36.8 | -2.2 | 31.9 | 27.3 | -4.5 | 37.8 | 36.7 | -1.1 | 40.7 | 160.7 | 120.0 | | 2023 | 39.3 | 39.6 | 0.4 | 32.3 | 28.5 | -3.8 | 38.2 | 40.3 | 2.1 | 41.2 | 160.7 | 119.4 | | 2024 | 42.4 | 41.4 | -1.1 | 34.9 | 31.4 | -3.5 | 41.4 | 42.2 | 8.0 | 44.8 | 160.7 | 115.9 | | 2025 | 46.0 | 43.8 | -2.1 | 38.0 | 37.0 | -0.9 | 44.9 | 44.1 | -0.9 | 48.6 | 160.6 | 112.0 | | 2026 | 50.9 | 46.6 | -4.3 | 42.1 | 37.5 | -4.6 | 50.0 | 50.0 | 0.0 | 54.1 | 160.6 | 106.5 | | 2027 | 52.4 | 46.7 | -5.8 | 43.8 | 40.1 | -3.7 | 51.9 | 52.3 | 0.4 | 55.2 | 160.6 | 105.4 | | 2028 | 54.1 | 50.8 | -3.3 | 45.6 | 40.2 | -5.3 | 53.9 | 54.3 | 0.4 | 56.4 | 160.6 | 104.2 | | 2029 | 55.8 | 52.5 | -3.2 | 47.3 | 42.8 | -4.5 | 56.0 | 56.6 | 0.6 | 57.7 | 160.6 | 102.9 | | 2030 | 57.6 | 56.4 | -1.2 | 49.2 | 44.4 | -4.8 | 58.2 | 59.5 | 1.2 | 58.9 | 160.6 | 101.7 | | 2031 | 59.5 | 57.7 | -1.8 | 51.1 | 45.4 | -5.7 | 60.5 | 62.0 | 1.5 | 60.3 | 160.6 | 100.4 | | 2032 | 61.4 | 59.0 | -2.5 | 53.2 | 47.3 | -5.9 | 62.9 | 64.2 | 1.3 | 61.5 | 160.6 | 99.1 | Table 0-687 - Required and Achieved CAFE Levels (mpg) for Total Fleet for Alternative PC2LT4 | Required | and A | chieve | d CAF | E Leve | els (mp | g) for | Total I | Fleet fo | or Alte | rnative | PC2L | .T4 | |------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Toyot | а | | Volvo | 1 | | VWA | | | Total | | | | Model Year | Required | Achieved | Difference | | 2022 | 37.1 | 36.6 | -0.4 | 36.0 | 39.0 | 3.1 | 37.9 | 33.8 | -4.0 | 35.8 | 34.1 | -1.7 | | 2023 | 37.4 | 37.7 | 0.3 | 36.4 | 41.3 | 5.0 | 38.2 | 35.2 | -3.0 | 36.1 | 35.5 | -0.6 | | 2024 | 40.4 | 40.6 | 0.3 | 39.4 | 41.3 | 2.0 | 41.3 | 40.3 | -1.0 | 39.0 | 38.4 | -0.5 | | 2025 | 43.6 | 41.7 | -1.9 | 42.6 | 45.3 | 2.7 | 44.8 | 42.9 | -1.9 | 42.2 | 40.9 | -1.3 | | 2026 | 48.4 | 46.6 | -1.8 | 47.4 | 45.8 | -1.5 | 49.6 | 45.0 | -4.6 | 46.8 | 43.8 | -3.0 | | 2027 | 50.0 | 47.8 | -2.3 | 49.0 | 46.3 | -2.7 | 51.3 | 45.8 | -5.5 | 48.4 | 45.9 | -2.5 | | 2028 | 51.8 | 49.2 | -2.6 | 50.8 | 46.2 | -4.6 | 53.1 | 47.8 | -5.3 | 50.1 | 47.3 | -2.8 | | 2029 | 53.6 | 50.8 | -2.8 | 52.7 | 46.7 | -6.0 | 55.0 | 49.4 | -5.6 | 51.9 | 49.1 | -2.8 | | 2030 | 55.5 | 52.7 | -2.8 | 54.6 | 52.7 | -2.0 | 57.0 | 53.4 | -3.5 | 53.8 | 50.7 | -3.0 | | 2031 | 57.5 | 54.9 | -2.6 | 56.7 | 54.8 | -1.9 | 59.0 | 56.5 | -2.4 | 55.7 | 52.8 | -3.0 | | 2032 | 59.5 | 57.0 | -2.5 | 58.7 | 57.6 | -1.1 | 61.1 | 58.7 | -2.4 | 57.8 | 54.4 | -3.4 | #### Table 0-688 - Required and Achieved CAFE Levels (mpg) for Passenger Car Fleet for Alternative PC2LT4 | Required and | d Achie | eved C/ | AFE Le | evels (n | npg) fo | r Pass | enger (| Car Fle | et for A | Alterna | tive PC | 2LT4 | |--------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | BMW | | | Ford | | | GM | | | Honda | а | | | Model Year | Required | Achieved | Difference | | 2022 | 43.3 | 35.4 | -7.9 | 43.4 | 40.7 | -2.7 | 45.1 | 39.1 | -6.0 | 44.7 | 43.4 | -1.3 | | 2023 | 44.0 | 38.7 | -5.3 | 44.1 | 40.8 | -3.3 | 45.8 | 39.3 | -6.5 | 45.4 | 47.0 | 1.6 | | 2024 | 47.8 | 48.1 | 0.3 | 47.9 | 56.2 | 8.3 | 49.7 | 49.2 | -0.6 | 49.4 | 47.2 | -2.2 | | 2025 | 52.0 | 51.7 | -0.3 | 52.1 | 57.9 | 5.8 | 54.1 | 52.0 | -2.1 | 53.7 | 48.8 | -4.9 | | 2026 | 57.7 | 56.2 | -1.5 | 57.9 | 57.9 | 0.0 | 60.1 | 56.8 | -3.3 | 59.6 | 53.6 | -6.0 | | 2027 | 58.9 | 56.2 | -2.7 | 59.0 | 65.5 | 6.5 | 61.3 | 57.0 | -4.3 | 60.8 | 57.1 | -3.7 | | 2028 | 60.1 | 60.3 | 0.2 | 60.2 | 65.5 | 5.3 | 62.6 | 57.0 | -5.5 | 62.1 | 60.1 | -2.0 | | 2029 | 61.3 | 63.2 | 1.9 | 61.5 | 65.5 | 4.0 | 63.9 | 61.5 | -2.3 | 63.3 | 62.2 | -1.1 | | 2030 | 62.6 | 65.9 | 3.3 | 62.7 | 66.0 | 3.3 | 65.1 | 62.3 | -2.8 | 64.6 | 64.6 | 0.0 | | 2031 | 63.9 | 68.5 | 4.6 | 64.0 | 66.9 | 2.9 | 66.5 | 63.6 | -2.9 | 66.0 | 67.0 | 1.0 | | 2032 | 65.2 | 70.6 | 5.4 | 65.3 | 68.2 | 2.9 | 67.8 | 64.3 | -3.5 | 67.3 | 69.5 | 2.2 | #### Table 0-689 - Required and Achieved CAFE Levels (mpg) for Passenger Car Fleet for Alternative PC2LT4 | Required an | d Achi | eved C | AFE L | evels (| mpg) f | or Pas | senge | r Car F | leet for | Altern | ative PC | 2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Hyund | dai KiH | | Hyund | dai KiK | | JLR | | | Karma | а | | | Model Year | Required | Achieved | Difference | | 2022 | 44.2 | 42.9 | -1.3 | 44.7 | 44.3 | -0.5 | 43.2 | 29.4 | -13.8 | 40.6 | 66.7 | 26.1 | | 2023 | 44.9 | 46.0 | 1.1 | 45.4 | 46.5 | 1.1 | 43.8 | 54.5 | 10.7 | 41.1 | 66.7 | 25.6 | | 2024 | 48.8 | 46.4 | -2.5 | 49.4 | 55.7 | 6.3 | 47.6 | 54.5 | 6.9 | 44.3 | 66.7 | 22.4 | | 2025 | 53.1 | 50.2 | -2.9 | 53.6 | 55.7 | 2.0 | 51.8 | 54.5 | 2.7 | 48.1 | 66.7 | 18.6 | | 2026 | 59.0 | 55.8 | -3.2 | 59.6 | 57.9 | -1.6 |
57.5 | 61.7 | 4.2 | 53.5 | 138.6 | 85.1 | | 2027 | 60.2 | 57.6 | -2.5 | 60.8 | 58.0 | -2.8 | 58.7 | 61.8 | 3.1 | 55.2 | 138.6 | 83.4 | | 2028 | 61.4 | 59.9 | -1.5 | 62.1 | 58.0 | -4.1 | 59.9 | 61.9 | 2.0 | 56.3 | 138.6 | 82.3 | | 2029 | 62.7 | 61.4 | -1.3 | 63.3 | 60.8 | -2.5 | 61.1 | 63.2 | 2.1 | 57.5 | 138.6 | 81.1 | | 2030 | 64.0 | 63.2 | -0.7 | 64.6 | 62.4 | -2.2 | 62.4 | 65.4 | 3.0 | 58.6 | 138.6 | 80.0 | | 2031 | 65.3 | 65.5 | 0.2 | 65.9 | 64.3 | -1.6 | 63.6 | 67.4 | 3.8 | 59.8 | 138.6 | 78.8 | | 2032 | 66.6 | 66.9 | 0.3 | 67.2 | 65.5 | -1.8 | 64.9 | 69.1 | 4.2 | 61.1 | 138.6 | 77.5 | #### Table 0-690 - Required and Achieved CAFE Levels (mpg) for Passenger Car Fleet for Alternative PC2LT4 | Required an | d Achi | eved CA | FE Leve | els (mp | g) for | Passe | nger C | ar Flee | t for A | lternat | ive PC | 2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Lucid | | | Mazd | а | | Merce | edes-Be | enz | Mitsul | bishi | | | Model Year | Required | Achieved | Difference | | 2022 | 40.6 | 166.5 | 125.9 | 46.1 | 40.1 | -6.0 | 41.8 | 34.1 | -7.7 | 47.0 | 41.4 | -5.6 | | 2023 | 41.1 | 166.5 | 125.4 | 46.8 | 40.8 | -6.0 | 42.4 | 41.6 | -0.8 | 47.7 | 41.7 | -6.0 | | 2024 | 44.3 | 166.5 | 122.2 | 50.9 | 49.6 | -1.3 | 46.1 | 43.7 | -2.4 | 51.9 | 50.4 | -1.5 | | 2025 | 48.1 | 166.5 | 118.4 | 55.3 | 51.5 | -3.8 | 50.1 | 45.6 | -4.5 | 56.4 | 54.1 | -2.3 | | 2026 | 53.5 | 166.5 | 113.0 | 61.5 | 56.8 | -4.7 | 55.6 | 54.0 | -1.6 | 62.7 | 62.0 | -0.7 | | 2027 | 55.2 | 166.5 | 111.3 | 62.7 | 60.4 | -2.3 | 56.8 | 56.2 | -0.6 | 63.9 | 62.0 | -1.9 | | 2028 | 56.3 | 166.5 | 110.2 | 64.0 | 62.4 | -1.6 | 57.9 | 56.2 | -1.7 | 65.2 | 62.0 | -3.2 | | 2029 | 57.5 | 166.5 | 109.0 | 65.3 | 64.6 | -0.7 | 59.1 | 59.3 | 0.2 | 66.6 | 62.0 | -4.6 | | 2030 | 58.6 | 166.5 | 107.9 | 66.7 | 67.2 | 0.5 | 60.3 | 61.6 | 1.3 | 67.9 | 62.0 | -5.9 | | 2031 | 59.8 | 166.5 | 106.7 | 68.0 | 69.7 | 1.7 | 61.6 | 64.0 | 2.4 | 69.3 | 69.5 | 0.2 | | 2032 | 61.1 | 170.6 | 109.5 | 69.4 | 71.8 | 2.4 | 62.8 | 66.6 | 3.8 | 70.7 | 70.5 | -0.2 | Table 0-691 - Required and Achieved CAFE Levels (mpg) for Passenger Car Fleet for Alternative PC2LT4 | Required an | d Achi | eved C | AFE I | evels | (mpg) | for Pas | senge | r Car F | leet fo | r Alter | native P | C2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Nissa | n | | Stella | ntis | | Suba | ru | | Tesla | | | | Model Year | Required | Achieved | Difference | | 2022 | 44.7 | 42.4 | -2.3 | 41.8 | 28.2 | -13.6 | 46.0 | 37.0 | -9.0 | 41.1 | 161.0 | 119.9 | | 2023 | 45.4 | 46.5 | 1.1 | 42.4 | 30.5 | -11.9 | 46.7 | 46.1 | -0.6 | 41.7 | 161.0 | 119.3 | | 2024 | 49.3 | 50.0 | 0.6 | 46.1 | 41.2 | -4.9 | 50.7 | 46.1 | -4.6 | 45.3 | 161.0 | 115.7 | | 2025 | 53.6 | 54.1 | 0.5 | 50.0 | 51.1 | 1.0 | 55.1 | 52.9 | -2.2 | 49.3 | 161.0 | 111.7 | | 2026 | 59.6 | 58.6 | -1.0 | 55.6 | 52.4 | -3.2 | 61.3 | 58.6 | -2.7 | 54.8 | 161.0 | 106.2 | | 2027 | 60.8 | 58.8 | -2.0 | 56.8 | 52.4 | -4.4 | 62.5 | 60.7 | -1.8 | 55.9 | 161.0 | 105.1 | | 2028 | 62.1 | 59.6 | -2.5 | 57.9 | 53.1 | -4.8 | 63.8 | 63.0 | -0.8 | 57.0 | 161.0 | 104.0 | | 2029 | 63.3 | 60.8 | -2.5 | 59.1 | 56.1 | -3.0 | 65.1 | 66.0 | 0.9 | 58.2 | 161.0 | 102.8 | | 2030 | 64.6 | 63.1 | -1.5 | 60.3 | 57.9 | -2.4 | 66.4 | 69.0 | 2.6 | 59.4 | 161.0 | 101.7 | | 2031 | 65.9 | 64.5 | -1.4 | 61.5 | 60.2 | -1.4 | 67.8 | 71.9 | 4.1 | 60.7 | 161.0 | 100.4 | | 2032 | 67.3 | 66.3 | -0.9 | 62.8 | 61.6 | -1.1 | 69.2 | 75.2 | 6.0 | 61.9 | 161.0 | 99.2 | Table 0-692 - Required and Achieved CAFE Levels (mpg) for Passenger Car Fleet for Alternative PC2LT4 | Required and | d Achie | eved C | AFE Le | evels (r | npg) fo | r Pass | enger (| Car Fle | et for A | Alterna | tive PC | 2LT4 | |--------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Toyot | а | | Volvo | | | VWA | | | Total | | | | Model Year | Required | Achieved | Difference | | 2022 | 44.7 | 44.0 | -0.7 | 42.9 | 53.6 | 10.6 | 45.0 | 37.8 | -7.2 | 44.1 | 43.7 | -0.4 | | 2023 | 45.4 | 46.3 | 0.9 | 43.6 | 55.4 | 11.8 | 45.7 | 38.8 | -6.9 | 44.8 | 46.6 | 1.8 | | 2024 | 49.4 | 47.7 | -1.7 | 47.4 | 56.0 | 8.6 | 49.7 | 44.3 | -5.3 | 48.7 | 51.3 | 2.6 | | 2025 | 53.6 | 49.3 | -4.3 | 51.5 | 59.6 | 8.1 | 54.0 | 47.4 | -6.6 | 52.9 | 54.3 | 1.4 | | 2026 | 59.6 | 56.2 | -3.4 | 57.2 | 61.8 | 4.5 | 60.0 | 53.6 | -6.4 | 58.8 | 59.5 | 0.7 | | 2027 | 60.8 | 58.4 | -2.4 | 58.3 | 61.8 | 3.4 | 61.2 | 55.5 | -5.7 | 60.0 | 61.3 | 1.3 | | 2028 | 62.1 | 60.4 | -1.7 | 59.5 | 61.8 | 2.2 | 62.5 | 62.5 | 0.0 | 61.2 | 63.2 | 2.0 | | 2029 | 63.4 | 62.4 | -1.0 | 60.8 | 62.5 | 1.7 | 63.8 | 64.4 | 0.6 | 62.5 | 65.4 | 3.0 | | 2030 | 64.6 | 64.7 | 0.0 | 62.0 | 65.9 | 3.9 | 65.1 | 66.6 | 1.5 | 63.7 | 67.5 | 3.7 | | 2031 | 65.9 | 67.0 | 1.0 | 63.3 | 68.2 | 5.0 | 66.4 | 68.8 | 2.5 | 65.1 | 69.6 | 4.5 | | 2032 | 67.3 | 68.7 | 1.4 | 64.6 | 71.6 | 7.1 | 67.7 | 70.5 | 2.7 | 66.4 | 71.4 | 5.0 | ## Table 0-693 - Required and Achieved CAFE Levels (mpg) for Light Truck Fleet for Alternative PC2LT4 | Required an | d Achi | eved C | AFE L | .evels (| (mpg) 1 | or Lig | ht Truc | ck Flee | t for A | Iternat | ive PC | 2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | BMW | | | Ford | | | GM | | | Honda | а | | | Model Year | Required | Achieved | Difference | | 2022 | 32.5 | 30.3 | -2.2 | 30.3 | 27.9 | -2.4 | 29.8 | 26.8 | -3.0 | 34.0 | 32.8 | -1.2 | | 2023 | 33.0 | 31.3 | -1.7 | 30.8 | 29.1 | -1.7 | 30.3 | 26.9 | -3.4 | 34.5 | 34.8 | 0.3 | | 2024 | 35.9 | 31.3 | -4.6 | 33.2 | 32.1 | -1.1 | 32.5 | 30.9 | -1.6 | 37.5 | 34.9 | -2.6 | | 2025 | 39.0 | 34.9 | -4.1 | 36.1 | 32.9 | -3.2 | 35.4 | 34.5 | -0.9 | 40.8 | 36.7 | -4.1 | | 2026 | 43.4 | 40.1 | -3.3 | 40.2 | 35.1 | -5.1 | 39.3 | 35.4 | -3.9 | 45.3 | 40.2 | -5.1 | | 2027 | 45.2 | 40.1 | -5.1 | 41.8 | 39.7 | -2.1 | 40.9 | 37.0 | -3.9 | 47.2 | 43.6 | -3.6 | | 2028 | 47.0 | 41.2 | -5.8 | 43.6 | 41.6 | -2.0 | 42.7 | 37.3 | -5.4 | 49.2 | 45.4 | -3.8 | | 2029 | 49.0 | 43.2 | -5.8 | 45.4 | 43.8 | -1.6 | 44.4 | 37.3 | -7.1 | 51.2 | 47.5 | -3.7 | | 2030 | 51.0 | 45.2 | -5.8 | 47.3 | 43.8 | -3.5 | 46.3 | 37.5 | -8.8 | 53.4 | 50.2 | -3.2 | | 2031 | 53.2 | 47.0 | -6.2 | 49.2 | 44.5 | -4.7 | 48.2 | 40.0 | -8.2 | 55.6 | 52.0 | -3.6 | | 2032 | 55.4 | 50.7 | -4.7 | 51.3 | 45.2 | -6.1 | 50.2 | 40.7 | -9.5 | 57.9 | 54.3 | -3.6 | Table 0-694 - Required and Achieved CAFE Levels (mpg) for Light Truck Fleet for Alternative PC2LT4 | Required and | d Achie | eved C | AFE Le | evels (n | npg) fo | r Light | t Truck | Fleet f | or Alte | rnativ | re PC | 2LT4 | |--------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Hyund | dai KiH | | Hyund | dai KiK | | JLR | | | Karn | na | | | Model Year | Required | Achieved | Difference | | 2022 | 34.0 | 34.3 | 0.3 | 34.0 | 32.6 | -1.4 | 32.7 | 27.3 | -5.4 | 0.0 | 0.0 | 0.0 | | 2023 | 34.5 | 35.1 | 0.6 | 34.5 | 34.9 | 0.4 | 33.2 | 33.9 | 0.7 | 0.0 | 0.0 | 0.0 | | 2024 | 37.5 | 35.4 | -2.1 | 37.5 | 36.3 | -1.2 | 36.0 | 36.4 | 0.4 | 0.0 | 0.0 | 0.0 | | 2025 | 40.7 | 39.6 | -1.1 | 40.8 | 36.6 | -4.2 | 39.2 | 36.5 | -2.7 | 0.0 | 0.0 | 0.0 | | 2026 | 45.3 | 42.6 | -2.7 | 45.3 | 42.5 | -2.8 | 43.5 | 38.6 | -4.9 | 0.0 | 0.0 | 0.0 | | 2027 | 47.2 | 43.4 | -3.8 | 47.2 | 42.5 | -4.7 | 45.3 | 39.5 | -5.8 | 0.0 | 0.0 | 0.0 | | 2028 | 49.1 | 47.7 | -1.4 | 49.2 | 42.5 | -6.7 | 47.2 | 39.5 | -7.7 | 0.0 | 0.0 | 0.0 | | 2029 | 51.2 | 48.9 | -2.3 | 51.2 | 46.4 | -4.8 | 49.2 | 40.4 | -8.8 | 0.0 | 0.0 | 0.0 | | 2030 | 53.3 | 50.3 | -3.0 | 53.3 | 47.5 | -5.8 | 51.2 | 42.5 | -8.7 | 0.0 | 0.0 | 0.0 | | 2031 | 55.5 | 51.8 | -3.7 | 55.6 | 51.5 | -4.1 | 53.4 | 46.0 | -7.4 | 0.0 | 0.0 | 0.0 | | 2032 | 57.8 | 54.0 | -3.8 | 57.9 | 54.2 | -3.7 | 55.6 | 48.7 | -6.9 | 0.0 | 0.0 | 0.0 | Table 0-695 - Required and Achieved CAFE Levels (mpg) for Light Truck Fleet for Alternative PC2LT4 | Required and | d Ach | ieved | CAFI | E Level | s (mpg | g) for L | ight Tr | uck Flo | eet for | Altern | ative P | C2LT4 | |--------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Lucio | d | | Mazda | a | | Merce | edes-Be | enz | Mitsul | oishi | | | Model Year | Required | Achieved | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 36.0 | 34.3 | -1.7 | 32.9 | 29.4 | -3.5 | 37.0 | 35.6 | -1.4 | | 2023 | 0.0 | 0.0 | 0.0 | 36.6 | 41.3 | 4.7 | 33.4 | 33.1 | -0.3 | 37.6 | 35.9 | -1.7 | | 2024 | 0.0 | 0.0 | 0.0 | 39.8 | 41.4 | 1.6 | 36.3 | 33.2 | -3.1 | 40.8 | 40.5 | -0.3 | | 2025 | 0.0 | 0.0 | 0.0 | 43.2 | 41.4 | -1.8 | 39.5 | 33.2 | -6.3 | 44.4 | 43.1 | -1.3 | | 2026 | 0.0 | 0.0 | 0.0 | 48.0 | 45.6 | -2.4 | 43.9 | 37.6 | -6.3 | 49.3 | 46.9 | -2.4 | | 2027 | 0.0 | 0.0 | 0.0 | 50.0 | 48.0 | -2.0 | 45.7 | 38.9 | -6.8 | 51.4 | 46.9 | -4.5 | | 2028 | 0.0 | 0.0 | 0.0 | 52.1 | 49.6 | -2.5 | 47.6 | 42.4 | -5.2 | 53.5 | 46.9 | -6.6 | | 2029 | 0.0 | 0.0 | 0.0 | 54.3 | 52.0 | -2.3 | 49.6 | 44.0 | -5.6 | 55.7 | 46.9 | -8.8 | | 2030 | 0.0 | 0.0 | 0.0 | 56.5 | 54.3 | -2.2 | 51.6 | 48.9 | -2.7 | 58.1 | 46.9 | -11.2 | | 2031 | 0.0 | 0.0 | 0.0 | 58.9 | 56.3 | -2.6 | 53.8 | 50.8 | -3.0 | 60.5 | 58.7 | -1.8 | | 2032 | 0.0 | 0.0 | 0.0 | 61.4 | 57.9 | -3.5 | 56.0 | 52.4 | -3.6 | 63.0 | 59.3 | -3.7 | ## Table 0-696 - Required and Achieved CAFE Levels (mpg) for Light Truck Fleet for Alternative PC2LT4 | Required ar | nd Ach | ieved | CAFE | Levels | (mpg | for Li | ight Tr | uck Flo | eet for | Altern | ative P | C2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------
------------|----------|----------|------------| | | Nissa | n | | Stella | ntis | | Suba | ru | | Tesla | | | | Model Year | Required | Achieved | Difference | | 2022 | 32.9 | 30.9 | -2.0 | 30.7 | 27.2 | -3.5 | 36.5 | 36.6 | 0.1 | 33.4 | 154.4 | 121.0 | | 2023 | 33.4 | 33.3 | -0.1 | 31.2 | 28.3 | -2.9 | 37.0 | 39.4 | 2.4 | 33.9 | 154.4 | 120.5 | | 2024 | 36.3 | 34.2 | -2.1 | 33.8 | 30.4 | -3.4 | 40.2 | 41.6 | 1.4 | 36.9 | 154.4 | 117.5 | | 2025 | 39.5 | 36.0 | -3.5 | 36.8 | 35.8 | -1.0 | 43.7 | 43.0 | -0.7 | 40.1 | 154.4 | 114.3 | | 2026 | 43.9 | 38.1 | -5.8 | 40.9 | 36.2 | -4.7 | 48.6 | 48.9 | 0.3 | 44.5 | 154.4 | 109.9 | | 2027 | 45.7 | 38.2 | -7.5 | 42.6 | 39.0 | -3.6 | 50.6 | 51.3 | 0.7 | 46.4 | 154.4 | 108.0 | | 2028 | 47.6 | 43.9 | -3.7 | 44.4 | 39.1 | -5.3 | 52.7 | 53.3 | 0.6 | 48.3 | 154.4 | 106.1 | | 2029 | 49.6 | 46.0 | -3.6 | 46.2 | 41.7 | -4.5 | 54.9 | 55.4 | 0.5 | 50.3 | 154.4 | 104.1 | | 2030 | 51.7 | 50.7 | -1.0 | 48.1 | 43.1 | -5.0 | 57.2 | 58.3 | 1.1 | 52.4 | 154.4 | 102.0 | | 2031 | 53.8 | 51.8 | -2.0 | 50.1 | 44.1 | -6.0 | 59.6 | 60.8 | 1.2 | 54.6 | 154.4 | 99.8 | | 2032 | 56.1 | 52.6 | -3.5 | 52.2 | 45.9 | -6.3 | 62.1 | 62.9 | 0.8 | 56.9 | 154.4 | 97.5 | ## Table 0-697 - Required and Achieved CAFE Levels (mpg) for Light Truck Fleet for Alternative PC2LT4 | Required an | d Achi | eved C | AFE L | .evels (| (mpg) 1 | or Lig | ht Truc | ck Flee | t for A | Iternat | ive PC | 2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Toyot | а | | Volvo | | | VWA | | | Total | | | | Model Year | Required | Achieved | Difference | | 2022 | 33.0 | 32.7 | -0.3 | 33.4 | 34.5 | 1.1 | 34.0 | 31.5 | -2.5 | 32.1 | 30.1 | -2.0 | | 2023 | 33.5 | 33.6 | 0.1 | 33.9 | 37.2 | 3.3 | 34.5 | 33.1 | -1.4 | 32.6 | 31.3 | -1.3 | | 2024 | 36.3 | 37.2 | 0.9 | 36.8 | 37.3 | 0.5 | 37.5 | 38.2 | 0.7 | 35.3 | 34.0 | -1.3 | | 2025 | 39.4 | 38.3 | -1.1 | 40.0 | 41.5 | 1.5 | 40.8 | 40.7 | -0.1 | 38.3 | 36.4 | -1.9 | | 2026 | 43.8 | 42.5 | -1.3 | 44.5 | 41.8 | -2.7 | 45.3 | 41.4 | -3.9 | 42.6 | 38.9 | -3.8 | | 2027 | 45.6 | 43.4 | -2.2 | 46.3 | 42.4 | -3.9 | 47.2 | 41.9 | -5.3 | 44.4 | 41.1 | -3.3 | | 2028 | 47.5 | 44.7 | -2.8 | 48.3 | 42.4 | -5.9 | 49.2 | 42.5 | -6.7 | 46.2 | 42.4 | -3.9 | | 2029 | 49.5 | 46.2 | -3.3 | 50.3 | 42.8 | -7.5 | 51.2 | 44.0 | -7.2 | 48.2 | 44.1 | -4.1 | | 2030 | 51.6 | 47.9 | -3.7 | 52.4 | 49.1 | -3.3 | 53.4 | 48.3 | -5.1 | 50.2 | 45.5 | -4.6 | | 2031 | 53.7 | 50.0 | -3.7 | 54.6 | 51.1 | -3.5 | 55.6 | 51.5 | -4.1 | 52.2 | 47.4 | -4.9 | | 2032 | 55.9 | 52.1 | -3.8 | 56.8 | 53.7 | -3.1 | 57.9 | 53.7 | -4.2 | 54.4 | 48.9 | -5.5 | ## Table 0-698 - Required and Achieved CAFE Levels (mpg) for Domestic Car Fleet for Alternative PC2LT4 | Required and | d Achi | eved | CAFE | Levels | (mpg) | for Do | mestic | Car Fle | et for | Alterna | tive PC | 2LT4 | |--------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | BMV | V | | Ford | | | GM | | | Honda | a | | | Model Year | Required | Achieved | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 43.4 | 40.7 | -2.7 | 44.3 | 38.3 | -6.0 | 44.7 | 43.4 | -1.3 | | 2023 | 0.0 | 0.0 | 0.0 | 44.1 | 40.8 | -3.3 | 45.0 | 38.6 | -6.4 | 45.4 | 47.0 | 1.6 | | 2024 | 0.0 | 0.0 | 0.0 | 47.9 | 56.2 | 8.3 | 48.9 | 49.6 | 0.7 | 49.4 | 47.2 | -2.2 | | 2025 | 0.0 | 0.0 | 0.0 | 52.1 | 57.9 | 5.8 | 53.2 | 52.3 | -0.9 | 53.7 | 48.8 | -4.9 | | 2026 | 0.0 | 0.0 | 0.0 | 57.9 | 57.9 | 0.0 | 59.1 | 56.3 | -2.8 | 59.6 | 53.6 | -6.0 | | 2027 | 0.0 | 0.0 | 0.0 | 59.0 | 65.5 | 6.5 | 60.3 | 56.6 | -3.7 | 60.8 | 57.1 | -3.7 | | 2028 | 0.0 | 0.0 | 0.0 | 60.2 | 65.5 | 5.3 | 61.5 | 56.6 | -4.9 | 62.1 | 60.1 | -2.0 | | 2029 | 0.0 | 0.0 | 0.0 | 61.5 | 65.5 | 4.0 | 62.8 | 61.5 | -1.3 | 63.3 | 62.2 | -1.1 | | 2030 | 0.0 | 0.0 | 0.0 | 62.7 | 66.0 | 3.3 | 64.0 | 61.6 | -2.4 | 64.6 | 64.6 | 0.0 | | 2031 | 0.0 | 0.0 | 0.0 | 64.0 | 66.9 | 2.9 | 65.4 | 62.5 | -2.9 | 66.0 | 67.0 | 1.0 | | 2032 | 0.0 | 0.0 | 0.0 | 65.3 | 68.2 | 2.9 | 66.7 | 63.3 | -3.4 | 67.3 | 69.5 | 2.2 | ## Table 0-699 - Required and Achieved CAFE Levels (mpg) for Domestic Car Fleet for Alternative PC2LT4 | Required an | d Achi | eved CA | AFE Lev | els (mp | g) for | Domes | stic C | ar Fle | et for | Altern | ative PC | 2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Hyun | dai KiH | | Hyund | dai KiK | | JLR | | | Karm | а | | | Model Year | Required | Achieved | Difference | | 2022 | 48.7 | 50.7 | 2.0 | 45.8 | 45.0 | -0.8 | 0.0 | 0.0 | 0.0 | 40.6 | 66.7 | 26.1 | | 2023 | 49.5 | 284.8 | 235.3 | 46.5 | 45.0 | -1.5 | 0.0 | 0.0 | 0.0 | 41.1 | 66.7 | 25.6 | | 2024 | 53.8 | 284.8 | 231.0 | 50.6 | 61.5 | 10.9 | 0.0 | 0.0 | 0.0 | 44.3 | 66.7 | 22.4 | | 2025 | 58.4 | 284.8 | 226.4 | 55.0 | 61.5 | 6.5 | 0.0 | 0.0 | 0.0 | 48.1 | 66.7 | 18.6 | | 2026 | 64.9 | 284.8 | 219.9 | 61.1 | 61.5 | 0.4 | 0.0 | 0.0 | 0.0 | 53.5 | 138.6 | 85.1 | | 2027 | 66.3 | 284.8 | 218.5 | 62.3 | 61.5 | -0.8 | 0.0 | 0.0 | 0.0 | 55.2 | 138.6 | 83.4 | | 2028 | 67.6 | 301.4 | 233.8 | 63.6 | 61.5 | -2.1 | 0.0 | 0.0 | 0.0 | 56.3 | 138.6 | 82.3 | | 2029 | 69.0 | 301.4 | 232.4 | 64.9 | 62.5 | -2.4 | 0.0 | 0.0 | 0.0 | 57.5 | 138.6 | 81.1 | | 2030 | 70.4 | 301.4 | 231.0 | 66.2 | 64.1 | -2.1 | 0.0 | 0.0 | 0.0 | 58.6 | 138.6 | 80.0 | | 2031 | 71.8 | 301.4 | 229.6 | 67.6 | 65.7 | -1.9 | 0.0 | 0.0 | 0.0 | 59.8 | 138.6 | 78.8 | | 2032 | 73.3 | 301.4 | 228.1 | 69.0 | 66.9 | -2.1 | 0.0 | 0.0 | 0.0 | 61.1 | 138.6 | 77.5 | ## Table 0-700 - Required and Achieved CAFE Levels (mpg) for Domestic Car Fleet for Alternative PC2LT4 | Required and Achieved CAFE Levels (mpg) for Domestic Car Fleet for Alternative PC2LT4 | | | | | | | | | | | | | |---|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Lucid | | | Mazo | da | | Merc | edes-l | Benz | Mitsu | ıbishi | | | Model Year | Required | Achieved | Difference | | 2022 | 40.6 | 166.5 | 125.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 41.1 | 166.5 | 125.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 44.3 | 166.5 | 122.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 48.1 | 166.5 | 118.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 53.5 | 166.5 | 113.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 55.2 | 166.5 | 111.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 56.3 | 166.5 | 110.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 57.5 | 166.5 | 109.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 58.6 | 166.5 | 107.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 59.8 | 166.5 | 106.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 61.1 | 170.6 | 109.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ## Table 0-701 - Required and Achieved CAFE Levels (mpg) for Domestic Car Fleet for Alternative PC2LT4 | Required an | d Achi | eved C | AFE L | evels (| mpg) f | or Dom | estic | Car F | leet fo | r Alter | native P | C2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Nissa | n | | Stella | ntis | | Suba | aru | | Tesla | | | | Model Year | Required | Achieved | Difference | | 2022 | 44.5 | 41.7 | -2.8 | 41.4 | 27.8 | -13.6 | 0.0 | 0.0 | 0.0 | 40.8 | 157.5 | 116.7 | | 2023 | 45.2 | 42.8 | -2.4 | 42.0 | 30.1 | -11.9 | 0.0 | 0.0 | 0.0 | 41.4 | 157.5 | 116.1 | | 2024 | 49.1 | 46.4 | -2.7 | 45.7 | 41.2 | -4.5 | 0.0 | 0.0 | 0.0 | 45.0 | 157.5 | 112.5 | | 2025 | 53.4 | 51.4 | -2.0 | 49.6 | 50.7 | 1.1 | 0.0 | 0.0 | 0.0 | 48.9 | 157.5 | 108.6 | | 2026 | 59.3 | 57.1 | -2.2 | 55.1 | 51.7 | -3.4 | 0.0 | 0.0 | 0.0 | 54.4 | 157.5 | 103.1 | | 2027 | 60.5 | 57.4 | -3.1 | 56.3 | 51.7 | -4.6 | 0.0 | 0.0 | 0.0 | 55.5 | 157.5 | 102.0 | | 2028 | 61.8 | 57.5 | -4.3 | 57.4 | 52.4 | -5.0 | 0.0 | 0.0 | 0.0 | 56.6 | 157.5 | 100.9 | | 2029 | 63.0 | 58.8 | -4.2 | 58.6 | 55.7 | -2.9 | 0.0 | 0.0 | 0.0 | 57.8 | 157.5 | 99.7 | | 2030 | 64.3 | 61.2 | -3.1 | 59.8 | 57.5 | -2.3 | 0.0 | 0.0 | 0.0 | 58.9 | 157.5 | 98.6 | | 2031 | 65.6 | 62.6 | -3.0 | 61.0 | 59.8 | -1.2 | 0.0 | 0.0 | 0.0 | 60.2 | 157.5 | 97.3 | | 2032 | 67.0 | 64.7 | -2.3 | 62.2 | 61.1 | -1.1 | 0.0 | 0.0 | 0.0 | 61.4 | 157.5 | 96.1 | Table 0-702 - Required and Achieved CAFE Levels (mpg) for Domestic Car Fleet for Alternative PC2LT4 | Required an | d Achie | eved C | AFE L | evels (| mpg) fo | or Don | nestic (| Car Fle | et for A | Iternati | ive PC | 2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Toyot | а | | Volvo | | | VWA | | | Total | | | | Model Year | Required | Achieved | Difference | | 2022 | 43.1 | 41.0 | -2.1 | 42.3 | 42.2 | -0.1 | 41.4 | 32.8 | -8.6 | 43.5 | 44.9 | 1.3 | | 2023 | 43.7 | 41.5 | -2.2 | 42.9 | 45.5 | 2.6 | 42.0 | 32.8 | -9.2 | 44.2 | 46.9 | 2.7 | | 2024 | 47.5 | 44.6 | -2.9 | 46.7 | 45.5 | -1.2 | 45.7 | 38.2 | -7.5 | 48.1 | 53.2 | 5.1 | | 2025 | 51.7 | 48.1 | -3.6 | 50.7 | 49.5 | -1.2 | 49.6 | 38.2 | -11.4 | 52.3 | 56.7 | 4.5 | | 2026 | 57.4 | 52.5 | -4.9 | 56.4 | 53.7 | -2.7 | 55.2 | 80.6 | 25.4 | 58.0 | 61.3 | 3.2 | | 2027 | 58.6 | 54.9 | -3.7 | 57.5 | 53.7 | -3.8 | 56.3 | 80.6 | 24.3 | 59.2 | 63.5 | 4.2 | | 2028 | 59.8 | 56.6 | -3.2 | 58.7 | 53.7 | -5.0 | 57.4 | 81.1 | 23.7 | 60.4 | 64.9 | 4.4 | | 2029 | 61.0 | 58.4 | -2.6 | 59.9 | 53.7 | -6.2 | 58.6 | 85.2 | 26.6 | 61.7 | 67.2 | 5.5 | | 2030 | 62.2 | 60.6 | -1.6 | 61.1 | 58.8 | -2.3 | 59.8 | 87.1 | 27.3 | 62.9 | 69.1
| 6.2 | | 2031 | 63.5 | 62.7 | -0.8 | 62.3 | 61.2 | -1.1 | 61.0 | 88.8 | 27.8 | 64.2 | 70.9 | 6.7 | | 2032 | 64.8 | 64.4 | -0.4 | 63.6 | 63.1 | -0.5 | 62.3 | 91.0 | 28.7 | 65.5 | 72.8 | 7.3 | Table 0-703 - Required and Achieved CAFE Levels (mpg) for Imported Car Fleet for Alternative PC2LT4 | Required an | d Achie | eved C | AFE L | evels | (mpg) | for Ir | nporte | d Car F | leet fo | r Alter | native P | C2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | BMW | | | Ford | | | GM | | | Honda | а | | | Model Year | Required | Achieved | Difference | | 2022 | 43.3 | 35.4 | -7.9 | 0.0 | 0.0 | 0.0 | 47.1 | 41.1 | -6.0 | 44.9 | 29.4 | -15.5 | | 2023 | 44.0 | 38.7 | -5.3 | 0.0 | 0.0 | 0.0 | 47.9 | 41.2 | -6.7 | 45.6 | 30.0 | -15.6 | | 2024 | 47.8 | 48.1 | 0.3 | 0.0 | 0.0 | 0.0 | 52.0 | 48.0 | -4.0 | 49.5 | 30.1 | -19.4 | | 2025 | 52.0 | 51.7 | -0.3 | 0.0 | 0.0 | 0.0 | 56.5 | 51.4 | -5.1 | 53.8 | 30.2 | -23.6 | | 2026 | 57.7 | 56.2 | -1.5 | 0.0 | 0.0 | 0.0 | 62.8 | 58.1 | -4.7 | 59.8 | 103.6 | 43.8 | | 2027 | 58.9 | 56.2 | -2.7 | 0.0 | 0.0 | 0.0 | 64.1 | 58.1 | -6.0 | 61.1 | 103.4 | 42.3 | | 2028 | 60.1 | 60.3 | 0.2 | 0.0 | 0.0 | 0.0 | 65.4 | 58.1 | -7.3 | 62.3 | 103.2 | 40.9 | | 2029 | 61.3 | 63.2 | 1.9 | 0.0 | 0.0 | 0.0 | 66.8 | 61.6 | -5.2 | 63.6 | 103.1 | 39.5 | | 2030 | 62.6 | 65.9 | 3.3 | 0.0 | 0.0 | 0.0 | 68.1 | 64.2 | -3.9 | 64.9 | 102.9 | 38.0 | | 2031 | 63.9 | 68.5 | 4.6 | 0.0 | 0.0 | 0.0 | 69.5 | 66.9 | -2.6 | 66.2 | 102.7 | 36.5 | | 2032 | 65.2 | 70.6 | 5.4 | 0.0 | 0.0 | 0.0 | 70.9 | 66.9 | -4.0 | 67.6 | 102.6 | 35.0 | Table 0-704 - Required and Achieved CAFE Levels (mpg) for Imported Car Fleet for Alternative PC2LT4 | Required and | d Achie | eved CA | AFE Le | vels (n | npg) fo | r Impo | rted Ca | r Fleet | for Alte | ernativ | /e PC | 2LT4 | |--------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Hyund | dai KiH | | Hyund | dai KiK | | JLR | | | Karn | na | | | Model Year | Required | Achieved | Difference | | 2022 | 44.1 | 42.7 | -1.4 | 44.4 | 44.1 | -0.3 | 43.2 | 29.4 | -13.8 | 0.0 | 0.0 | 0.0 | | 2023 | 44.8 | 44.7 | -0.1 | 45.0 | 46.9 | 1.9 | 43.8 | 54.5 | 10.7 | 0.0 | 0.0 | 0.0 | | 2024 | 48.7 | 45.1 | -3.6 | 49.0 | 54.0 | 5.0 | 47.6 | 54.5 | 6.9 | 0.0 | 0.0 | 0.0 | | 2025 | 52.9 | 48.8 | -4.1 | 53.2 | 54.0 | 8.0 | 51.8 | 54.5 | 2.7 | 0.0 | 0.0 | 0.0 | | 2026 | 58.8 | 54.3 | -4.5 | 59.1 | 56.9 | -2.2 | 57.5 | 61.7 | 4.2 | 0.0 | 0.0 | 0.0 | | 2027 | 60.0 | 56.2 | -3.8 | 60.3 | 56.9 | -3.4 | 58.7 | 61.8 | 3.1 | 0.0 | 0.0 | 0.0 | | 2028 | 61.2 | 58.3 | -2.9 | 61.6 | 56.9 | -4.7 | 59.9 | 61.9 | 2.0 | 0.0 | 0.0 | 0.0 | | 2029 | 62.5 | 59.8 | -2.7 | 62.8 | 60.3 | -2.5 | 61.1 | 63.2 | 2.1 | 0.0 | 0.0 | 0.0 | | 2030 | 63.8 | 61.6 | -2.2 | 64.1 | 61.8 | -2.3 | 62.4 | 65.4 | 3.0 | 0.0 | 0.0 | 0.0 | | 2031 | 65.1 | 63.9 | -1.2 | 65.4 | 63.9 | -1.5 | 63.6 | 67.4 | 3.8 | 0.0 | 0.0 | 0.0 | | 2032 | 66.4 | 65.2 | -1.2 | 66.7 | 65.0 | -1.7 | 64.9 | 69.1 | 4.2 | 0.0 | 0.0 | 0.0 | ## Table 0-705 - Required and Achieved CAFE Levels (mpg) for Imported Car Fleet for Alternative PC2LT4 | Required and | d Achi | eved | CAFE | Levels | (mpg) | for Im | ported | Car Fle | et for | Alterna | tive PC | 2LT4 | |--------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Lucio | d | | Mazda | a | | Merce | des-Be | nz | Mitsuk | oishi | | | Model Year | Required | Achieved | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 46.1 | 40.1 | -6.0 | 41.8 | 34.1 | -7.7 | 47.0 | 41.4 | -5.6 | | 2023 | 0.0 | 0.0 | 0.0 | 46.8 | 40.8 | -6.0 | 42.4 | 41.6 | -0.8 | 47.7 | 41.7 | -6.0 | | 2024 | 0.0 | 0.0 | 0.0 | 50.9 | 49.6 | -1.3 | 46.1 | 43.7 | -2.4 | 51.9 | 50.4 | -1.5 | | 2025 | 0.0 | 0.0 | 0.0 | 55.3 | 51.5 | -3.8 | 50.1 | 45.6 | -4.5 | 56.4 | 54.1 | -2.3 | | 2026 | 0.0 | 0.0 | 0.0 | 61.5 | 56.8 | -4.7 | 55.6 | 54.0 | -1.6 | 62.7 | 62.0 | -0.7 | | 2027 | 0.0 | 0.0 | 0.0 | 62.7 | 60.4 | -2.3 | 56.8 | 56.2 | -0.6 | 63.9 | 62.0 | -1.9 | | 2028 | 0.0 | 0.0 | 0.0 | 64.0 | 62.4 | -1.6 | 57.9 | 56.2 | -1.7 | 65.2 | 62.0 | -3.2 | | 2029 | 0.0 | 0.0 | 0.0 | 65.3 | 64.6 | -0.7 | 59.1 | 59.3 | 0.2 | 66.6 | 62.0 | -4.6 | | 2030 | 0.0 | 0.0 | 0.0 | 66.7 | 67.2 | 0.5 | 60.3 | 61.6 | 1.3 | 67.9 | 62.0 | -5.9 | | 2031 | 0.0 | 0.0 | 0.0 | 68.0 | 69.7 | 1.7 | 61.6 | 64.0 | 2.4 | 69.3 | 69.5 | 0.2 | | 2032 | 0.0 | 0.0 | 0.0 | 69.4 | 71.8 | 2.4 | 62.8 | 66.6 | 3.8 | 70.7 | 70.5 | -0.2 | Table 0-706 - Required and Achieved CAFE Levels (mpg) for Imported Car Fleet for Alternative PC2LT4 | Required ar | nd Ach | ieved | CAFE | Levels | (mpg) | for Imp | orted | Car Fle | eet for | Altern | ative P | C2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Nissa | n | | Stella | ntis | | Suba | ru | | Tesla | | | | Model Year | Required | Achieved | Difference | | 2022 | 45.2 | 44.3 | -0.9 | 44.9 | 32.2 | -12.7 | 46.0 | 37.0 | -9.0 | 42.4 | 177.7 | 135.3 | | 2023 | 45.9 | 60.2 | 14.3 | 45.5 | 34.1 | -11.4 | 46.7 | 46.1 | -0.6 | 43.1 | 177.7 | 134.6 | | 2024 | 49.9 | 62.5 | 12.6 | 49.5 | 41.0 | -8.5 | 50.7 | 46.1 | -4.6 | 46.8 | 177.7 | 130.9 | | 2025 | 54.3 | 62.6 | 8.3 | 53.8 | 54.3 | 0.5 | 55.1 | 52.9 | -2.2 | 50.9 | 177.7 | 126.8 | | 2026 | 60.3 | 62.7 | 2.4 | 59.8 | 59.2 | -0.6 | 61.3 | 58.6 | -2.7 | 56.6 | 177.7 | 121.1 | | 2027 | 61.5 | 62.7 | 1.2 | 61.0 | 59.2 | -1.8 | 62.5 | 60.7 | -1.8 | 57.7 | 177.7 | 120.0 | | 2028 | 62.8 | 65.6 | 2.8 | 62.3 | 59.2 | -3.1 | 63.8 | 63.0 | -0.8 | 58.9 | 177.7 | 118.8 | | 2029 | 64.0 | 66.8 | 2.8 | 63.5 | 59.8 | -3.7 | 65.1 | 66.0 | 0.9 | 60.1 | 177.7 | 117.6 | | 2030 | 65.4 | 68.5 | 3.1 | 64.8 | 61.8 | -3.0 | 66.4 | 69.0 | 2.6 | 61.3 | 177.7 | 116.4 | | 2031 | 66.7 | 69.8 | 3.1 | 66.1 | 63.1 | -3.0 | 67.8 | 71.9 | 4.1 | 62.6 | 177.7 | 115.1 | | 2032 | 68.0 | 70.9 | 2.9 | 67.5 | 66.0 | -1.5 | 69.2 | 75.2 | 6.0 | 63.8 | 177.7 | 113.9 | Table 0-707 - Required and Achieved CAFE Levels (mpg) for Imported Car Fleet for Alternative PC2LT4 | Required an | d Achi | eved C | AFE L | evels (| mpg) f | or Impo | orted C | ar Flee | et for A | Alternat | ive PC | 2LT4 | |-------------|----------|----------|------------|----------|----------|------------|----------|----------|------------|----------|----------|------------| | | Toyot | а | | Volvo | | | VWA | | | Total | | | | Model Year | Required | Achieved | Difference | | 2022 | 45.3 | 45.2 | -0.1 | 43.2 | 60.6 | 17.4 | 45.3 | 38.2 | -7.1 | 44.7 | 42.7 | -2.0 | | 2023 | 46.0 | 48.2 | 2.2 | 43.9 | 61.2 | 17.3 | 46.0 | 39.4 | -6.6 | 45.4 | 46.3 | 0.9 | | 2024 | 50.0 | 48.8 | -1.2 | 47.7 | 62.2 | 14.5 | 50.0 | 44.9 | -5.1 | 49.3 | 49.6 | 0.3 | | 2025 | 54.3 | 49.8 | -4.5 | 51.8 | 65.4 | 13.6 | 54.4 | 48.3 | -6.1 | 53.6 | 52.2 | -1.4 | | 2026 | 60.4 | 57.6 | -2.8 | 57.6 | 66.0 | 8.4 | 60.4 | 52.3 | -8.1 | 59.5 | 57.9 | -1.6 | | 2027 | 61.6 | 59.7 | -1.9 | 58.7 | 66.0 | 7.3 | 61.6 | 54.2 | -7.4 | 60.7 | 59.3 | -1.4 | | 2028 | 62.9 | 61.8 | -1.1 | 59.9 | 66.0 | 6.1 | 62.9 | 61.4 | -1.5 | 62.0 | 61.6 | -0.4 | | 2029 | 64.2 | 63.8 | -0.4 | 61.2 | 67.2 | 6.0 | 64.2 | 63.2 | -1.0 | 63.3 | 63.8 | 0.5 | | 2030 | 65.5 | 66.2 | 0.7 | 62.4 | 69.6 | 7.2 | 65.5 | 65.4 | -0.1 | 64.6 | 65.9 | 1.4 | | 2031 | 66.8 | 68.5 | 1.7 | 63.7 | 71.8 | 8.1 | 66.8 | 67.6 | 0.8 | 65.9 | 68.4 | 2.5 | | 2032 | 68.2 | 70.3 | 2.1 | 65.0 | 76.1 | 11.1 | 68.2 | 69.3 | 1.1 | 67.2 | 70.0 | 2.8 | ## **Regulatory Cost, Comparison** Table 0-708 - Regulatory Costs (\$b) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs (\$b) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | | | | | | | | | | | | |--|----------------------------------|--------------------|------------|--|--|--|--|--|--|--|--| | | Total | | | | | | | | | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | | | | | | | | | 2022 | 2.0 | 2.0 | 0.0 | | | | | | | | | | 2023 | 11.3 | 11.3 | 0.0 | | | | | | | | | | 2024 | 17.9 | 17.9 | 0.0 | | | | | | | | | | 2025 | 22.3 | 22.3 | 0.0 | | | | | | | | | | 2026 | 29.3 | 29.3 | 0.0 | | | | | | | | | | 2027 | 31.3 | 37.0 | 5.7 | | | | | | | | | | 2028 | 31.3 | 40.3 | 9.0 | | | | | | | | | | 2029 | 31.1 | 42.1 | 11.0 | | | | | | | | | | 2030 | 30.7 | 42.4 | 11.7 | | | | | | | | | | 2031 | 31.9 | 43.9 | 11.9 | | | | | | | | | | 2032 | 31.0 | 44.6 | 13.6 | | | | | | | | | # Table 0-709 - Regulatory Costs (\$b) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs (\$b) for Passenger Car Fle | et Between No Actio
PC2LT4 | n Alternative (Baseline) | and Alternative | |--|----------------------------------|--------------------------|-----------------| | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.9 | 0.9 | 0.0 | | 2023 | 2.4 | 2.4 | 0.0 | | 2024 | 4.5 | 4.5 | 0.0 | | 2025 | 5.3 | 5.3 | 0.0 | | 2026 | 7.0 | 7.0 | 0.0 | | 2027 | 7.3 | 9.2 | 1.9 | | 2028 | 7.1 | 9.8 | 2.7 | | 2029 | 6.8 | 10.2 | 3.3 | | 2030 | 6.7 | 9.9 | 3.2 | | 2031 | 6.6 | 9.7 | 3.1 | | 2032 | 6.3 | 9.4 | 3.1 | Table 0-710 - Regulatory Costs (\$b) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs (\$b) for Light True | ck Fleet Between No Action | on Alternative (Baseline | e) and Alternative PC2LT4 | |---------------------------------------|----------------------------------|--------------------------|---------------------------| | | Total | | | | Model Year | No Action Alternative (Baseline) |
Alternative PC2LT4 | Difference | | 2022 | 1.1 | 1.1 | 0.0 | | 2023 | 8.9 | 8.9 | 0.0 | | 2024 | 13.4 | 13.4 | 0.0 | | 2025 | 17.0 | 17.0 | 0.0 | | 2026 | 22.3 | 22.3 | 0.0 | | 2027 | 24.0 | 27.8 | 3.8 | | 2028 | 24.2 | 30.5 | 6.3 | | 2029 | 24.3 | 31.9 | 7.7 | | 2030 | 24.0 | 32.5 | 8.4 | | 2031 | 25.3 | 34.2 | 8.9 | | 2032 | 24.7 | 35.2 | 10.6 | Table 0-711 - Regulatory Costs (\$b) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs | s (\$b) fo | or Total | Fleet B | etween | No Act | ion Alte | ernative | (Basel | ine) and | d Altern | ative P | C2LT4 | |------------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | BMW | | | Ford | | | GM | | | Honda | ١ | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.2 | 0.2 | 0.0 | 0.1 | 0.1 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.2 | 0.2 | 0.0 | 3.1 | 3.1 | 0.0 | 0.7 | 0.7 | 0.0 | 0.7 | 0.7 | 0.0 | | 2024 | 0.4 | 0.4 | 0.0 | 4.4 | 4.4 | 0.0 | 3.3 | 3.3 | 0.0 | 0.8 | 0.8 | 0.0 | | 2025 | 0.6 | 0.6 | 0.0 | 4.5 | 4.5 | 0.0 | 4.2 | 4.2 | 0.0 | 1.1 | 1.1 | 0.0 | | 2026 | 0.6 | 0.6 | 0.0 | 5.0 | 5.0 | 0.0 | 4.6 | 4.6 | 0.0 | 1.9 | 1.9 | 0.0 | | 2027 | 0.6 | 0.7 | 0.1 | 5.2 | 6.3 | 1.1 | 4.6 | 6.4 | 1.8 | 2.2 | 2.4 | 0.3 | | 2028 | 0.7 | 0.8 | 0.1 | 5.1 | 6.7 | 1.6 | 4.4 | 6.7 | 2.3 | 2.3 | 2.5 | 0.3 | | 2029 | 0.7 | 0.8 | 0.1 | 4.8 | 6.9 | 2.0 | 4.1 | 6.8 | 2.7 | 2.3 | 2.6 | 0.3 | | 2030 | 0.7 | 0.8 | 0.1 | 4.5 | 6.4 | 1.9 | 3.8 | 7.0 | 3.2 | 2.3 | 2.6 | 0.3 | | 2031 | 0.8 | 0.9 | 0.1 | 4.4 | 6.5 | 2.1 | 5.0 | 8.5 | 3.5 | 2.3 | 2.6 | 0.3 | | 2032 | 0.7 | 0.8 | 0.1 | 4.3 | 6.7 | 2.4 | 4.7 | 8.7 | 4.0 | 2.1 | 2.4 | 0.3 | Table 0-712 - Regulatory Costs (\$b) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs | s (\$b) fo | or Total | Fleet B | etween | No Act | ion Alte | ernative | (Basel | ine) and | d Altern | ative P | C2LT4 | |------------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Hyund | ai KiH | | Hyund | ai KiK | | JLR | | | Karma | l | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.6 | 0.6 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 0.5 | 0.5 | 0.0 | 0.4 | 0.4 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 0.9 | 0.9 | 0.0 | 0.3 | 0.3 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 1.5 | 1.5 | 0.0 | 0.8 | 0.8 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 1.6 | 2.7 | 1.1 | 0.7 | 1.1 | 0.4 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 1.6 | 3.7 | 2.1 | 0.7 | 1.2 | 0.5 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 1.6 | 3.6 | 2.0 | 0.7 | 2.0 | 1.4 | 0.2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | | 2030 | 1.6 | 3.4 | 1.8 | 0.7 | 2.0 | 1.3 | 0.2 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 | | 2031 | 1.6 | 3.3 | 1.7 | 0.7 | 2.1 | 1.4 | 0.2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | | 2032 | 1.6 | 3.2 | 1.7 | 0.7 | 2.0 | 1.3 | 0.2 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 | Table 0-713 - Regulatory Costs (\$b) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs | Regulatory Costs (\$b) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 Lucid Mazda Mercedes-Benz Mitsubishi | | | | | | | | | | | | |------------------|--|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Lucid | | | Mazda | ì | | Merce | des-Ber | ız | Mitsub | ishi | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.2 | 0.2 | 0.0 | 0.2 | 0.2 | 0.0 | | 2025 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.4 | 0.4 | 0.0 | 0.2 | 0.2 | 0.0 | | 2026 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.6 | 0.6 | 0.0 | 0.2 | 0.2 | 0.0 | | 2027 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.6 | 0.7 | 0.1 | 0.2 | 0.2 | 0.0 | | 2028 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.6 | 0.7 | 0.1 | 0.2 | 0.3 | 0.1 | | 2029 | 0.0 | 0.0 | 0.0 | 0.4 | 0.5 | 0.0 | 0.6 | 0.7 | 0.1 | 0.2 | 0.3 | 0.1 | | 2030 | 0.0 | 0.0 | 0.0 | 0.4 | 0.5 | 0.0 | 0.6 | 0.7 | 0.1 | 0.2 | 0.3 | 0.1 | | 2031 | 0.0 | 0.0 | 0.0 | 0.4 | 0.5 | 0.0 | 0.7 | 0.7 | 0.1 | 0.2 | 0.2 | 0.1 | | 2032 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.7 | 0.8 | 0.1 | 0.2 | 0.2 | 0.1 | Table 0-714 - Regulatory Costs (\$b) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs | s (\$b) fo | or Total | Fleet B | etween | No Act | ion Alte | ernative | (Basel | ine) and | d Altern | ative P | C2LT4 | |------------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Nissar | 1 | | Stellar | ntis | | Subar | u | | Tesla | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 1.4 | 1.4 | 0.0 | 2.4 | 2.4 | 0.0 | 0.4 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 1.5 | 1.5 | 0.0 | 3.5 | 3.5 | 0.0 | 0.4 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 1.9 | 1.9 | 0.0 | 5.0 | 5.0 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 2.1 | 2.1 | 0.0 | 5.1 | 5.1 | 0.0 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 2.6 | 2.7 | 0.1 | 5.4 | 5.9 | 0.5 | 1.7 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 2.5 | 3.0 | 0.5 | 5.2 | 6.2 | 1.0 | 1.8 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 2.5 | 3.0 | 0.5 | 5.3 | 6.7 | 1.4 | 1.9 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 2.5 | 3.0 | 0.5 | 5.3 | 6.8 | 1.5 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 2.4 | 2.9 | 0.5 | 5.3 | 6.9 | 1.7 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 2.3 | 2.8 | 0.5 | 5.1 | 7.6 | 2.4 | 1.9 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-715 - Regulatory Costs (\$b) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Cost | ts (\$b) t | for Tota | al Fleet | Betwee | en No A | Action A | Alternat | tive (Ba | seline) | and Alte | ernative | PC2LT4 | |-----------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Toyota | a | | Volvo | | | VWA | | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 2.0 | 2.0 | 0.0 | | 2023 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.8 | 0.0 | 11.3 | 11.3 | 0.0 | | 2024 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.9 | 0.0 | 17.9 | 17.9 | 0.0 | | 2025 | 1.2 | 1.2 | 0.0 | 0.1 | 0.1 | 0.0 | 1.1 | 1.1 | 0.0 | 22.3 | 22.3 | 0.0 | | 2026 | 3.5 | 3.5 | 0.0 | 0.1 | 0.1 | 0.0 | 1.3 | 1.3 | 0.0 | 29.3 | 29.3 | 0.0 | | 2027 | 3.7 | 3.7 | 0.0 | 0.1 | 0.2 | 0.0 | 1.4 | 1.6 | 0.2 | 31.3 | 37.0 | 5.7 | | 2028 | 4.1 | 4.1 | 0.0 | 0.1 | 0.2 | 0.1 | 1.4 | 1.7 | 0.3 | 31.3 | 40.3 | 9.0 | | 2029 | 4.2 | 4.2 | 0.0 | 0.1 | 0.2 | 0.1 | 1.5 | 1.7 | 0.3 | 31.1 | 42.1 | 11.0 | | 2030 | 4.4 | 4.4 | 0.0 | 0.1 | 0.2 | 0.1 | 1.5 | 1.9 | 0.4 | 30.7 | 42.4 | 11.7 | | 2031 | 4.4 | 4.4 | 0.0 | 0.2 | 0.2 | 0.1 | 1.5 | 1.9 | 0.4 | 31.9 | 43.9 | 11.9 | | 2032 | 4.4 | 4.5 | 0.2 | 0.2 | 0.2 | 0.1 | 1.4 | 1.8 | 0.4 | 31.0 | 44.6 | 13.6 | Table 0-716 - Regulatory Costs (\$b) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Co | sts (\$b) | for Pass | senger (| Car Fleet | Betwee | | ction Alt | ernative | (Baseli | ne) and | Alternat | tive | |---------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------
------------|----------------------------------|--------------------|------------| | | BMW | | | Ford | | | GM | | | Honda | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.3 | 0.3 | 0.0 | | 2024 | 0.3 | 0.3 | 0.0 | 0.2 | 0.2 | 0.0 | 0.7 | 0.7 | 0.0 | 0.3 | 0.3 | 0.0 | | 2025 | 0.4 | 0.4 | 0.0 | 0.3 | 0.3 | 0.0 | 0.7 | 0.7 | 0.0 | 0.5 | 0.5 | 0.0 | | 2026 | 0.3 | 0.3 | 0.0 | 0.3 | 0.3 | 0.0 | 0.8 | 0.8 | 0.0 | 0.8 | 0.8 | 0.0 | | 2027 | 0.3 | 0.4 | 0.0 | 0.2 | 0.4 | 0.1 | 0.7 | 1.2 | 0.5 | 0.9 | 0.9 | 0.1 | | 2028 | 0.3 | 0.4 | 0.0 | 0.2 | 0.3 | 0.1 | 0.7 | 1.3 | 0.6 | 0.8 | 0.9 | 0.1 | | 2029 | 0.3 | 0.4 | 0.0 | 0.2 | 0.3 | 0.1 | 0.6 | 1.4 | 0.8 | 0.8 | 0.9 | 0.0 | | 2030 | 0.3 | 0.4 | 0.0 | 0.2 | 0.3 | 0.1 | 0.6 | 1.5 | 0.9 | 0.8 | 0.8 | 0.0 | | 2031 | 0.3 | 0.4 | 0.0 | 0.2 | 0.3 | 0.1 | 0.6 | 1.4 | 0.8 | 0.8 | 0.8 | 0.0 | | 2032 | 0.3 | 0.3 | 0.0 | 0.1 | 0.3 | 0.2 | 0.5 | 1.4 | 0.9 | 0.7 | 0.7 | 0.0 | Table 0-717 - Regulatory Costs (\$b) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Co | sts (\$b) | for Pass | senger (| Car Fleet | Betwee | | ction Alt | ernative | (Baseli | ne) and | Alternat | tive | |---------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Hyunda | ai KiH | | Hyunda | ai KiK | | JLR | | | Karma | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 0.5 | 0.5 | 0.0 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 0.6 | 0.6 | 0.0 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 0.9 | 0.9 | 0.0 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 0.9 | 1.5 | 0.6 | 0.3 | 0.6 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 0.9 | 2.0 | 1.1 | 0.3 | 0.7 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 0.9 | 1.9 | 1.0 | 0.3 | 1.2 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 0.9 | 1.9 | 1.0 | 0.3 | 1.2 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 0.9 | 1.8 | 0.9 | 0.3 | 1.1 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 0.9 | 1.8 | 0.9 | 0.3 | 1.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-718 - Regulatory Costs (\$b) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Co | sts (\$b) | for Pass | senger (| Car Fleet | Betwee | | ction Alt | ernative | (Baseli | ne) and | Alternat | tive | |---------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Lucid | | | Mazda | | | Merced | des-Benz | <u>'</u> | Mitsubi | shi | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.1 | 0.1 | 0.0 | | 2025 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.1 | 0.1 | 0.0 | | 2026 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.0 | 0.1 | 0.1 | 0.0 | | 2027 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.0 | 0.1 | 0.1 | 0.0 | | 2028 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.1 | 0.1 | 0.1 | 0.0 | | 2029 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.0 | 0.1 | 0.1 | 0.0 | | 2030 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.0 | 0.1 | 0.1 | 0.1 | | 2031 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.0 | 0.1 | 0.1 | 0.0 | | 2032 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.0 | 0.1 | 0.1 | 0.0 | Table 0-719 - Regulatory Costs (\$b) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Co | sts (\$b) | for Pass | senger (| Car Fleet | Betwee | | ction Alt | ernative | (Baseli | ne) and | Alternat | tive | |---------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Nissan | | | Stellan | tis | | Subaru | | | Tesla | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.4 | 0.4 | 0.0 | 0.2 | 0.2 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 0.5 | 0.5 | 0.0 | 0.7 | 0.7 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 0.7 | 0.7 | 0.0 | 0.7 | 0.7 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 0.8 | 0.8 | 0.0 | 0.7 | 0.7 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 1.0 | 1.0 | 0.1 | 0.7 | 0.7 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 0.8 | 0.9 | 0.1 | 0.7 | 0.8 | 0.1 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 0.8 | 0.9 | 0.1 | 0.7 | 0.7 | 0.1 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2030 | 0.8 | 0.9 | 0.1 | 0.6 | 0.7 | 0.1 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2031 | 0.8 | 0.9 | 0.1 | 0.6 | 0.8 | 0.1 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2032 | 0.8 | 0.9 | 0.1 | 0.6 | 0.8 | 0.2 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | Table 0-720 - Regulatory Costs (\$b) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Co | sts (\$b) | for Pas | senger | Car Flee | t Betwe | | ction A | lternativ | e (Base | line) and | d Alternat | ive | |---------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Toyota | | | Volvo | | | VWA | | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.9 | 0.9 | 0.0 | | 2023 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 2.4 | 2.4 | 0.0 | | 2024 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.0 | 4.5 | 4.5 | 0.0 | | 2025 | 0.4 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.0 | 5.3 | 5.3 | 0.0 | | 2026 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 7.0 | 7.0 | 0.0 | | 2027 | 1.1 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.1 | 7.3 | 9.2 | 1.9 | | 2028 | 1.2 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.6 | 0.1 | 7.1 | 9.8 | 2.7 | | 2029 | 1.2 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.6 | 0.1 | 6.8 | 10.2 | 3.3 | | 2030 | 1.2 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.1 | 6.7 | 9.9 | 3.2 | | 2031 | 1.2 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.0 | 6.6 | 9.7 | 3.1 | | 2032 | 1.1 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.5 | 0.0 | 6.3 | 9.4 | 3.1 | Table 0-721 - Regulatory Costs (\$b) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs | (\$b) for | Light T | ruck Fle | et Betw | een No | Action A | Alternati | ve (Bas | eline) aı | nd Alter | native F | C2LT4 | |------------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | BMW | | | Ford | | | GM | | | Honda | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.1 | 0.1 | 0.0 | 3.0 | 3.0 | 0.0 | 0.6 | 0.6 | 0.0 | 0.4 | 0.4 | 0.0 | | 2024 | 0.1 | 0.1 | 0.0 | 4.1 | 4.1 | 0.0 | 2.7 | 2.7 | 0.0 | 0.5 | 0.5 | 0.0 | | 2025 | 0.2 | 0.2 | 0.0 | 4.2 | 4.2 | 0.0 | 3.5 | 3.5 | 0.0 | 0.6 | 0.6 | 0.0 | | 2026 | 0.3 | 0.3 | 0.0 | 4.8 | 4.8 | 0.0 | 3.8 | 3.8 | 0.0 | 1.1 | 1.1 | 0.0 | | 2027 | 0.3 | 0.3 | 0.0 | 5.0 | 5.9 | 0.9 | 3.9 | 5.2 | 1.3 | 1.3 | 1.5 | 0.2 | | 2028 | 0.3 | 0.4 | 0.0 | 4.9 | 6.4 | 1.5 | 3.7 | 5.4 | 1.7 | 1.4 | 1.6 | 0.2 | | 2029 | 0.4 |
0.4 | 0.1 | 4.6 | 6.6 | 1.9 | 3.4 | 5.4 | 1.9 | 1.5 | 1.7 | 0.2 | | 2030 | 0.4 | 0.5 | 0.1 | 4.3 | 6.1 | 1.8 | 3.2 | 5.6 | 2.4 | 1.5 | 1.8 | 0.3 | | 2031 | 0.4 | 0.5 | 0.1 | 4.3 | 6.2 | 1.9 | 4.4 | 7.1 | 2.7 | 1.5 | 1.8 | 0.3 | | 2032 | 0.4 | 0.5 | 0.1 | 4.2 | 6.3 | 2.2 | 4.2 | 7.3 | 3.1 | 1.5 | 1.8 | 0.3 | Table 0-722 - Regulatory Costs (\$b) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs | (\$b) for | Light T | ruck Fle | et Betw | een No | Action A | Alternati | ive (Bas | eline) a | nd Alter | native F | C2LT4 | |------------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Hyund | ai KiH | | Hyunda | ai KiK | | JLR | | | Karma | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2025 | 0.3 | 0.3 | 0.0 | 0.1 | 0.1 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2026 | 0.6 | 0.6 | 0.0 | 0.5 | 0.5 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2027 | 0.6 | 1.2 | 0.5 | 0.4 | 0.5 | 0.1 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2028 | 0.6 | 1.6 | 1.0 | 0.4 | 0.6 | 0.1 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | 2029 | 0.7 | 1.6 | 0.9 | 0.4 | 0.8 | 0.4 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | | 2030 | 0.7 | 1.6 | 0.9 | 0.4 | 0.8 | 0.4 | 0.1 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 | | 2031 | 0.7 | 1.5 | 0.8 | 0.4 | 1.0 | 0.6 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | | 2032 | 0.7 | 1.5 | 0.8 | 0.4 | 1.0 | 0.6 | 0.1 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 | Table 0-723 - Regulatory Costs (\$b) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs (\$b) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | | | | | | | | | | | | | |--|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Lucid | | | Mazda | | | Merce | des-Benz | Z | Mitsub | ishi | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2023 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | 2024 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | | 2025 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | | 2026 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.0 | 0.3 | 0.3 | 0.0 | 0.1 | 0.1 | 0.0 | | 2027 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.4 | 0.4 | 0.0 | 0.1 | 0.1 | 0.0 | | 2028 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.3 | 0.4 | 0.1 | 0.1 | 0.1 | 0.0 | | 2029 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.4 | 0.4 | 0.1 | 0.1 | 0.1 | 0.0 | | 2030 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.4 | 0.5 | 0.1 | 0.1 | 0.2 | 0.1 | | 2031 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.4 | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | | 2032 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.4 | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | Table 0-724 - Regulatory Costs (\$b) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Costs (\$b) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | | | | | | | | | | | | | | |--|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|--| | | Nissan | | | Stellan | tis | | Subaru | I | | Tesla | | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | | 2022 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2023 | 1.0 | 1.0 | 0.0 | 2.2 | 2.2 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2024 | 1.0 | 1.0 | 0.0 | 2.8 | 2.8 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2025 | 1.2 | 1.2 | 0.0 | 4.3 | 4.3 | 0.0 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2026 | 1.3 | 1.3 | 0.0 | 4.3 | 4.3 | 0.0 | 1.2 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2027 | 1.6 | 1.7 | 0.1 | 4.6 | 5.1 | 0.5 | 1.5 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2028 | 1.7 | 2.1 | 0.4 | 4.5 | 5.4 | 0.9 | 1.6 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2029 | 1.7 | 2.1 | 0.4 | 4.6 | 5.9 | 1.3 | 1.7 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2030 | 1.7 | 2.2 | 0.5 | 4.7 | 6.1 | 1.4 | 1.8 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2031 | 1.6 | 2.1 | 0.4 | 4.6 | 6.1 | 1.5 | 1.8 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2032 | 1.6 | 2.0 | 0.4 | 4.5 | 6.8 | 2.3 | 1.8 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | | Table 0-725 - Regulatory Costs (\$b) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Regulatory Cost | s (\$b) fo | r Light | Truck F | leet Be | tween N | lo Actio | n Alter | native (l | Baselin | e) and Al | ternative | PC2LT4 | |-----------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Toyota | 9 | | Volvo | | | VWA | | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 1.1 | 1.1 | 0.0 | | 2023 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.7 | 0.0 | 8.9 | 8.9 | 0.0 | | 2024 | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.7 | 0.0 | 13.4 | 13.4 | 0.0 | | 2025 | 8.0 | 0.8 | 0.0 | 0.1 | 0.1 | 0.0 | 0.8 | 0.8 | 0.0 | 17.0 | 17.0 | 0.0 | | 2026 | 2.4 | 2.4 | 0.0 | 0.1 | 0.1 | 0.0 | 0.9 | 0.9 | 0.0 | 22.3 | 22.3 | 0.0 | | 2027 | 2.6 | 2.6 | 0.0 | 0.1 | 0.1 | 0.0 | 0.9 | 1.0 | 0.1 | 24.0 | 27.8 | 3.8 | | 2028 | 3.0 | 3.0 | 0.0 | 0.1 | 0.2 | 0.1 | 0.9 | 1.1 | 0.2 | 24.2 | 30.5 | 6.3 | | 2029 | 3.1 | 3.1 | 0.0 | 0.1 | 0.2 | 0.1 | 1.0 | 1.1 | 0.2 | 24.3 | 31.9 | 7.7 | | 2030 | 3.2 | 3.2 | 0.0 | 0.1 | 0.2 | 0.1 | 1.0 | 1.4 | 0.4 | 24.0 | 32.5 | 8.4 | | 2031 | 3.3 | 3.3 | 0.0 | 0.1 | 0.2 | 0.1 | 1.0 | 1.4 | 0.4 | 25.3 | 34.2 | 8.9 | | 2032 | 3.3 | 3.4 | 0.2 | 0.1 | 0.2 | 0.1 | 1.0 | 1.4 | 0.4 | 24.7 | 35.2 | 10.6 | ## **Vehicle Price Increase** Table 0-726 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of Average Vehicle Price (Ba | e Increase (dollars) for Tot
seline) and Alternative PC | | on Alternative | |---|--|--------------------|----------------| | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 138 | 138 | 0 | | 2023 | 744 | 744 | 0 | | 2024 | 1,195 | 1,195 | 0 | | 2025 | 1,500 | 1,500 | 0 | | 2026 | 1,920 | 1,920 | 0 | | 2027 | 1,998 | 2,367 | 369 | | 2028 | 1,977 | 2,555 | 578 | | 2029 | 1,993 | 2,708 | 716 | | 2030 | 2,012 | 2,790 | 777 | | 2031 | 2,132 | 2,942 | 810 | | 2032 | 2,077 | 3,008 | 932 | ## Table 0-727 - Comparison of Average Vehicle Price Increase (dollars) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of Average Vehicle Price Incr (Ba | ease (dollars) for Passen
seline) and Alternative PC | | Action Alternative | |--|---|--------------------|--------------------| | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 159 | 159 | 0 | | 2023 | 436 | 436 | 0 | | 2024 | 868 | 868 | 0 | | 2025 | 1,078 | 1,078 | 0 | | 2026 | 1,417 | 1,417 | 0 | | 2027 | 1,462 | 1,847 | 384 | | 2028 | 1,412 | 1,966 | 554 | | 2029 | 1,389 | 2,087 | 697 | | 2030 | 1,386 | 2,069 | 683 | | 2031 | 1,383 | 2,033 | 650 | | 2032 | 1,312 | 1,966 | 654 | Table 0-728 - Comparison of Average Vehicle Price Increase (dollars) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of Average Vehicle Price | Increase (dollars) for Lig
Baseline) and Alternative | | No Action Alternative | |-------------------------------------|---|--------------------|-----------------------| | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative
PC2LT4 | Difference | | 2022 | 125 | 125 | 0 | | 2023 | 918 | 918 | 0 | | 2024 | 1,367 | 1,367 | 0 | | 2025 | 1,708 | 1,708 | 0 | | 2026 | 2,159 | 2,159 | 0 | | 2027 | 2,248 | 2,609 | 360 | | 2028 | 2,239 | 2,826 | 587 | | 2029 | 2,270 | 2,992 | 722 | | 2030 | 2,302 | 3,122 | 819 | | 2031 | 2,484 | 3,369 | 885 | | 2032 | 2,438 | 3,502 | 1,064 | Table 0-729 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compar | ison of A | verage \ | /ehicle | | crease (d | | | | veen No | Action A | Iternativ | е | |------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | BMW | | | Ford | | | GM | | | Honda | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 446 | 446 | 0 | 76 | 76 | 0 | 283 | 283 | 0 | 0 | 0 | 0 | | 2023 | 491 | 491 | 0 | 1,737 | 1,737 | 0 | 355 | 355 | 0 | 464 | 464 | 0 | | 2024 | 1,127 | 1,127 | 0 | 2,470 | 2,470 | 0 | 1,728 | 1,728 | 0 | 536 | 536 | 0 | | 2025 | 1,613 | 1,613 | 0 | 2,526 | 2,526 | 0 | 2,171 | 2,171 | 0 | 736 | 736 | 0 | | 2026 | 1,703 | 1,703 | 0 | 2,741 | 2,741 | 0 | 2,313 | 2,313 | 0 | 1,307 | 1,307 | 0 | | 2027 | 1,577 | 1,800 | 224 | 2,759 | 3,325 | 566 | 2,250 | 3,128 | 878 | 1,437 | 1,610 | 173 | | 2028 | 1,781 | 1,997 | 216 | 2,652 | 3,519 | 867 | 2,128 | 3,252 | 1,124 | 1,498 | 1,673 | 175 | | 2029 | 1,948 | 2,188 | 240 | 2,541 | 3,624 | 1,083 | 1,991 | 3,333 | 1,342 | 1,522 | 1,716 | 194 | | 2030 | 2,030 | 2,299 | 269 | 2,407 | 3,470 | 1,064 | 1,884 | 3,518 | 1,634 | 1,552 | 1,777 | 225 | | 2031 | 2,124 | 2,429 | 305 | 2,434 | 3,583 | 1,149 | 2,545 | 4,334 | 1,789 | 1,564 | 1,777 | 212 | | 2032 | 2,066 | 2,357 | 291 | 2,384 | 3,720 | 1,336 | 2,422 | 4,469 | 2,048 | 1,467 | 1,701 | 234 | Table 0-730 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 Hyundai KiH Hyundai KiK JLR Karma | | | | | | | | | | | | | | |--|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|--| | | Hyunda | i KiH | | Hyunda | i KiK | | JLR | | | Karma | | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 499 | 499 | 0 | 0 | 0 | 0 | | | 2023 | 597 | 597 | 0 | 122 | 122 | 0 | 1,599 | 1,599 | 0 | 0 | 0 | 0 | | | 2024 | 592 | 592 | 0 | 579 | 579 | 0 | 2,118 | 2,118 | 0 | 0 | 0 | 0 | | | 2025 | 1,049 | 1,049 | 0 | 564 | 564 | 0 | 2,115 | 2,115 | 0 | 0 | 0 | 0 | | | 2026 | 1,632 | 1,632 | 0 | 1,219 | 1,219 | 0 | 1,718 | 1,718 | 0 | -2,171 | -2,171 | 0 | | | 2027 | 1,702 | 2,944 | 1,242 | 1,159 | 1,783 | 624 | 1,901 | 2,163 | 263 | -2,499 | -2,499 | 0 | | | 2028 | 1,696 | 3,956 | 2,260 | 1,092 | 1,935 | 843 | 1,793 | 2,351 | 558 | -2,671 | -2,671 | 0 | | | 2029 | 1,734 | 3,904 | 2,169 | 1,051 | 3,214 | 2,163 | 1,731 | 2,565 | 834 | -2,960 | -2,960 | 0 | | | 2030 | 1,778 | 3,859 | 2,081 | 1,123 | 3,280 | 2,157 | 1,813 | 3,054 | 1,241 | -3,214 | -3,214 | 0 | | | 2031 | 1,830 | 3,800 | 1,970 | 1,168 | 3,461 | 2,293 | 1,808 | 2,973 | 1,164 | -3,343 | -3,343 | 0 | | | 2032 | 1,786 | 3,703 | 1,917 | 1,151 | 3,387 | 2,235 | 1,819 | 3,189 | 1,370 | -3,543 | -3,543 | 0 | | Table 0-731 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | | | | | | | | | | | | | | |--|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|--| | | Lucid | | | Mazda | | | Mercede | s-Benz | | Mitsubis | hi | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 638 | 638 | 0 | 226 | 226 | 0 | | | 2023 | 0 | 0 | 0 | 736 | 736 | 0 | 853 | 853 | 0 | 261 | 261 | 0 | | | 2024 | 0 | 0 | 0 | 807 | 807 | 0 | 893 | 893 | 0 | 1,333 | 1,333 | 0 | | | 2025 | 0 | 0 | 0 | 872 | 872 | 0 | 1,309 | 1,309 | 0 | 1,471 | 1,471 | 0 | | | 2026 | 0 | 0 | 0 | 1,797 | 1,797 | 0 | 2,271 | 2,271 | 0 | 2,039 | 2,039 | 0 | | | 2027 | 0 | 0 | 0 | 1,974 | 2,036 | 61 | 2,271 | 2,503 | 232 | 1,908 | 2,080 | 172 | | | 2028 | 0 | 0 | 0 | 2,109 | 2,157 | 48 | 1,960 | 2,427 | 466 | 1,806 | 2,246 | 440 | | | 2029 | 0 | 0 | 0 | 2,198 | 2,260 | 62 | 2,162 | 2,570 | 408 | 1,695 | 2,396 | 701 | | | 2030 | 0 | 0 | 0 | 2,283 | 2,354 | 70 | 2,338 | 2,636 | 298 | 1,600 | 2,609 | 1,009 | | | 2031 | 0 | 0 | 0 | 2,340 | 2,406 | 66 | 2,460 | 2,765 | 305 | 1,462 | 2,104 | 642 | | | 2032 | -62 | -62 | 0 | 2,303 | 2,366 | 62 | 2,470 | 2,836 | 365 | 1,421 | 2,057 | 636 | | Table 0-732 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparis | son of Av | erage Vel | | ice Increa
Baseline) | | | | Between N | lo Acti | on Alte | ernative | • | |------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Nissan | | | Stellantis | S | | Subaru | | | Tesla | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 34 | 34 | 0 | 465 | 465 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2023 | 1,361 | 1,361 | 0 | 1,394 | 1,394 | 0 | 439 | 439 | 0 | 5 | 5 | 0 | | 2024 | 1,515 | 1,515 | 0 | 2,031 | 2,031 | 0 | 450 | 450 | 0 | 9 | 9 | 0 | | 2025 | 1,932 | 1,932 | 0 | 2,898 | 2,898 | 0 | 563 | 563 | 0 | 14 | 14 | 0 | | 2026 | 2,089 | 2,089 | 0 | 2,867 | 2,867 | 0 | 1,644 | 1,644 | 0 | 15 | 15 | 0 | | 2027 | 2,508 | 2,642 | 134 | 2,920 | 3,209 | 289 | 1,934 | 1,936 | 3 | 15 | 15 | 0 | | 2028 | 2,407 | 2,901 | 495 | 2,785 | 3,333 | 548 | 2,104 | 2,105 | 1 | 14 | 15 | 0 | | 2029 | 2,437 | 2,958 | 521 | 2,892 | 3,643 | 751 | 2,210 | 2,211 | 1 | 14 | 14 | 0 | | 2030 | 2,457 | 3,009 | 552 | 2,973 | 3,837 | 864 | 2,335 | 2,336 | 1 | 14 | 14 | 0 | | 2031 | 2,438 | 2,960 | 521 | 3,000 | 3,971 | 970 | 2,413 | 2,413 | 0 | 14 | 14 | 0 | | 2032 | 2,363 | 2,902 | 539 | 2,956 | 4,388 | 1,432 | 2,384 | 2,384 | 0 | 13 | 13 | 0 | Table 0-733 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compari | son of A | verage Ve | ehicle I | | | | or Total F | | een No | Action A | Alternativ | 'e | |------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Toyota | | | Volvo | | | VWA | | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 295 | 295 | 0 | 138 | 138 | 0 | | 2023 | 211 | 211 | 0 | 131 | 131 | 0 | 1,242 | 1,242 | 0 | 744 | 744 | 0 | | 2024 | 416 | 416 | 0 | 167 | 167 | 0 | 1,483 | 1,483 | 0 | 1,195 | 1,195 | 0 | | 2025 | 482 | 482 | 0 | 1,051 | 1,051 | 0 | 1,790 | 1,790 | 0 | 1,500 | 1,500 | 0 | | 2026 | 1,390 | 1,390 | 0 | 1,020 | 1,020 | 0 | 1,972 | 1,972 | 0 | 1,920 | 1,920 | 0 | | 2027 | 1,462 | 1,466 | 4 | 926 | 1,160 | 234 | 2,157 | 2,404 | 246 | 1,998 | 2,367 | 369 | | 2028 | 1,602 | 1,606 | 4 | 852 | 1,330 | 478 | 2,066 | 2,482 | 416 | 1,977 | 2,555 | 578 | | 2029 | 1,671 | 1,677 | 6 | 717 | 1,429 | 712 | 2,196 | 2,640 | 444 | 1,993 | 2,708 | 716 | | 2030 | 1,754 | 1,762 | 8 | 942 | 1,471 | 529 | 2,261 | 2,972 | 711 | 2,012 | 2,790 | 777 | | 2031 | 1,818 | 1,827 | 9 | 1,181 | 1,689 | 508 | 2,303 | 2,946 | 643 | 2,132 | 2,942 | 810 | | 2032 | 1,794 | 1,867 | 73 | 1,202
 1,768 | 566 | 2,249 | 2,913 | 665 | 2,077 | 3,008 | 932 | Table 0-734 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compar | ison of A | verage \ | /ehicle | | crease (d | | | | veen No | Action A | lternativ | е | |------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | BMW | | | Ford | | | GM | | | Honda | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 446 | 446 | 0 | 76 | 76 | 0 | 283 | 283 | 0 | 0 | 0 | 0 | | 2023 | 491 | 491 | 0 | 1,737 | 1,737 | 0 | 355 | 355 | 0 | 464 | 464 | 0 | | 2024 | 1,127 | 1,127 | 0 | 2,470 | 2,470 | 0 | 1,728 | 1,728 | 0 | 536 | 536 | 0 | | 2025 | 1,613 | 1,613 | 0 | 2,526 | 2,526 | 0 | 2,171 | 2,171 | 0 | 736 | 736 | 0 | | 2026 | 1,703 | 1,703 | 0 | 2,741 | 2,741 | 0 | 2,313 | 2,313 | 0 | 1,307 | 1,307 | 0 | | 2027 | 1,577 | 1,800 | 224 | 2,759 | 3,325 | 566 | 2,250 | 3,128 | 878 | 1,437 | 1,610 | 173 | | 2028 | 1,781 | 1,997 | 216 | 2,652 | 3,519 | 867 | 2,128 | 3,252 | 1,124 | 1,498 | 1,673 | 175 | | 2029 | 1,948 | 2,188 | 240 | 2,541 | 3,624 | 1,083 | 1,991 | 3,333 | 1,342 | 1,522 | 1,716 | 194 | | 2030 | 2,030 | 2,299 | 269 | 2,407 | 3,470 | 1,064 | 1,884 | 3,518 | 1,634 | 1,552 | 1,777 | 225 | | 2031 | 2,124 | 2,429 | 305 | 2,434 | 3,583 | 1,149 | 2,545 | 4,334 | 1,789 | 1,564 | 1,777 | 212 | | 2032 | 2,066 | 2,357 | 291 | 2,384 | 3,720 | 1,336 | 2,422 | 4,469 | 2,048 | 1,467 | 1,701 | 234 | Table 0-735 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compar | rison of A | Average | Vehicle I | | rease (do
ne) and A | | | | veen No | Action A | Iternative | ! | |------------|----------------------------------|--------------------|------------|----------------------------------|------------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Hyunda | i KiH | | Hyunda | i KiK | | JLR | | | Karma | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 499 | 499 | 0 | 0 | 0 | 0 | | 2023 | 597 | 597 | 0 | 122 | 122 | 0 | 1,599 | 1,599 | 0 | 0 | 0 | 0 | | 2024 | 592 | 592 | 0 | 579 | 579 | 0 | 2,118 | 2,118 | 0 | 0 | 0 | 0 | | 2025 | 1,049 | 1,049 | 0 | 564 | 564 | 0 | 2,115 | 2,115 | 0 | 0 | 0 | 0 | | 2026 | 1,632 | 1,632 | 0 | 1,219 | 1,219 | 0 | 1,718 | 1,718 | 0 | -2,171 | -2,171 | 0 | | 2027 | 1,702 | 2,944 | 1,242 | 1,159 | 1,783 | 624 | 1,901 | 2,163 | 263 | -2,499 | -2,499 | 0 | | 2028 | 1,696 | 3,956 | 2,260 | 1,092 | 1,935 | 843 | 1,793 | 2,351 | 558 | -2,671 | -2,671 | 0 | | 2029 | 1,734 | 3,904 | 2,169 | 1,051 | 3,214 | 2,163 | 1,731 | 2,565 | 834 | -2,960 | -2,960 | 0 | | 2030 | 1,778 | 3,859 | 2,081 | 1,123 | 3,280 | 2,157 | 1,813 | 3,054 | 1,241 | -3,214 | -3,214 | 0 | | 2031 | 1,830 | 3,800 | 1,970 | 1,168 | 3,461 | 2,293 | 1,808 | 2,973 | 1,164 | -3,343 | -3,343 | 0 | | 2032 | 1,786 | 3,703 | 1,917 | 1,151 | 3,387 | 2,235 | 1,819 | 3,189 | 1,370 | -3,543 | -3,543 | 0 | Table 0-736 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compari | son of | Averag | e Vehi | | Increase eline) and | | | | etween | No Actio | n Alterna | tive | |------------|----------------------------------|--------------------|------------|----------------------------------|---------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Lucid | | | Mazda | | | Mercede | s-Benz | | Mitsubis | hi | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 638 | 638 | 0 | 226 | 226 | 0 | | 2023 | 0 | 0 | 0 | 736 | 736 | 0 | 853 | 853 | 0 | 261 | 261 | 0 | | 2024 | 0 | 0 | 0 | 807 | 807 | 0 | 893 | 893 | 0 | 1,333 | 1,333 | 0 | | 2025 | 0 | 0 | 0 | 872 | 872 | 0 | 1,309 | 1,309 | 0 | 1,471 | 1,471 | 0 | | 2026 | 0 | 0 | 0 | 1,797 | 1,797 | 0 | 2,271 | 2,271 | 0 | 2,039 | 2,039 | 0 | | 2027 | 0 | 0 | 0 | 1,974 | 2,036 | 61 | 2,271 | 2,503 | 232 | 1,908 | 2,080 | 172 | | 2028 | 0 | 0 | 0 | 2,109 | 2,157 | 48 | 1,960 | 2,427 | 466 | 1,806 | 2,246 | 440 | | 2029 | 0 | 0 | 0 | 2,198 | 2,260 | 62 | 2,162 | 2,570 | 408 | 1,695 | 2,396 | 701 | | 2030 | 0 | 0 | 0 | 2,283 | 2,354 | 70 | 2,338 | 2,636 | 298 | 1,600 | 2,609 | 1,009 | | 2031 | 0 | 0 | 0 | 2,340 | 2,406 | 66 | 2,460 | 2,765 | 305 | 1,462 | 2,104 | 642 | | 2032 | -62 | -62 | 0 | 2,303 | 2,366 | 62 | 2,470 | 2,836 | 365 | 1,421 | 2,057 | 636 | Table 0-737 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparis | son of Av | erage Vel | | ice Increa
Baseline) | | | | Between N | lo Acti | on Alte | ernative | • | |------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Nissan | | | Stellantis | S | | Subaru | | | Tesla | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 34 | 34 | 0 | 465 | 465 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2023 | 1,361 | 1,361 | 0 | 1,394 | 1,394 | 0 | 439 | 439 | 0 | 5 | 5 | 0 | | 2024 | 1,515 | 1,515 | 0 | 2,031 | 2,031 | 0 | 450 | 450 | 0 | 9 | 9 | 0 | | 2025 | 1,932 | 1,932 | 0 | 2,898 | 2,898 | 0 | 563 | 563 | 0 | 14 | 14 | 0 | | 2026 | 2,089 | 2,089 | 0 | 2,867 | 2,867 | 0 | 1,644 | 1,644 | 0 | 15 | 15 | 0 | | 2027 | 2,508 | 2,642 | 134 | 2,920 | 3,209 | 289 | 1,934 | 1,936 | 3 | 15 | 15 | 0 | | 2028 | 2,407 | 2,901 | 495 | 2,785 | 3,333 | 548 | 2,104 | 2,105 | 1 | 14 | 15 | 0 | | 2029 | 2,437 | 2,958 | 521 | 2,892 | 3,643 | 751 | 2,210 | 2,211 | 1 | 14 | 14 | 0 | | 2030 | 2,457 | 3,009 | 552 | 2,973 | 3,837 | 864 | 2,335 | 2,336 | 1 | 14 | 14 | 0 | | 2031 | 2,438 | 2,960 | 521 | 3,000 | 3,971 | 970 | 2,413 | 2,413 | 0 | 14 | 14 | 0 | | 2032 | 2,363 | 2,902 | 539 | 2,956 | 4,388 | 1,432 | 2,384 | 2,384 | 0 | 13 | 13 | 0 | Table 0-738 - Comparison of Average Vehicle Price Increase (dollars) for Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compari | son of A | verage Ve | ehicle I | | | | or Total F | | een No | Action A | Alternativ | е | |------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Toyota | | | Volvo | | | VWA | | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 295 | 295 | 0 | 138 | 138 | 0 | | 2023 | 211 | 211 | 0 | 131 | 131 | 0 | 1,242 | 1,242 | 0 | 744 | 744 | 0 | | 2024 | 416 | 416 | 0 | 167 | 167 | 0 | 1,483 | 1,483 | 0 | 1,195 | 1,195 | 0 | | 2025 | 482 | 482 | 0 | 1,051 | 1,051 | 0 | 1,790 | 1,790 | 0 | 1,500 | 1,500 | 0 | | 2026 | 1,390 | 1,390 | 0 | 1,020 | 1,020 | 0 | 1,972 | 1,972 | 0 | 1,920 | 1,920 | 0 | | 2027 | 1,462 | 1,466 | 4 | 926 | 1,160 | 234 | 2,157 | 2,404 | 246 | 1,998 | 2,367 | 369 | | 2028 | 1,602 | 1,606 | 4 | 852 | 1,330 | 478 | 2,066 | 2,482 | 416 | 1,977 | 2,555 | 578 | | 2029 | 1,671 | 1,677 | 6 | 717 | 1,429 | 712 | 2,196 | 2,640 | 444 | 1,993 | 2,708 | 716 | | 2030 | 1,754 | 1,762 | 8 | 942 | 1,471 | 529 | 2,261 | 2,972 | 711 | 2,012 | 2,790 | 777 | | 2031 | 1,818 | 1,827 | 9 | 1,181 | 1,689 | 508 | 2,303 | 2,946 | 643 | 2,132 | 2,942 | 810 | | 2032 | 1,794 | 1,867 | 73 | 1,202 | 1,768 | 566 | 2,249 | 2,913 | 665 | 2,077 | 3,008 | 932 | Table 0-739 - Comparison of Average Vehicle Price Increase (dollars) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison | of Avera | ge Vehic | le Price | | e (dollars
ne) and <i>l</i> | | | | Between | No Acti | on Alterr | native | |------------|----------------------------------|--------------------|------------|----------------------------------|--------------------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | BMW | | | Ford | | | GM | | | Honda | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 |
Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 631 | 631 | 0 | 133 | 133 | 0 | 411 | 411 | 0 | 0 | 0 | 0 | | 2023 | 622 | 622 | 0 | 74 | 74 | 0 | 280 | 280 | 0 | 339 | 339 | 0 | | 2024 | 1,860 | 1,860 | 0 | 1,394 | 1,394 | 0 | 1,570 | 1,570 | 0 | 380 | 380 | 0 | | 2025 | 2,024 | 2,024 | 0 | 1,611 | 1,611 | 0 | 1,741 | 1,741 | 0 | 710 | 710 | 0 | | 2026 | 1,951 | 1,951 | 0 | 1,464 | 1,464 | 0 | 1,942 | 1,942 | 0 | 1,132 | 1,132 | 0 | | 2027 | 1,789 | 2,066 | 277 | 1,304 | 2,034 | 730 | 1,781 | 3,035 | 1,254 | 1,204 | 1,294 | 90 | | 2028 | 1,859 | 2,089 | 230 | 1,201 | 1,912 | 711 | 1,684 | 3,164 | 1,480 | 1,179 | 1,262 | 83 | | 2029 | 1,889 | 2,088 | 199 | 1,073 | 1,769 | 695 | 1,577 | 3,574 | 1,997 | 1,152 | 1,228 | 76 | | 2030 | 1,845 | 2,079 | 234 | 902 | 1,629 | 726 | 1,513 | 3,682 | 2,169 | 1,133 | 1,201 | 69 | | 2031 | 1,842 | 2,102 | 259 | 916 | 1,776 | 860 | 1,442 | 3,553 | 2,111 | 1,109 | 1,171 | 63 | | 2032 | 1,722 | 1,871 | 149 | 878 | 1,937 | 1,059 | 1,368 | 3,613 | 2,246 | 955 | 1,013 | 58 | Table 0-740 - Comparison of Average Vehicle Price Increase (dollars) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison | of Avera | ge Vehic | | | | | senger (
e PC2LT | | Betwee | en No Act | ion Alterr | native | |------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Hyunda | i KiH | | Hyund | dai KiK | | JLR | | | Karma | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 1,162 | 1,162 | 0 | 0 | 0 | 0 | | 2023 | 911 | 911 | 0 | 60 | 60 | 0 | 4,315 | 4,315 | 0 | 0 | 0 | 0 | | 2024 | 897 | 897 | 0 | 872 | 872 | 0 | 4,072 | 4,072 | 0 | 0 | 0 | 0 | | 2025 | 1,210 | 1,210 | 0 | 806 | 806 | 0 | 3,866 | 3,866 | 0 | 0 | 0 | 0 | | 2026 | 1,734 | 1,734 | 0 | 933 | 933 | 0 | 3,704 | 3,704 | 0 | -2,171 | -2,171 | 0 | | 2027 | 1,847 | 3,045 | 1,198 | 913 | 1,951 | 1,038 | 3,679 | 3,890 | 211 | -2,499 | -2,499 | 0 | | 2028 | 1,849 | 4,042 | 2,192 | 857 | 2,099 | 1,242 | 3,435 | 3,858 | 423 | -2,671 | -2,671 | 0 | | 2029 | 1,850 | 3,968 | 2,118 | 828 | 3,785 | 2,957 | 3,103 | 3,728 | 625 | -2,960 | -2,960 | 0 | | 2030 | 1,857 | 3,899 | 2,042 | 858 | 3,784 | 2,926 | 2,916 | 3,681 | 766 | -3,214 | -3,214 | 0 | | 2031 | 1,873 | 3,826 | 1,953 | 878 | 3,546 | 2,668 | 2,878 | 3,484 | 606 | -3,343 | -3,343 | 0 | | 2032 | 1,802 | 3,642 | 1,840 | 851 | 3,337 | 2,485 | 2,715 | 3,273 | 558 | -3,543 | -3,543 | 0 | Table 0-741 - Comparison of Average Vehicle Price Increase (dollars) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of | f Avera | age Vel | nicle Pr | | | | Passenge
ntive PC2I | | t Betwe | en No Ac | tion Alte | rnative | |---------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Lucid | | | Mazda | | | Mercede | s-Benz | | Mitsubis | hi | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 904 | 904 | 0 | 345 | 345 | 0 | | 2023 | 0 | 0 | 0 | 858 | 858 | 0 | 1,375 | 1,375 | 0 | 312 | 312 | 0 | | 2024 | 0 | 0 | 0 | 813 | 813 | 0 | 1,433 | 1,433 | 0 | 1,249 | 1,249 | 0 | | 2025 | 0 | 0 | 0 | 889 | 889 | 0 | 1,926 | 1,926 | 0 | 1,418 | 1,418 | 0 | | 2026 | 0 | 0 | 0 | 1,450 | 1,450 | 0 | 2,452 | 2,452 | 0 | 2,222 | 2,222 | 0 | | 2027 | 0 | 0 | 0 | 1,651 | 1,750 | 100 | 2,304 | 2,554 | 250 | 2,064 | 2,255 | 191 | | 2028 | 0 | 0 | 0 | 1,695 | 1,776 | 81 | 1,876 | 2,349 | 473 | 1,942 | 2,402 | 461 | | 2029 | 0 | 0 | 0 | 1,688 | 1,766 | 77 | 1,976 | 2,381 | 405 | 1,806 | 2,501 | 695 | | 2030 | 0 | 0 | 0 | 1,700 | 1,772 | 73 | 2,076 | 2,179 | 102 | 1,691 | 2,636 | 945 | | 2031 | 0 | 0 | 0 | 1,705 | 1,774 | 69 | 2,148 | 2,278 | 129 | 1,537 | 1,739 | 202 | | 2032 | -62 | -62 | 0 | 1,629 | 1,694 | 65 | 2,129 | 2,326 | 197 | 1,475 | 1,695 | 220 | Table 0-742 - Comparison of Average Vehicle Price Increase (dollars) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison o | f Average | Vehicle F | | crease (de
Baseline) a | | | | leet Betw | een No | Actio | n Alteri | native | |--------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Nissan | | | Stellantis | 6 | | Subaru | | | Tesla | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 31 | 31 | 0 | 1,194 | 1,194 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2023 | 743 | 743 | 0 | 881 | 881 | 0 | 1,014 | 1,014 | 0 | 0 | 0 | 0 | | 2024 | 932 | 932 | 0 | 3,228 | 3,228 | 0 | 976 | 976 | 0 | 0 | 0 | 0 | | 2025 | 1,267 | 1,267 | 0 | 3,614 | 3,614 | 0 | 1,409 | 1,409 | 0 | 0 | 0 | 0 | | 2026 | 1,473 | 1,473 | 0 | 3,747 | 3,747 | 0 | 1,820 | 1,820 | 0 | 0 | 0 | 0 | | 2027 | 1,795 | 1,926 | 131 | 3,558 | 3,725 | 167 | 1,798 | 1,802 | 4 | 0 | 0 | 0 | | 2028 | 1,493 | 1,675 | 181 | 3,441 | 3,963 | 522 | 1,787 | 1,788 | 1 | 0 | 0 | 0 | | 2029 | 1,499 | 1,667 | 168 | 3,339 | 3,770 | 431 | 1,718 | 1,719 | 1 | 0 | 0 | 0 | | 2030 | 1,549 | 1,660 | 111 | 3,331 | 3,869 | 537 | 1,669 | 1,670 | 1 | 0 | 0 | 0 | | 2031 | 1,550 | 1,664 | 114 | 3,312 | 4,046 | 734 | 1,622 | 1,623 | 0 | 0 | 0 | 0 | | 2032 | 1,498 | 1,689 | 191 | 3,217 | 4,031 | 814 | 1,500 | 1,500 | 0 | 0 | 0 | 0 | Table 0-743 - Comparison of Average Vehicle Price Increase (dollars) for Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of | of Average | e Vehicle | | | | | assenger | | t Betwe | en No Ac | tion Alter | native | |---------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Toyota | | | Volvo | | | VWA | | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 424 | 424 | 0 | 159 | 159 | 0 | | 2023 | 206 | 206 | 0 | 45 | 45 | 0 | 529 | 529 | 0 | 436 | 436 | 0 | | 2024 | 340 | 340 | 0 | 45 | 45 | 0 | 1,100 | 1,100 | 0 | 868 | 868 | 0 | | 2025 | 455 | 455 | 0 | 399 | 399 | 0 | 1,303 | 1,303 | 0 | 1,078 | 1,078 | 0 | | 2026 | 1,135 | 1,135 | 0 | 407 | 407 | 0 | 1,811 | 1,811 | 0 | 1,417 | 1,417 | 0 | | 2027 | 1,213 | 1,213 | 0 | 387 | 518 | 130 | 2,097 | 2,362 | 265 | 1,462 | 1,847 | 384 | | 2028 | 1,300 | 1,301 | 0 | 363 | 708 | 346 | 2,078 | 2,583 | 505 | 1,412 | 1,966 | 554 | | 2029 | 1,310 | 1,310 | 1 | 202 | 689 | 487 | 2,067 | 2,588 | 521 | 1,389 | 2,087 | 697 | | 2030 | 1,331 | 1,332 | 0 | 339 | 473 | 134 | 2,061 | 2,345 | 284 | 1,386 | 2,069 | 683 | | 2031 | 1,341 | 1,341 | 0 | 481 | 641 | 160 | 2,094 | 2,232 | 137 | 1,383 | 2,033 | 650 | | 2032 | 1,285 | 1,285 | 0 | 484 | 699 | 215 | 2,004 | 2,136 | 132 | 1,312 | 1,966 | 654 | Table 0-744 - Comparison of Average Vehicle Price Increase (dollars) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | | BMW | | | Ford | | | GM | | | Honda | | | |------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 226 | 226 | 0 | 69 | 69 | 0 | 240 | 240 | 0 | 0 | 0 | 0 | | 2023 | 349 | 349 | 0 | 1,938 | 1,938 | 0 | 377 | 377 | 0 | 598 | 598 | 0 | | 2024 | 382 | 382 | 0 | 2,592 | 2,592 | 0 | 1,773 | 1,773 | 0 | 692 | 692 | 0 | | 2025 | 1,221 | 1,221 | 0 | 2,622 | 2,622 | 0 | 2,286 | 2,286 | 0 | 761 | 761 | 0 | | 2026 | 1,474 | 1,474 | 0 | 2,872 | 2,872 | 0 | 2,408 | 2,408 | 0 | 1,466 | 1,466 | 0 | | 2027 | 1,385 | 1,561 | 176 | 2,905 | 3,454 | 549 | 2,368 | 3,151 | 783 | 1,645 | 1,892 | 246 | | 2028 | 1,711 | 1,915 | 204 | 2,796 | 3,678 | 882 | 2,239 | 3,273 | 1,035 | 1,782 | 2,036 | 254 | | 2029 | 2,001 | 2,276 | 275 | 2,686 | 3,806 | 1,120 | 2,094 | 3,274 |
1,180 | 1,848 | 2,143 | 295 | | 2030 | 2,196 | 2,495 | 299 | 2,556 | 3,652 | 1,096 | 1,977 | 3,478 | 1,501 | 1,924 | 2,285 | 361 | | 2031 | 2,380 | 2,726 | 346 | 2,587 | 3,765 | 1,178 | 2,824 | 4,532 | 1,708 | 1,974 | 2,321 | 346 | | 2032 | 2,380 | 2,802 | 422 | 2,536 | 3,901 | 1,365 | 2,690 | 4,688 | 1,998 | 1,929 | 2,324 | 395 | Table 0-745 - Comparison of Average Vehicle Price Increase (dollars) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of Av | verage Vehic | cle Price Inc | rease (doll | ars) for Ligh | nt Truck Fle | et Between | No Action | Alternative | (Baseline) a | and Alte | rnative F | C2LT4 | |------------------|----------------------------------|--------------------|-------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|--------------|----------------------------------|--------------------|------------| | | Hyundai K | iH | | Hyundai K | iK | | JLR | | _ | Karma | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 481 | 481 | 0 | 0 | 0 | 0 | | 2023 | 142 | 142 | 0 | 200 | 200 | 0 | 1,530 | 1,530 | 0 | 0 | 0 | 0 | | 2024 | 181 | 181 | 0 | 233 | 233 | 0 | 2,072 | 2,072 | 0 | 0 | 0 | 0 | | 2025 | 845 | 845 | 0 | 294 | 294 | 0 | 2,076 | 2,076 | 0 | 0 | 0 | 0 | | 2026 | 1,506 | 1,506 | 0 | 1,527 | 1,527 | 0 | 1,675 | 1,675 | 0 | 0 | 0 | 0 | | 2027 | 1,527 | 2,823 | 1,295 | 1,419 | 1,607 | 188 | 1,863 | 2,127 | 264 | 0 | 0 | 0 | | 2028 | 1,513 | 3,854 | 2,341 | 1,338 | 1,765 | 427 | 1,759 | 2,319 | 561 | 0 | 0 | 0 | | 2029 | 1,597 | 3,828 | 2,231 | 1,283 | 2,627 | 1,344 | 1,703 | 2,541 | 838 | 0 | 0 | 0 | | 2030 | 1,683 | 3,810 | 2,127 | 1,399 | 2,756 | 1,357 | 1,790 | 3,041 | 1,251 | 0 | 0 | 0 | | 2031 | 1,779 | 3,769 | 1,990 | 1,475 | 3,371 | 1,895 | 1,785 | 2,962 | 1,176 | 0 | 0 | 0 | | 2032 | 1,767 | 3,776 | 2,009 | 1,471 | 3,440 | 1,969 | 1,800 | 3,187 | 1,388 | 0 | 0 | 0 | Table 0-746 - Comparison of Average Vehicle Price Increase (dollars) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of Av | erage Ve | hicle Pri | ce Incre | ase (dollars) | for Light Tr | uck Flee | et Between N | No Action Al | ternative | (Baseline) a | and Alternat | ive PC2LT4 | |------------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Lucid | | | Mazda | | | Mercedes-l | Benz | | Mitsubishi | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 371 | 371 | 0 | 74 | 74 | 0 | | 2023 | 0 | 0 | 0 | 715 | 715 | 0 | 374 | 374 | 0 | 201 | 201 | 0 | | 2024 | 0 | 0 | 0 | 806 | 806 | 0 | 430 | 430 | 0 | 1,425 | 1,425 | 0 | | 2025 | 0 | 0 | 0 | 870 | 870 | 0 | 814 | 814 | 0 | 1,525 | 1,525 | 0 | | 2026 | 0 | 0 | 0 | 1,847 | 1,847 | 0 | 2,131 | 2,131 | 0 | 1,858 | 1,858 | 0 | | 2027 | 0 | 0 | 0 | 2,019 | 2,075 | 56 | 2,245 | 2,463 | 218 | 1,755 | 1,910 | 155 | | 2028 | 0 | 0 | 0 | 2,166 | 2,209 | 43 | 2,024 | 2,485 | 461 | 1,675 | 2,096 | 421 | | 2029 | 0 | 0 | 0 | 2,268 | 2,328 | 60 | 2,302 | 2,712 | 409 | 1,587 | 2,296 | 709 | | 2030 | 0 | 0 | 0 | 2,364 | 2,434 | 70 | 2,536 | 2,980 | 445 | 1,513 | 2,584 | 1,071 | | 2031 | 0 | 0 | 0 | 2,429 | 2,494 | 65 | 2,699 | 3,138 | 439 | 1,390 | 2,461 | 1,072 | | 2032 | 0 | 0 | 0 | 2,398 | 2,461 | 62 | 2,733 | 3,229 | 495 | 1,368 | 2,414 | 1,046 | Table 0-747 - Comparison of Average Vehicle Price Increase (dollars) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of | Average Vehic | cle Price Inc | rease (dolla | rs) for Ligh | t Truck Flee | et Between I | No Action A | Iternative (E | Baseline |) and Alte | ernative I | PC2LT4 | |---------------|----------------------------------|--------------------|--------------|----------------------------------|--------------------|--------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Nissan | | | Stellantis | | | Subaru | | | Tesla | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 39 | 39 | 0 | 347 | 347 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2023 | 2,165 | 2,165 | 0 | 1,470 | 1,470 | 0 | 338 | 338 | 0 | 100 | 100 | 0 | | 2024 | 2,222 | 2,222 | 0 | 1,865 | 1,865 | 0 | 363 | 363 | 0 | 177 | 177 | 0 | | 2025 | 2,689 | 2,689 | 0 | 2,805 | 2,805 | 0 | 432 | 432 | 0 | 252 | 252 | 0 | | 2026 | 2,769 | 2,769 | 0 | 2,756 | 2,756 | 0 | 1,618 | 1,618 | 0 | 248 | 248 | 0 | | 2027 | 3,281 | 3,413 | 133 | 2,842 | 3,146 | 304 | 1,954 | 1,956 | 2 | 244 | 244 | 0 | | 2028 | 3,385 | 4,208 | 823 | 2,705 | 3,256 | 552 | 2,150 | 2,151 | 1 | 240 | 240 | 0 | | 2029 | 3,434 | 4,319 | 885 | 2,838 | 3,627 | 790 | 2,281 | 2,282 | 1 | 237 | 237 | 0 | | 2030 | 3,429 | 4,445 | 1,016 | 2,929 | 3,833 | 904 | 2,433 | 2,433 | 0 | 233 | 233 | 0 | | 2031 | 3,404 | 4,365 | 961 | 2,962 | 3,961 | 999 | 2,530 | 2,530 | 0 | 229 | 229 | 0 | | 2032 | 3,306 | 4,229 | 923 | 2,924 | 4,433 | 1,509 | 2,516 | 2,516 | 0 | 226 | 226 | 0 | Table 0-748 - Comparison of Average Vehicle Price Increase (dollars) for Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison of Av | verage Vehi | cle Price In | crease (d | dollars) for | Light Truck | Fleet Be | etween No / | Action Alter | native (B | Baseline) an | d Alternati | ve PC2LT4 | |------------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------|----------------------------------|--------------------|------------| | | Toyota | | | Volvo | | | VWA | | | Total | | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | No Action Alternative (Baseline) | Alternative PC2LT4 | Difference | | 2022 | 0 | 0 | 0 | 0 | 0 | 0 | 202 | 202 | 0 | 125 | 125 | 0 | | 2023 | 214 | 214 | 0 | 170 | 170 | 0 | 1,709 | 1,709 | 0 | 918 | 918 | 0 | | 2024 | 463 | 463 | 0 | 217 | 217 | 0 | 1,718 | 1,718 | 0 | 1,367 | 1,367 | 0 | | 2025 | 499 | 499 | 0 | 1,302 | 1,302 | 0 | 2,069 | 2,069 | 0 | 1,708 | 1,708 | 0 | | 2026 | 1,532 | 1,532 | 0 | 1,248 | 1,248 | 0 | 2,061 | 2,061 | 0 | 2,159 | 2,159 | 0 | | 2027 | 1,599 | 1,604 | 5 | 1,123 | 1,393 | 271 | 2,190 | 2,426 | 236 | 2,248 | 2,609 | 360 | | 2028 | 1,766 | 1,771 | 5 | 1,029 | 1,553 | 524 | 2,060 | 2,428 | 368 | 2,239 | 2,826 | 587 | | 2029 | 1,865 | 1,872 | 7 | 902 | 1,692 | 790 | 2,266 | 2,668 | 402 | 2,270 | 2,992 | 722 | | 2030 | 1,982 | 1,994 | 12 | 1,160 | 1,829 | 669 | 2,369 | 3,308 | 939 | 2,302 | 3,122 | 819 | | 2031 | 2,079 | 2,092 | 13 | 1,438 | 2,073 | 635 | 2,417 | 3,336 | 919 | 2,484 | 3,369 | 885 | | 2032 | 2,075 | 2,188 | 114 | 1,466 | 2,163 | 696 | 2,383 | 3,341 | 958 | 2,438 | 3,502 | 1,064 | ## Technology Costs, Price Increases, Sales, and Labor Utilization Table 0-749 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Total) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparis | on of T | echno | logy Co | sts, Avera | | | | nd Labor
ne) and Al | | | | urer (Total |) Total Fl | eet Betwo | een No A | Action | |------------|----------------------------------|--------------------|-------------------|------------|--|-------------|----------------------------------|------------------------|----------|-----------|----------------------------------|--------------------|------------|-----------|------------------|--------| | | Techr
(\$b) | nology | Costs Ind | crease | Avg. Ve | hicle Price | e Increase | e (\$) | Annua | l Sales (| million ve | ehicles) | Labor (p | erson yea | ars) | | | | Stand | lards | Change
Alterna | | Standar | ds | Change
Alternat | | Standa | ards | Change
Alterna | | Standar | ds | Chang
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) Alternative PC2LT4 Absolute | | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | | | 2022 | 0 | 0 | 0 | 0% | 138 | 138 | 0 | 0% | 14.4 | 14.4 | 0.0 | 0.0% | 889 | 889 | 0.0 | 0.0% | | 2023 | 9 | 9 | 0 | 0% | 744 | 744 | 0 | 0% | 15.2 | 15.2 | 0.0 | 0.0% | 959 | 959 | 0.0 | 0.0% | | 2024 | 15 | 15 | 0 | 0% | 1,195 | 1,195 | 0 | 0% | 14.9 | 14.9 | 0.0 | 0.0% | 955 | 955 | 0.0 | 0.0% | | 2025 | 19 | 19 | 0 | 0% | 1,500 | 1,500 | 0 | 0% | 14.9 | 14.9 | 0.0 | 0.0% | 962 | 962 | 0.0 | 0.0% | | 2026 | 26 | 26 | 0 | 0% | 1,920 | 1,920 | 0 | 0% | 15.2 | 15.2 | 0.0 | 0.0% | 997 | 997 | 0.0 | 0.0% | | 2027 | 27 | 31 | 4 | 16% | 1,998 | 2,367 | 369 | 18% | 15.7 | 15.6 | 0.0 |
-0.3% | 1,028 | 1,030 | 2.8 | 0.3% | | 2028 | 28 | 34 | 7 | 24% | 1,977 | 2,555 | 578 | 29% | 15.8 | 15.8 | -0.1 | -0.4% | 1,040 | 1,043 | 3.2 | 0.3% | | 2029 | 28 | 36 | 9 | 32% | 1,993 | 2,708 | 716 | 36% | 15.6 | 15.5 | -0.1 | -0.5% | 1,027 | 1,033 | 5.5 | 0.5% | | 2030 | 27 | 37 | 9 | 34% | 2,012 | 2,790 | 777 | 39% | 15.3 | 15.2 | -0.1 | -0.5% | 1,006 | 1,012 | 5.9 | 0.6% | | 2031 | 29 | 39 | 10 | 33% | 2,132 | 2,942 | 810 | 38% | 15.0 | 14.9 | -0.1 | -0.5% | 992 | 998 | 6.2 | 0.6% | | 2032 | 28 | 39 | 11 | 38% | 2,077 | 3,008 | 932 | 45% | 14.9 | 14.8 | -0.1 | -0.5% | 986 | 993 | 6.8 | 0.7% | Table 0-750 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Total) Passenger Car Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison | n of Tec | hnolog | y Costs, | Average F | | ase, Sales
Iternative | | | | | | (Total) Pa | ssenge | r Car Fle | eet Betw | een No | |------------|----------------------------------|--------------------|-------------------|-------------|----------------------------------|--------------------------|--------------------|---------|----------------------------------|--------------------|-------------------|------------|----------------------------------|--------------------|------------------|---------| | | Techr | nology C | Costs Incr | rease (\$b) | Avg. Veh | icle Price | Increase | (\$) | Annua | al Sales | (million | vehicles) | Labor | (person | years) | | | | Stand | ards | Change
Alterna | | Standard | s | Change
Alternat | | Stand | ards | Change
Alterna | | Standa | ards | Chang
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 159 | 159 | 0 | 0% | 5.5 | 5.5 | 0.0 | 0.0% | 301 | 301 | 0.0 | 0.0% | | 2023 | 2 | 2 | 0 | 0% | 436 | 436 | 0 | 0% | 5.5 | 5.5 | 0.0 | 0.0% | 303 | 303 | 0.0 | 0.0% | | 2024 | 4 | 4 | 0 | 0% | 868 | 868 | 0 | 0% | 5.1 | 5.1 | 0.0 | 0.0% | 288 | 288 | 0.0 | 0.0% | | 2025 | 5 | 5 | 0 | 0% | 1,078 | 1,078 | 0 | 0% | 4.9 | 4.9 | 0.0 | 0.0% | 277 | 277 | 0.0 | 0.0% | | 2026 | 6 | 6 | 0 | 0% | 1,417 | 1,417 | 0 | 0% | 4.9 | 4.9 | 0.0 | 0.0% | 280 | 280 | 0.0 | 0.0% | | 2027 | 6 | 8 | 1 | 22% | 1,462 | 1,847 | 384 | 26% | 5.0 | 5.0 | 0.0 | -0.6% | 284 | 282 | -1.3 | -0.5% | | 2028 | 6 | 8 | 2 | 31% | 1,412 | 1,966 | 554 | 39% | 5.0 | 5.0 | 0.0 | -0.8% | 285 | 283 | -1.7 | -0.6% | | 2029 | 6 | 9 | 3 | 44% | 1,389 | 2,087 | 697 | 50% | 4.9 | 4.9 | -0.1 | -1.0% | 279 | 277 | -2.1 | -0.7% | | 2030 | 6 | 9 | 3 | 44% | 1,386 | 2,069 | 683 | 49% | 4.8 | 4.8 | 0.0 | -0.8% | 274 | 273 | -1.5 | -0.5% | | 2031 | 6 | 9 | 3 | 44% | 1,383 | 2,033 | 650 | 47% | 4.8 | 4.8 | 0.0 | -0.6% | 272 | 272 | -0.8 | -0.3% | | 2032 | 6 | 8 | 3 | 45% | 1,312 | 1,966 | 654 | 50% | 4.8 | 4.8 | 0.0 | -0.4% | 272 | 272 | -0.1 | 0.0% | Table 0-751 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Total) Light Truck Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison | of Tech | nology | Costs, | Average P | | | s, and Lab
Baseline) a | | | | cturer (T | otal) Light | Truck | Fleet Be | etween N | lo Action | |------------|----------------------------------|--------------------|-------------------|-----------|----------------------------------|--------------------|---------------------------|---------|----------------------------------|--------------------|-------------------|-------------|----------------------------------|--------------------|-------------------|-----------| | | Techr
(\$b) | nology (| Costs Inc | rease | Avg. Vel | nicle Price | Increase (| \$) | Annual | Sales (r | nillion ve | hicles) | Labor | (person | years) | | | | Stand | lards | Change
Alterna | | Standard | ds | Change d | | Standa | ırds | Change
Alterna | | Standa | ards | Change
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 125 | 125 | 0 | 0% | 8.9 | 8.9 | 0.0 | 0.0% | 588 | 588 | 0.0 | 0.0% | | 2023 | 7 | 7 | 0 | 0% | 918 | 918 | 0 | 0% | 9.7 | 9.7 | 0.0 | 0.0% | 656 | 656 | 0.0 | 0.0% | | 2024 | 11 | 11 | 0 | 0% | 1,367 | 1,367 | 0 | 0% | 9.8 | 9.8 | 0.0 | 0.0% | 667 | 667 | 0.0 | 0.0% | | 2025 | 14 | 14 | 0 | 0% | 1,708 | 1,708 | 0 | 0% | 10.0 | 10.0 | 0.0 | 0.0% | 685 | 685 | 0.0 | 0.0% | | 2026 | 19 | 19 | 0 | 0% | 2,159 | 2,159 | 0 | 0% | 10.3 | 10.3 | 0.0 | 0.0% | 718 | 718 | 0.0 | 0.0% | | 2027 | 21 | 24 | 3 | 15% | 2,248 | 2,609 | 360 | 16% | 10.7 | 10.7 | 0.0 | -0.1% | 744 | 748 | 4.1 | 0.6% | | 2028 | 21 | 26 | 5 | 22% | 2,239 | 2,826 | 587 | 26% | 10.8 | 10.8 | 0.0 | -0.2% | 755 | 760 | 4.9 | 0.6% | | 2029 | 21 | 27 | 6 | 28% | 2,270 | 2,992 | 722 | 32% | 10.7 | 10.7 | 0.0 | -0.2% | 748 | 755 | 7.6 | 1.0% | | 2030 | 21 | 28 | 7 | 31% | 2,302 | 3,122 | 819 | 36% | 10.4 | 10.4 | 0.0 | -0.3% | 732 | 739 | 7.4 | 1.0% | | 2031 | 23 | 30 | 7 | 30% | 2,484 | 3,369 | 885 | 36% | 10.2 | 10.2 | 0.0 | -0.4% | 719 | 726 | 7.0 | 1.0% | | 2032 | 22 | 30 | 8 | 36% | 2,438 | 3,502 | 1,064 | 44% | 10.1 | 10.1 | -0.1 | -0.6% | 715 | 722 | 6.8 | 1.0% | Table 0-752 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (BMW) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | on of Te | chnolo | gy Costs | , Average | | ease, Sale | | | | | ufacture | r (BMW) To | otal Flee | et Betw | een No | Action | |------------|----------------------------------|--------------------|--------------------|------------|---|------------|--------------------|---------|----------------------------------|--------------------|------------------|------------|----------------------------------|--------------------|-------------------|---------| | | Techr | nology (| Costs Incr | ease (\$b) | Avg. Veh | icle Price | Increase | (\$) | Annua | al Sales | (million | vehicles) | Labor | (persor | n years) | | | | Stand | ards | Change
Alternat | | Standard | ls | Change
Alternat | | Stand | ards | Chang
Alterna | | Stand | ards | Change
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) Alternative PC2LT4 | | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 446 | 446 | 0 | 0% | 0.4 | 0.4 | 0.0 | 0.0% | 17 | 17 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 491 | 491 | 0 | 0% | 0.4 | 0.4 | 0.0 | 0.0% | 18 | 18 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 1,127 | 1,127 | 0 | 0% | 0.4 | 0.4 | 0.0 | 0.0% | 18 | 18 | 0.0 | 0.0% | | 2025 | 1 | 1 | 0 | 0% | 1,613 | 1,613 | 0 | 0% | 0.4 | 0.4 | 0.0 | 0.0% | 19 | 19 | 0.0 | 0.0% | | 2026 | 1 | 1 | 0 | 0% | 1,703 | 1,703 | 0 | 0% | 0.4 | 0.4 | 0.0 | 0.0% | 19 | 19 | 0.0 | 0.0% | | 2027 | 1 | 1 | 0 | 0% | 1,577 | 1,800 | 224 | 14% | 0.4 | 0.4 | 0.0 | -0.3% | 20 | 20 | 0.0 | -0.2% | | 2028 | 1 | 1 | 0 | -1% | 1,781 | 1,997 | 216 | 12% | 0.4 | 0.4 | 0.0 | -0.5% | 20 | 20 | -0.1 | -0.3% | | 2029 | 1 | 1 | 0 | 1% | 1,948 | 2,188 | 240 | 12% | 0.4 | 0.4 | 0.0 | -0.6% | 20 | 20 | 0.0 | -0.2% | | 2030 | 1 | 1 | 0 | 1% | 2,030 | 2,299 | 269 | 13% | 0.4 | 0.4 | 0.0 | -0.6% | 20 | 20 | -0.1 | -0.3% | | 2031 | 1 | 1 | 0 | 1% | 2,124 | 2,429 | 305 | 14% | 0.4 | 0.4 | 0.0 | -0.5% | 19 | 19 | -0.1 | -0.4% | | 2032 | 1 | 1 | 0 | 6% | 2,066 | 2,357 | 291 | 14% | 0.4 | 0.4 | 0.0 | -0.5% | 19 | 19 | 0.0 | -0.3% | Table 0-753 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Ford) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparis | on of Te | echnolo | ogy Cost | s, Average | | | les, and Laseline) ar | | | | nufactur | er (Ford) T | otal Fle | et Betw | een No <i>i</i> | Action | |------------|----------------------------------|--------------------|-------------------|-------------|----------------------------------|--------------------|-----------------------|---------|----------------------------------|--------------------|------------------|-------------|----------------------------------|--------------------|------------------|---------| | | Techr | nology (| Costs Inci | rease (\$b) | Avg. Vel | nicle Price | Increase (| \$) | Annua | al Sales | (million | vehicles) | Labor | (person | years) | | | | Stand | lards | Change
Alterna | | Standard | ds | Change f | | Stand | lards | Chang
Alterna | | Standa | ards | Chang
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 76 | 76 | 0 | 0% | 1.6 | 1.6 | 0.0 | 0.0% | 146 | 146 | 0.0 | 0.0% | | 2023 | 3 | 3 | 0 | 0% | 1,737 | 1,737 | 0 | 0% | 1.8 | 1.8 | 0.0 | 0.0% | 163 | 163 | 0.0 | 0.0% | | 2024 | 4 | 4 | 0 | 0% | 2,470 | 2,470 | 0 | 0% | 1.8 | 1.8 | 0.0 | 0.0% | 165 | 165 | 0.0 | 0.0% | | 2025 | 4 | 4 | 0 | 0% | 2,526 | 2,526 | 0 | 0% | 1.8 | 1.8 | 0.0 | 0.0% | 167 | 167 | 0.0 | 0.0% | | 2026 | 5 | 5 | 0 | 0% | 2,741 | 2,741 | 0 | 0% | 1.8 | 1.8 | 0.0 | 0.0% | 173 | 173 | 0.0 |
0.0% | | 2027 | 5 | 6 | 1 | 23% | 2,759 | 3,325 | 566 | 21% | 1.9 | 1.9 | 0.0 | -0.1% | 179 | 180 | 1.5 | 0.9% | | 2028 | 5 | 6 | 2 | 36% | 2,652 | 3,519 | 867 | 33% | 1.9 | 1.9 | 0.0 | -0.3% | 181 | 183 | 2.1 | 1.2% | | 2029 | 4 | 6 | 2 | 47% | 2,541 | 3,624 | 1,083 | 43% | 1.9 | 1.9 | 0.0 | -0.3% | 178 | 181 | 2.8 | 1.6% | | 2030 | 4 | 6 | 2 | 49% | 2,407 | 3,470 | 1,064 | 44% | 1.9 | 1.8 | 0.0 | -0.4% | 174 | 176 | 2.5 | 1.4% | | 2031 | 4 | 6 | 2 | 44% | 2,434 | 3,583 | 1,149 | 47% | 1.8 | 1.8 | 0.0 | -0.4% | 170 | 172 | 2.0 | 1.2% | | 2032 | 4 | 6 | 2 | 44% | 2,384 | 3,720 | 1,336 | 56% | 1.8 | 1.8 | 0.0 | -0.6% | 169 | 171 | 1.7 | 1.0% | Table 0-754 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (GM) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparis | on of T | echnol | ogy Cos | ts, Averag | | | iles, and L
aseline) ar | | | | nufactu | rer (GM) To | otal Flee | et Betwe | en No A | ction | |------------|----------------------------------|--------------------|--------------------|-------------|----------------------------------|--------------------|----------------------------|---------|----------------------------------|--------------------|------------------|-------------|----------------------------------|--------------------|-------------------|---------| | | Techr | nology (| Costs Inci | rease (\$b) | Avg. Veh | icle Price | Increase (S | \$) | Annua | al Sales | (million | vehicles) | Labor | (person | years) | | | | Stand | lards | Change
Alternat | | Standard | ls | Change f
Alternativ | | Stand | ards | Chang
Alterna | | Standa | ards | Change
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 283 | 283 | 0 | 0% | 1.8 | 1.8 | 0.0 | 0.0% | 125 | 125 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 355 | 355 | 0 | 0% | 2.0 | 2.0 | 0.0 | 0.0% | 135 | 135 | 0.0 | 0.0% | | 2024 | 3 | 3 | 0 | 0% | 1,728 | 1,728 | 0 | 0% | 1.9 | 1.9 | 0.0 | 0.0% | 139 | 139 | 0.0 | 0.0% | | 2025 | 4 | 4 | 0 | 0% | 2,171 | 2,171 | 0 | 0% | 1.9 | 1.9 | 0.0 | 0.0% | 141 | 141 | 0.0 | 0.0% | | 2026 | 4 | 4 | 0 | 0% | 2,313 | 2,313 | 0 | 0% | 2.0 | 2.0 | 0.0 | 0.0% | 146 | 146 | 0.0 | 0.0% | | 2027 | 4 | 6 | 1 | 34% | 2,250 | 3,128 | 878 | 39% | 2.1 | 2.1 | 0.0 | -0.2% | 150 | 152 | 1.5 | 1.0% | | 2028 | 4 | 5 | 1 | 38% | 2,128 | 3,252 | 1,124 | 53% | 2.1 | 2.1 | 0.0 | -0.3% | 152 | 153 | 1.5 | 1.0% | | 2029 | 4 | 5 | 2 | 46% | 1,991 | 3,333 | 1,342 | 67% | 2.1 | 2.0 | 0.0 | -0.4% | 150 | 151 | 1.7 | 1.1% | | 2030 | 3 | 5 | 2 | 53% | 1,884 | 3,518 | 1,634 | 87% | 2.0 | 2.0 | 0.0 | -0.4% | 146 | 147 | 1.7 | 1.2% | | 2031 | 5 | 7 | 2 | 51% | 2,545 | 4,334 | 1,789 | 70% | 2.0 | 2.0 | 0.0 | -0.5% | 145 | 148 | 2.5 | 1.7% | | 2032 | 4 | 7 | 2 | 57% | 2,422 | 4,469 | 2,048 | 85% | 2.0 | 1.9 | 0.0 | -0.6% | 144 | 147 | 2.6 | 1.8% | Table 0-755 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Honda) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | n of Tec | hnolog | gy Costs, | , Average | | ease, Sale
native (Ba | | | | | ufacture | er (Honda) ⁻ | Total Fle | eet Betw | veen No | Action | |------------|----------------------------------|--------------------|--------------------|------------|----------------------------------|--------------------------|--------------------|---------|----------------------------------|--------------------|------------------|-------------------------|----------------------------------|--------------------|------------------|---------| | | Techr | ology (| Costs Incr | ease (\$b) | Avg. Veh | icle Price | Increase | (\$) | Annua | al Sales | (million | vehicles) | Labor | (person | years) | | | | Stand | ards | Change
Alternat | | Standard | ls | Change
Alternat | | Stand | ards | Chang
Alterna | e from
ative | Standa | ards | Chang
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 1.5 | 1.5 | 0.0 | 0.0% | 130 | 130 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 464 | 464 | 0 | 0% | 1.5 | 1.5 | 0.0 | 0.0% | 138 | 138 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 536 | 536 | 0 | 0% | 1.5 | 1.5 | 0.0 | 0.0% | 135 | 135 | 0.0 | 0.0% | | 2025 | 1 | 1 | 0 | 0% | 736 | 736 | 0 | 0% | 1.5 | 1.5 | 0.0 | 0.0% | 134 | 134 | 0.0 | 0.0% | | 2026 | 2 | 2 | 0 | 0% | 1,307 | 1,307 | 0 | 0% | 1.5 | 1.5 | 0.0 | 0.0% | 139 | 139 | 0.0 | 0.0% | | 2027 | 2 | 2 | 0 | 14% | 1,437 | 1,610 | 173 | 12% | 1.5 | 1.5 | 0.0 | -0.3% | 143 | 143 | 0.2 | 0.2% | | 2028 | 2 | 2 | 0 | 13% | 1,498 | 1,673 | 175 | 12% | 1.5 | 1.5 | 0.0 | -0.5% | 145 | 145 | 0.0 | 0.0% | | 2029 | 2 | 2 | 0 | 14% | 1,522 | 1,716 | 194 | 13% | 1.5 | 1.5 | 0.0 | -0.6% | 143 | 143 | 0.0 | 0.0% | | 2030 | 2 | 2 | 0 | 16% | 1,552 | 1,777 | 225 | 15% | 1.5 | 1.5 | 0.0 | -0.6% | 140 | 140 | 0.1 | 0.1% | | 2031 | 2 | 2 | 0 | 15% | 1,564 | 1,777 | 212 | 14% | 1.5 | 1.4 | 0.0 | -0.5% | 138 | 138 | 0.1 | 0.1% | | 2032 | 2 | 2 | 0 | 17% | 1,467 | 1,701 | 234 | 16% | 1.4 | 1.4 | 0.0 | -0.5% | 137 | 137 | 0.1 | 0.1% | Table 0-756 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Hyundai KiH) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | on of Te | chnolo | gy Cost | s, Average | | ease, Sal | | | | | | r (Hyundai | KiH) To | otal Flee | et Betwe | een No | |------------|----------------------------------|--------------------|------------------|-------------|----------------------------------|--------------------|-------------------|---------|----------------------------------|--------------------|------------------|------------|----------------------------------|--------------------|------------------|---------| | | Techr | ology (| Costs Inc | rease (\$b) | Avg. Veh | nicle Price | Increase (| \$) | Annua | al Sales | (million | vehicles) | Labor | (persor | n years) | | | | Stand | ards | Chang
Alterna | | Standard | ls | Change Alternativ | | Stand | ards | Chang
Alterna | | Stand | ards | Chang
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.9 | 0.9 | 0.0 | 0.0% | 24 | 24 | 0.0 | 0.0% | | 2023 | 1 | 1 | 0 | 0% | 597 | 597 | 0 | 0% | 0.9 | 0.9 | 0.0 | 0.0% | 25 | 25 | 0.0 | 0.0% | | 2024 | 1 | 1 | 0 | 0% | 592 | 592 | 0 | 0% | 0.9 | 0.9 | 0.0 | 0.0% | 25 | 25 | 0.0 | 0.0% | | 2025 | 1 | 1 | 0 | 0% | 1,049 | 1,049 | 0 | 0% | 0.9 | 0.9 | 0.0 | 0.0% | 25 | 25 | 0.0 | 0.0% | | 2026 | 1 | 1 | 0 | 0% | 1,632 | 1,632 | 0 | 0% | 0.9 | 0.9 | 0.0 | 0.0% | 26 | 26 | 0.0 | 0.0% | | 2027 | 1 | 2 | 1 | 72% | 1,702 | 2,944 | 1,242 | 73% | 0.9 | 0.9 | 0.0 | -0.4% | 26 | 26 | 0.0 | -0.1% | | 2028 | 1 | 4 | 2 | 146% | 1,696 | 3,956 | 2,260 | 133% | 0.9 | 0.9 | 0.0 | -0.5% | 26 | 26 | 0.0 | 0.1% | | 2029 | 1 | 3 | 2 | 136% | 1,734 | 3,904 | 2,169 | 125% | 0.9 | 0.9 | 0.0 | -0.6% | 26 | 26 | 0.0 | 0.0% | | 2030 | 1 | 3 | 2 | 126% | 1,778 | 3,859 | 2,081 | 117% | 0.9 | 0.9 | 0.0 | -0.6% | 25 | 25 | 0.0 | 0.0% | | 2031 | 1 | 3 | 2 | 115% | 1,830 | 3,800 | 1,970 | 108% | 0.9 | 0.9 | 0.0 | -0.5% | 25 | 25 | 0.0 | 0.1% | | 2032 | 1 | 3 | 2 | 115% | 1,786 | 3,703 | 1,917 | 107% | 0.9 | 0.9 | 0.0 | -0.5% | 25 | 25 | 0.0 | 0.0% | Table 0-757 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Hyundai KiK) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | on of Te | chnolo | gy Cost | s, Average | | ease, Sal | | | | | | r (Hyundai | KiK) To | otal Fle | et Betwe | en No | |------------|----------------------------------|--------------------|------------------|-------------|----------------------------------|--------------------|-------------------|---------|----------------------------------|--------------------|------------------|-----------------|----------------------------------|--------------------|-------------------|---------| | | Techr | ology (| Costs Inc | rease (\$b) | Avg. Veh | nicle Price | Increase (| \$) | Annua | al Sales | (million | vehicles) | Labor | (perso | n years) | | | | Stand | ards | Chang
Alterna | | Standard | ls | Change Alternativ | | Stand | ards | Chang
Alterna | e from
ative | Stand | lards | Change
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.6 | 0.6 | 0.0 | 0.0% | 29 | 29 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 122 | 122 | 0 | 0% | 0.6 | 0.6 | 0.0 | 0.0% | 30 | 30 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 579 | 579 | 0 | 0% | 0.6 | 0.6 | 0.0 | 0.0% | 30 | 30 | 0.0 | 0.0% | | 2025 | 0 | 0 | 0 | 0% | 564 | 564 | 0 | 0% | 0.6 | 0.6 | 0.0 | 0.0% | 30 | 30 | 0.0 | 0.0% | | 2026 | 1 | 1 | 0 | 0% | 1,219 | 1,219 | 0 | 0% | 0.6 | 0.6 | 0.0 | 0.0% | 31 | 31 | 0.0 |
0.0% | | 2027 | 1 | 1 | 0 | 39% | 1,159 | 1,783 | 624 | 54% | 0.6 | 0.6 | 0.0 | -0.4% | 32 | 32 | -0.1 | -0.3% | | 2028 | 1 | 1 | 0 | 39% | 1,092 | 1,935 | 843 | 77% | 0.6 | 0.6 | 0.0 | -0.5% | 32 | 32 | -0.1 | -0.4% | | 2029 | 1 | 2 | 1 | 207% | 1,051 | 3,214 | 2,163 | 206% | 0.6 | 0.6 | 0.0 | -0.6% | 32 | 31 | -0.1 | -0.4% | | 2030 | 1 | 2 | 1 | 185% | 1,123 | 3,280 | 2,157 | 192% | 0.6 | 0.6 | 0.0 | -0.6% | 31 | 31 | -0.1 | -0.4% | | 2031 | 1 | 2 | 1 | 203% | 1,168 | 3,461 | 2,293 | 196% | 0.6 | 0.6 | 0.0 | -0.5% | 30 | 30 | 0.1 | 0.2% | | 2032 | 1 | 2 | 1 | 204% | 1,151 | 3,387 | 2,235 | 194% | 0.6 | 0.6 | 0.0 | -0.5% | 30 | 30 | 0.2 | 0.6% | Table 0-758 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (JLR) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparis | on of Te | echnolo | ogy Cost | s, Average | | | es, and La
seline) an | | | | ufactur | er (JLR) To | tal Flee | t Betwe | een No | Action | |------------|----------------------------------|--------------------|--------------------|------------|----------------------------------|--------------------|--------------------------|---------|----------------------------------|--------------------|------------------|-----------------|----------------------------------|--------------------|------------------|-----------------| | | Techr | nology (| Costs Incr | ease (\$b) | Avg. Veh | nicle Price | Increase (\$ | 5) | Annua | al Sales | (million | vehicles) | Labor | (perso | n years) | | | | Stand | ards | Change
Alternat | | Standard | ds | Change f | | Stand | lards | Chang
Alterna | e from
ative | Stand | lards | Chang
Alterna | e from
ative | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 499 | 499 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 1 | 1 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 1,599 | 1,599 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 1 | 1 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 2,118 | 2,118 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 1 | 1 | 0.0 | 0.0% | | 2025 | 0 | 0 | 0 | 0% | 2,115 | 2,115 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 1 | 1 | 0.0 | 0.0% | | 2026 | 0 | 0 | 0 | 0% | 1,718 | 1,718 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 1 | 1 | 0.0 | 0.0% | | 2027 | 0 | 0 | 0 | 0% | 1,901 | 2,163 | 263 | 14% | 0.1 | 0.1 | 0.0 | -0.1% | 1 | 1 | 0.0 | -0.1% | | 2028 | 0 | 0 | 0 | 0% | 1,793 | 2,351 | 558 | 31% | 0.1 | 0.1 | 0.0 | -0.2% | 1 | 1 | 0.0 | -0.2% | | 2029 | 0 | 0 | 0 | 0% | 1,731 | 2,565 | 834 | 48% | 0.1 | 0.1 | 0.0 | -0.2% | 1 | 1 | 0.0 | -0.2% | | 2030 | 0 | 0 | 0 | 14% | 1,813 | 3,054 | 1,241 | 68% | 0.1 | 0.1 | 0.0 | -0.3% | 1 | 1 | 0.0 | 0.1% | | 2031 | 0 | 0 | 0 | 22% | 1,808 | 2,973 | 1,164 | 64% | 0.1 | 0.1 | 0.0 | -0.4% | 1 | 1 | 0.0 | 0.0% | | 2032 | 0 | 0 | 0 | 37% | 1,819 | 3,189 | 1,370 | 75% | 0.1 | 0.1 | 0.0 | -0.6% | 1 | 1 | 0.0 | -0.1% | Table 0-759 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Karma) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | n of Tec | hnolog | gy Costs, | Average | | ase, Sales
native (Bas | | | | | acturer (| (Karma) To | otal Fle | et Betw | een No | Action | |------------|----------------------------------|--------------------|--------------------|---------|----------------------------------|---------------------------|--------------------|---------|----------------------------------|--------------------|------------------|------------|----------------------------------|--------------------|------------------|---------| | | Techr
(\$b) | nology (| Costs Incre | ease | Avg. Vehi | cle Price In | crease (\$) |) | Annua | al Sales | (million | vehicles) | Labor | (persor | n years) | | | | Stand | ards | Change
Alternat | | Standards | 3 | Change
Alternat | | Stand | lards | Chang
Alterna | | Stand | ards | Chang
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2025 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2026 | 0 | 0 | 0 | 0% | -2,171 | -2,171 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2027 | 0 | 0 | 0 | 0% | -2,499 | -2,499 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2028 | 0 | 0 | 0 | 0% | -2,671 | -2,671 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2029 | 0 | 0 | 0 | 0% | -2,960 | -2,960 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2030 | 0 | 0 | 0 | 0% | -3,214 | -3,214 | 0 | 0% | 0.0 | 0.0 | 0.0 | 1.1% | 0 | 0 | 0.0 | 1.1% | | 2031 | 0 | 0 | 0 | 0% | -3,343 | -3,343 | 0 | 0% | 0.0 | 0.0 | 0.0 | 2.3% | 0 | 0 | 0.0 | 2.3% | | 2032 | 0 | 0 | 0 | 0% | -3,543 | -3,543 | 0 | 0% | 0.0 | 0.0 | 0.0 | 2.3% | 0 | 0 | 0.0 | 2.3% | Table 0-760 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Lucid) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison | of Tech | nology | Costs, A | verage Pr | | | ales, and
Baseline) | | | | ufactur | er (Lucid) T | otal Fle | et Betw | een No | Action | |------------|----------------------------------|--------------------|---------------------|----------------|----------------------------------|--------------------|------------------------|----------|----------------------------------|--------------------|------------------|--------------|----------------------------------|--------------------|------------------|-----------------| | | Techn | ology Co | osts Increa | ase (\$b) | Avg. V | ehicle P | rice Increa | ase (\$) | Annua | l Sales | (million v | rehicles) | Labor | (person | years) | | | | Standa | ards | Change
Alternati | from Standards | | ards | Change
Alternati | | Standa | ards | Chang
Alterna | | Standa | ards | Chang
Alterna | e from
ative | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2025 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2026 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | 0.0% | 0 | 0 | 0.0 | 0.0% | | 2027 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | -0.7% | 0 | 0 | 0.0 | -0.7% | | 2028 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | -0.8% | 0 | 0 | 0.0 | -0.8% | | 2029 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | -1.2% | 0 | 0 | 0.0 | -1.2% | | 2030 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | -1.0% | 0 | 0 | 0.0 | -1.0% | | 2031 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.0 | 0.0 | 0.0 | -0.8% | 0 | 0 | 0.0 | -0.8% | | 2032 | 0 | 0 | 0 | 0% | -62 | -62 | 0 | 0% | 0.0 | 0.0 | 0.0 | -0.6% | 0 | 0 | 0.0 | -0.6% | Table 0-761 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Mazda) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparisor | of Tec | hnolog | y Costs, | Average F | | ase, Sales | | | | | facturer | (Mazda) T | otal Fle | et Betw | reen No | Action | |------------|----------------------------------|--------------------|---------------------|-----------|----------------------------------|--------------------|---------------------|---------|----------------------------------|--------------------|------------------|-----------|----------------------------------|--------------------|------------------|------------------| | | Techn | ology C | Costs Incre | ase (\$b) | Avg. Veh | icle Price I | ncrease (| \$) | Annua | al Sales | (million | vehicles) | Labor | (persor | years) | | | | Stand | ards | Change
Alternati | | Standard | s | Change
Alternati | | Stand | ards | Chang
Alterna | | Stand | ards | Chang
Alterna | je from
ative | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.2 | 0.2 | 0.0 | 0.0% | 2 | 2 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 736 | 736 | 0 | 0% | 0.2 | 0.2 | 0.0 | 0.0% | 2 | 2 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 807 | 807 | 0 | 0% | 0.2 | 0.2 | 0.0 | 0.0% | 2 | 2 | 0.0 | 0.0% | | 2025 | 0 | 0 | 0 | 0% | 872 | 872 | 0 | 0% | 0.2 | 0.2 | 0.0 | 0.0% | 2 | 2 | 0.0 | 0.0% | | 2026 | 0 | 0 | 0 | 0% | 1,797 | 1,797 | 0 | 0% | 0.2 | 0.2 | 0.0 | 0.0% | 2 | 2 | 0.0 | 0.0% | | 2027 | 0 | 0 | 0 | 3% | 1,974 | 2,036 | 61 | 3% | 0.2 | 0.2 | 0.0 | -0.2% | 2 | 2 | 0.0 | -0.1% | | 2028 | 0 | 0 | 0 | 2% | 2,109 | 2,157 | 48 | 2% | 0.2 | 0.2 | 0.0 |
-0.3% | 3 | 3 | 0.0 | -0.2% | | 2029 | 0 | 0 | 0 | 3% | 2,198 | 2,260 | 62 | 3% | 0.2 | 0.2 | 0.0 | -0.3% | 2 | 2 | 0.0 | -0.2% | | 2030 | 0 | 0 | 0 | 3% | 2,283 | 2,354 | 70 | 3% | 0.2 | 0.2 | 0.0 | -0.4% | 2 | 2 | 0.0 | -0.3% | | 2031 | 0 | 0 | 0 | 3% | 2,340 | 2,406 | 66 | 3% | 0.2 | 0.2 | 0.0 | -0.5% | 2 | 2 | 0.0 | -0.4% | | 2032 | 0 | 0 | 0 | 2% | 2,303 | 2,366 | 62 | 3% | 0.2 | 0.2 | 0.0 | -0.6% | 2 | 2 | 0.0 | -0.6% | Table 0-762 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Mercedes-Benz) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison | of Tech | nology | Costs, A | Average P | | se, Sales,
ternative (| | | | | | Mercedes- | Benz) 1 | Γotal Fle | eet Betv | veen No | |------------|----------------------------------|--------------------|-------------------|------------|----------------------------------|---------------------------|--------------------|---------|----------------------------------|--------------------|------------------|-----------------|----------------------------------|--------------------|------------------|-----------------| | | Techr | ology C | osts Incr | ease (\$b) | Avg. Veh | icle Price I | ncrease (| (\$) | Annua | al Sales | (million | vehicles) | Labor | (person | years) | | | | Stand | ards | Change
Alterna | | Standard | S | Change
Alternat | | Stand | ards | Chang
Alterna | e from
ative | Stand | ards | Chang
Alterna | e from
ative | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 638 | 638 | 0 | 0% | 0.3 | 0.3 | 0.0 | 0.0% | 9 | 9 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 853 | 853 | 0 | 0% | 0.3 | 0.3 | 0.0 | 0.0% | 10 | 10 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 893 | 893 | 0 | 0% | 0.3 | 0.3 | 0.0 | 0.0% | 10 | 10 | 0.0 | 0.0% | | 2025 | 0 | 0 | 0 | 0% | 1,309 | 1,309 | 0 | 0% | 0.3 | 0.3 | 0.0 | 0.0% | 10 | 10 | 0.0 | 0.0% | | 2026 | 0 | 0 | 0 | 0% | 2,271 | 2,271 | 0 | 0% | 0.3 | 0.3 | 0.0 | 0.0% | 10 | 10 | 0.0 | 0.0% | | 2027 | 0 | 0 | 0 | 1% | 2,271 | 2,503 | 232 | 10% | 0.3 | 0.3 | 0.0 | -0.3% | 10 | 10 | 0.0 | -0.2% | | 2028 | 0 | 0 | 0 | 5% | 1,960 | 2,427 | 466 | 24% | 0.3 | 0.3 | 0.0 | -0.5% | 11 | 11 | 0.0 | 0.2% | | 2029 | 0 | 1 | 0 | 6% | 2,162 | 2,570 | 408 | 19% | 0.3 | 0.3 | 0.0 | -0.5% | 11 | 11 | 0.0 | 0.2% | | 2030 | 1 | 1 | 0 | 14% | 2,338 | 2,636 | 298 | 13% | 0.3 | 0.3 | 0.0 | -0.5% | 10 | 10 | 0.0 | 0.0% | | 2031 | 1 | 1 | 0 | 12% | 2,460 | 2,765 | 305 | 12% | 0.3 | 0.3 | 0.0 | -0.5% | 10 | 10 | 0.0 | -0.1% | | 2032 | 1 | 1 | 0 | 11% | 2,470 | 2,836 | 365 | 15% | 0.3 | 0.3 | 0.0 | -0.5% | 10 | 10 | 0.0 | -0.2% | Table 0-763 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Mitsubishi) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison | of Techi | nology | Costs, A | verage Pri | | | and Labor
seline) and | | | | cturer (I | Mitsubishi) | Total F | leet Be | tween N | lo Action | |------------|----------------------------------|--------------------|-------------------|------------|----------------------------------|--------------------|--------------------------|---------|----------------------------------|--------------------|------------------|-------------|----------------------------------|--------------------|------------------|-----------| | | Techr | nology C | Costs Incr | ease (\$b) | Avg. Veh | icle Price | Increase (\$ | 5) | Annua | al Sales | (million | vehicles) | Labor | (persor | n years) | | | | Stand | ards | Change
Alterna | | Standard | s | Change f | | Stand | ards | Chang
Alterna | | Stand | ards | Chang
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 226 | 226 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 1 | 1 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 261 | 261 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 1 | 1 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 1,333 | 1,333 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 1 | 1 | 0.0 | 0.0% | | 2025 | 0 | 0 | 0 | 0% | 1,471 | 1,471 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 1 | 1 | 0.0 | 0.0% | | 2026 | 0 | 0 | 0 | 0% | 2,039 | 2,039 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 1 | 1 | 0.0 | 0.0% | | 2027 | 0 | 0 | 0 | 0% | 1,908 | 2,080 | 172 | 9% | 0.1 | 0.1 | 0.0 | -0.3% | 1 | 1 | 0.0 | -0.3% | | 2028 | 0 | 0 | 0 | 0% | 1,806 | 2,246 | 440 | 24% | 0.1 | 0.1 | 0.0 | -0.5% | 1 | 1 | 0.0 | -0.5% | | 2029 | 0 | 0 | 0 | -1% | 1,695 | 2,396 | 701 | 41% | 0.1 | 0.1 | 0.0 | -0.6% | 1 | 1 | 0.0 | -0.6% | | 2030 | 0 | 0 | 0 | -1% | 1,600 | 2,609 | 1,009 | 63% | 0.1 | 0.1 | 0.0 | -0.6% | 1 | 1 | 0.0 | -0.6% | | 2031 | 0 | 0 | 0 | 45% | 1,462 | 2,104 | 642 | 44% | 0.1 | 0.1 | 0.0 | -0.5% | 1 | 1 | 0.0 | 0.1% | | 2032 | 0 | 0 | 0 | 46% | 1,421 | 2,057 | 636 | 45% | 0.1 | 0.1 | 0.0 | -0.5% | 1 | 1 | 0.0 | 0.1% | Table 0-764 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Nissan) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | n of Tec | hnolog | y Costs, | Average F | | ase, Sale:
native (Ba | | | | | facturer | (Nissan) T | otal Fle | eet Betv | veen No | Action | |------------|----------------------------------|--------------------|-------------------|------------|----------------------------------|--------------------------|--------------------|---------|----------------------------------|--------------------|------------------|------------------|----------------------------------|--------------------|-------------------|---------| | | Techr | ology (| Costs Incr | ease (\$b) | Avg. Veh | icle Price | Increase | (\$) | Annua | al Sales | (million | vehicles) | Labor | (perso | n years) | | | | Stand | ards | Change
Alterna | | Standard | ls | Change
Alternat | | Stand | ards | Chang
Alterna | je from
ative | Stand | lards | Change
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 34 | 34 | 0 | 0% | 1.0 | 1.0 | 0.0 | 0.0% | 59 | 59 | 0.0 | 0.0% | | 2023 | 1 | 1 | 0 | 0% | 1,361 | 1,361 | 0 | 0% | 1.0 | 1.0 | 0.0 | 0.0% | 62 | 62 | 0.0 | 0.0% | | 2024 | 1 | 1 | 0 | 0% | 1,515 | 1,515 | 0 | 0% | 1.0 | 1.0 | 0.0 | 0.0% | 61 | 61 | 0.0 | 0.0% | | 2025 | 2 | 2 | 0 | 0% | 1,932 | 1,932 | 0 | 0% | 1.0 | 1.0 | 0.0 | 0.0% | 61 | 61 | 0.0 | 0.0% | | 2026 | 2 | 2 | 0 | 0% | 2,089 | 2,089 | 0 | 0% | 1.0 | 1.0 | 0.0 | 0.0% | 62 | 62 | 0.0 | 0.0% | | 2027 | 2 | 2 | 0 | 0% | 2,508 | 2,642 | 134 | 5% | 1.0 | 1.0 | 0.0 | -0.4% | 64 | 64 | -0.2 | -0.3% | | 2028 | 2 | 3 | 0 | 18% | 2,407 | 2,901 | 495 | 21% | 1.0 | 1.0 | 0.0 | -0.5% | 65 | 65 | 0.3 | 0.5% | | 2029 | 2 | 3 | 0 | 19% | 2,437 | 2,958 | 521 | 21% | 1.0 | 1.0 | 0.0 | -0.6% | 64 | 64 | 0.3 | 0.5% | | 2030 | 2 | 3 | 1 | 24% | 2,457 | 3,009 | 552 | 22% | 1.0 | 1.0 | 0.0 | -0.6% | 62 | 63 | 0.5 | 0.7% | | 2031 | 2 | 3 | 1 | 23% | 2,438 | 2,960 | 521 | 21% | 1.0 | 1.0 | 0.0 | -0.5% | 61 | 62 | 0.4 | 0.7% | | 2032 | 2 | 3 | 1 | 24% | 2,363 | 2,902 | 539 | 23% | 1.0 | 1.0 | 0.0 | -0.5% | 61 | 62 | 0.4 | 0.7% | Table 0-765 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Stellantis) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Comparison | of Tech | inology | Costs, | Average P | | ase, Sales
native (Ba | | | | | acturer | (Stellantis) | Total F | leet Bet | tween N | o Action | |------------|----------------------------------|--------------------|-------------------|-------------|----------------------------------|--------------------------|-----------------------|---------|----------------------------------|--------------------|------------------|--------------|----------------------------------|--------------------|------------------|----------| | | Techr | nology (| Costs Inci | rease (\$b) | Avg. Veh | icle Price | Increase (S | 5) | Annua | al Sales | (million | vehicles) | Labor | (person | years) | | | | Stand | ards | Change
Alterna | | Standard | ls | Change to Alternative | | Stand | ards | Chang
Alterna | | Standa | ards | Chang
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 465 | 465 | 0 | 0% | 1.6 | 1.6 | 0.0 | 0.0% | 95 | 95 | 0.0 | 0.0% | | 2023 | 2 | 2 | 0 | 0% | 1,394 | 1,394 | 0 | 0% | 1.7 | 1.7 | 0.0 | 0.0% | 109 | 109 | 0.0 | 0.0% | | 2024 | 3 | 3 | 0 | 0% | 2,031 | 2,031 | 0 | 0% | 1.7 | 1.7 | 0.0 | 0.0% | 112 | 112 | 0.0 | 0.0% | | 2025 | 4 | 4 | 0 | 0% | 2,898 | 2,898 | 0 | 0% | 1.7 | 1.7 | 0.0 | 0.0% | 117 | 117 | 0.0 | 0.0% | | 2026 | 5 | 5 | 0 | 0% | 2,867 | 2,867 | 0 | 0% | 1.8 | 1.8 | 0.0 | 0.0% | 121 | 121 | 0.0 | 0.0% | | 2027 | 5 | 5 | 0 | 7% | 2,920 | 3,209 | 289 | 10% | 1.8 | 1.8 | 0.0 | -0.2% | 125 | 126 | 0.8 | 0.6% | | 2028 | 5 | 5 | 0 | 8% | 2,785 | 3,333 | 548 | 20% | 1.9 | 1.8 | 0.0 | -0.3% | 126 | 127 |
0.7 | 0.5% | | 2029 | 5 | 6 | 1 | 21% | 2,892 | 3,643 | 751 | 26% | 1.8 | 1.8 | 0.0 | -0.3% | 124 | 127 | 2.4 | 1.9% | | 2030 | 5 | 6 | 1 | 22% | 2,973 | 3,837 | 864 | 29% | 1.8 | 1.8 | 0.0 | -0.4% | 122 | 124 | 2.4 | 2.0% | | 2031 | 5 | 6 | 1 | 21% | 3,000 | 3,971 | 970 | 32% | 1.8 | 1.7 | 0.0 | -0.4% | 119 | 121 | 2.1 | 1.8% | | 2032 | 5 | 6 | 2 | 36% | 2,956 | 4,388 | 1,432 | 48% | 1.7 | 1.7 | 0.0 | -0.6% | 118 | 121 | 2.5 | 2.1% | Table 0-766 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Subaru) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | n of Tec | hnolog | y Costs, | Average P | | ase, Sales
native (Ba | | | | | acturer | (Subaru) T | otal Fle | eet Betv | veen No | Action | |------------|----------------------------------|--------------------|--------------------|------------|----------------------------------|--------------------------|---------------------|---------|----------------------------------|--------------------|------------------|-----------------|----------------------------------|--------------------|-------------------|---------| | | Techr | ology C | Costs Incr | ease (\$b) | Avg. Veh | icle Price I | ncrease (| \$) | Annua | al Sales | (million | vehicles) | Labor | (persor | years) | | | | Stand | ards | Change
Alternat | | Standard | ls | Change
Alternati | | Stand | ards | Chang
Alterna | e from
ative | Stand | ards | Change
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.7 | 0.7 | 0.0 | 0.0% | 39 | 39 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 439 | 439 | 0 | 0% | 0.8 | 8.0 | 0.0 | 0.0% | 42 | 42 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 450 | 450 | 0 | 0% | 8.0 | 8.0 | 0.0 | 0.0% | 42 | 42 | 0.0 | 0.0% | | 2025 | 0 | 0 | 0 | 0% | 563 | 563 | 0 | 0% | 0.8 | 8.0 | 0.0 | 0.0% | 42 | 42 | 0.0 | 0.0% | | 2026 | 1 | 1 | 0 | 0% | 1,644 | 1,644 | 0 | 0% | 0.8 | 0.8 | 0.0 | 0.0% | 44 | 44 | 0.0 | 0.0% | | 2027 | 1 | 1 | 0 | 0% | 1,934 | 1,936 | 3 | 0% | 0.9 | 0.9 | 0.0 | -0.2% | 46 | 46 | -0.1 | -0.2% | | 2028 | 2 | 2 | 0 | 0% | 2,104 | 2,105 | 1 | 0% | 0.9 | 0.9 | 0.0 | -0.3% | 46 | 46 | -0.1 | -0.3% | | 2029 | 2 | 2 | 0 | 0% | 2,210 | 2,211 | 1 | 0% | 0.9 | 0.9 | 0.0 | -0.3% | 46 | 46 | -0.2 | -0.3% | | 2030 | 2 | 2 | 0 | 0% | 2,335 | 2,336 | 1 | 0% | 0.8 | 0.8 | 0.0 | -0.4% | 45 | 45 | -0.2 | -0.4% | | 2031 | 2 | 2 | 0 | 0% | 2,413 | 2,413 | 0 | 0% | 0.8 | 8.0 | 0.0 | -0.5% | 44 | 44 | -0.2 | -0.5% | | 2032 | 2 | 2 | 0 | -1% | 2,384 | 2,384 | 0 | 0% | 0.8 | 8.0 | 0.0 | -0.6% | 44 | 44 | -0.3 | -0.6% | Table 0-767 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Tesla) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | n of Tech | nology | Costs, A | verage Pr | | | ales, and
Baseline) | | | | | er (Tesla) | Total Fle | eet Betv | veen No | Action | |------------|----------------------------------|--------------------|---------------------|-----------|----------------------------------|--------------------|------------------------|----------|----------------------------------|--------------------|------------------|------------|----------------------------------|--------------------|-------------------|---------| | | Techn | ology Co | osts Increa | ase (\$b) | Avg. V | ehicle F | rice Incre | ase (\$) | Annua | l Sales | (million v | vehicles) | Labor | (person | years) | | | | Standa | ards | Change
Alternati | | Standa | ards | Change
Alternati | | Standa | ards | Chang
Alterna | | Standa | ards | Change
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.5 | 0.5 | 0.0 | 0.0% | 59 | 59 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 5 | 5 | 0 | 0% | 0.5 | 0.5 | 0.0 | 0.0% | 59 | 59 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 9 | 9 | 0 | 0% | 0.5 | 0.5 | 0.0 | 0.0% | 56 | 56 | 0.0 | 0.0% | | 2025 | 0 | 0 | 0 | 0% | 14 | 14 | 0 | 0% | 0.5 | 0.5 | 0.0 | 0.0% | 54 | 54 | 0.0 | 0.0% | | 2026 | 0 | 0 | 0 | 0% | 15 | 15 | 0 | 0% | 0.5 | 0.5 | 0.0 | 0.0% | 54 | 54 | 0.0 | 0.0% | | 2027 | 0 | 0 | 0 | 0% | 15 | 15 | 0 | 0% | 0.5 | 0.5 | 0.0 | -0.6% | 55 | 54 | -0.3 | -0.6% | | 2028 | 0 | 0 | 0 | 0% | 14 | 15 | 0 | 0% | 0.5 | 0.5 | 0.0 | -0.7% | 55 | 54 | -0.4 | -0.7% | | 2029 | 0 | 0 | 0 | 0% | 14 | 14 | 0 | 1% | 0.5 | 0.5 | 0.0 | -1.0% | 54 | 53 | -0.5 | -1.0% | | 2030 | 0 | 0 | 0 | 0% | 14 | 14 | 0 | 0% | 0.5 | 0.5 | 0.0 | -0.8% | 53 | 52 | -0.4 | -0.8% | | 2031 | 0 | 0 | 0 | 0% | 14 | 14 | 0 | 0% | 0.5 | 0.5 | 0.0 | -0.6% | 52 | 52 | -0.3 | -0.6% | | 2032 | 0 | 0 | 0 | 0% | 13 | 13 | 0 | 0% | 0.5 | 0.5 | 0.0 | -0.4% | 52 | 52 | -0.2 | -0.4% | Table 0-768 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Toyota) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | n of Tec | hnolog | y Costs, | Average I | | ease, Sale
native (Ba | | | | | ıfacture | r (Toyota) | Total Fle | eet Betw | een No | Action | |------------|----------------------------------|--------------------|---------------------|------------|----------------------------------|--------------------------|---------------------|---------|----------------------------------|--------------------|------------------|------------|----------------------------------|--------------------|-------------------|---------| | | Techr | ology (| Costs Incre | ease (\$b) | Avg. Veh | icle Price | Increase (| \$) | Annua | al Sales | (million | vehicles) | Labor | (person | years) | | | | Stand | ards | Change
Alternati | | Standard | s | Change
Alternati | | Stand | ards | Chang
Alterna | | Standa | ards | Change
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 2.4 | 2.4 | 0.0 | 0.0% | 144 | 144 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 211 | 211 | 0 | 0% | 2.5 | 2.5 | 0.0 | 0.0% | 151 | 151 | 0.0 | 0.0% | | 2024 | 1 | 1 | 0 | 0% | 416 | 416 | 0 | 0% | 2.4 | 2.4 | 0.0 | 0.0% | 148 | 148 | 0.0 | 0.0% | | 2025 | 1 | 1 | 0 | 0% | 482 | 482 | 0 | 0% | 2.4 | 2.4 | 0.0 | 0.0% | 147 | 147 | 0.0 | 0.0% | | 2026 | 3 | 3 | 0 | 0% | 1,390 | 1,390 | 0 | 0% | 2.5 | 2.5 | 0.0 | 0.0% | 157 | 157 | 0.0 | 0.0% | | 2027 | 3 | 3 | 0 | 0% | 1,462 | 1,466 | 4 | 0% | 2.6 | 2.5 | 0.0 | -0.3% | 162 | 161 | -0.5 | -0.3% | | 2028 | 3 | 3 | 0 | 0% | 1,602 | 1,606 | 4 | 0% | 2.6 | 2.6 | 0.0 | -0.4% | 165 | 165 | -0.7 | -0.4% | | 2029 | 4 | 4 | 0 | 0% | 1,671 | 1,677 | 6 | 0% | 2.5 | 2.5 | 0.0 | -0.5% | 164 | 163 | -0.9 | -0.5% | | 2030 | 4 | 4 | 0 | 0% | 1,754 | 1,762 | 8 | 0% | 2.5 | 2.5 | 0.0 | -0.5% | 162 | 162 | -0.8 | -0.5% | | 2031 | 4 | 4 | 0 | 0% | 1,818 | 1,827 | 9 | 0% | 2.4 | 2.4 | 0.0 | -0.5% | 161 | 160 | -0.8 | -0.5% | | 2032 | 4 | 4 | 0 | 4% | 1,794 | 1,867 | 73 | 4% | 2.4 | 2.4 | 0.0 | -0.5% | 161 | 161 | -0.5 | -0.3% | Table 0-769 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (Volvo) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | on of 160 | nnoiog | y Costs | , Average | | ease, Sale
native (Ba | | | | | ıracturei | r (volvo) 1 | otal Fie | et Betw | een No | Action | |------------|----------------------------------|--------------------|--------------------|------------|----------------------------------|--------------------------|--------------------|---------|----------------------------------|--------------------|------------------|-------------|----------------------------------|--------------------|------------------|---------| | | Techr | ology C | Costs Incr | ease (\$b) | Avg. Veh | icle Price | ncrease (| (\$) | Annua | al Sales | (million | vehicles) | Labor | (persor | n years) | | | | Stand | ards | Change
Alternat | | Standard | S | Change
Alternat | | Stand | ards | Chang
Alterna | | Stand | ards | Chang
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 0 | 0 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 3 | 3 | 0.0 | 0.0% | | 2023 | 0 | 0 | 0 | 0% | 131 | 131 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 3 | 3 | 0.0 | 0.0% | | 2024 | 0 | 0 | 0 | 0% | 167 | 167 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 3 | 3 | 0.0 | 0.0% | | 2025 | 0 | 0 | 0 | 0% | 1,051 | 1,051 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 3 | 3 | 0.0 | 0.0% | | 2026 | 0 | 0 | 0 | 0% | 1,020 | 1,020 | 0 | 0% | 0.1 | 0.1 | 0.0 | 0.0% | 3 | 3 | 0.0 | 0.0% | | 2027 | 0 | 0 | 0 | 13% | 926 | 1,160 | 234 | 25% | 0.1 | 0.1 | 0.0 | -0.2% | 3 | 3 | 0.0 | -0.3% | | 2028 | 0 | 0 | 0 | 15% | 852 | 1,330 | 478 | 56% | 0.1 | 0.1 | 0.0 | -0.4% | 3 | 3 | 0.0 | -0.5% | | 2029 | 0 | 0 | 0 | 30% | 717 | 1,429 | 712 | 99% | 0.1 | 0.1 | 0.0 | -0.4% | 3 | 3 | 0.0 | -0.6% | | 2030 | 0 | 0 | 0 | 66% | 942 | 1,471 | 529 |
56% | 0.1 | 0.1 | 0.0 | -0.5% | 3 | 3 | 0.0 | -0.3% | | 2031 | 0 | 0 | 0 | 45% | 1,181 | 1,689 | 508 | 43% | 0.1 | 0.1 | 0.0 | -0.5% | 3 | 3 | 0.0 | -0.3% | | 2032 | 0 | 0 | 0 | 53% | 1,202 | 1,768 | 566 | 47% | 0.1 | 0.1 | 0.0 | -0.6% | 3 | 3 | 0.0 | -0.3% | Table 0-770 - Comparison of Technology Costs, Average Price Increase, Sales, and Labor Utilization for Manufacturer (VWA) Total Fleet Between No Action Alternative (Baseline) and Alternative PC2LT4 | Compariso | on of Te | chnolo | gy Costs | s, Average | | ease, Sale | | | | | ufacture | er (VWA) To | tal Flee | et Betw | een No | Action | |------------|----------------------------------|--------------------|-------------------|-------------|----------------------------------|--------------------|--------------------|---------|----------------------------------|--------------------|------------------|-------------|----------------------------------|--------------------|------------------|---------| | | Techr | ology (| Costs Incr | rease (\$b) | Avg. Veh | icle Price | Increase | (\$) | Annua | al Sales | (million | vehicles) | Labor | (persor | n years) | | | | Stand | ards | Change
Alterna | | Standard | ls | Change
Alternat | | Stand | ards | Chang
Alterna | | Stand | ards | Chang
Alterna | | | Model Year | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | No Action Alternative (Baseline) | Alternative PC2LT4 | Absolute | Percent | | 2022 | 0 | 0 | 0 | 0% | 295 | 295 | 0 | 0% | 0.6 | 0.6 | 0.0 | 0.0% | 8 | 8 | 0.0 | 0.0% | | 2023 | 1 | 1 | 0 | 0% | 1,242 | 1,242 | 0 | 0% | 0.6 | 0.6 | 0.0 | 0.0% | 8 | 8 | 0.0 | 0.0% | | 2024 | 1 | 1 | 0 | 0% | 1,483 | 1,483 | 0 | 0% | 0.6 | 0.6 | 0.0 | 0.0% | 8 | 8 | 0.0 | 0.0% | | 2025 | 1 | 1 | 0 | 0% | 1,790 | 1,790 | 0 | 0% | 0.6 | 0.6 | 0.0 | 0.0% | 8 | 8 | 0.0 | 0.0% | | 2026 | 1 | 1 | 0 | 0% | 1,972 | 1,972 | 0 | 0% | 0.6 | 0.6 | 0.0 | 0.0% | 8 | 8 | 0.0 | 0.0% | | 2027 | 1 | 1 | 0 | 2% | 2,157 | 2,404 | 246 | 11% | 0.7 | 0.7 | 0.0 | -0.3% | 8 | 8 | 0.0 | 0.2% | | 2028 | 1 | 1 | 0 | 6% | 2,066 | 2,482 | 416 | 20% | 0.7 | 0.7 | 0.0 | -0.4% | 8 | 8 | 0.0 | 0.1% | | 2029 | 1 | 1 | 0 | 4% | 2,196 | 2,640 | 444 | 20% | 0.7 | 0.7 | 0.0 | -0.5% | 8 | 8 | 0.0 | 0.1% | | 2030 | 1 | 2 | 0 | 28% | 2,261 | 2,972 | 711 | 31% | 0.6 | 0.6 | 0.0 | -0.5% | 8 | 9 | 0.4 | 5.2% | | 2031 | 1 | 2 | 0 | 30% | 2,303 | 2,946 | 643 | 28% | 0.6 | 0.6 | 0.0 | -0.5% | 8 | 9 | 0.4 | 4.7% | | 2032 | 1 | 2 | 0 | 31% | 2,249 | 2,913 | 665 | 30% | 0.6 | 0.6 | 0.0 | -0.5% | 8 | 9 | 0.4 | 4.9% | ## **CAFE Compliance Credits** Table 771 - CAFE Compliance Credits (in millions) Earned by Manufacturers, Total Fleet by Model Year for No Action Alternative (Baseline) | CAFE Complia | ance Cred | dits (in m | illions) E | | Manufac | | Total Fle | et by Mo | del Year | for No A | ction | |---------------|-----------|------------|------------|-------|---------|------|-----------|----------|----------|----------|-------| | Manufacturer | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | BMW | -11 | -1 | 11 | 15 | 19 | 0 | 8 | 16 | 23 | 29 | 35 | | Ford | -6 | 14 | 72 | 38 | 12 | 5 | 7 | 24 | 24 | 33 | 42 | | GM | -35 | -42 | 45 | 68 | 30 | 0 | 0 | 0 | 1 | 14 | 15 | | Honda | 14 | 66 | 18 | -1 | 10 | 0 | 35 | 58 | 86 | 111 | 132 | | Hyundai KiH | 15 | 488 | 511 | 585 | 690 | 37 | 45 | 55 | 68 | 80 | 89 | | Hyundai KiK | 10 | 24 | 47 | 23 | 24 | 3 | 3 | 7 | 15 | 22 | 27 | | JLR | -3 | 4 | 5 | 2 | 1 | -1 | -2 | -1 | 1 | 2 | 3 | | Karma | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Lucid | 27 | 27 | 25 | 24 | 24 | 3 | 3 | 3 | 3 | 3 | 3 | | Mazda | -2 | 11 | 8 | 3 | 7 | 6 | 9 | 13 | 17 | 21 | 23 | | Mercedes-Benz | -12 | 6 | 0 | -6 | 5 | -5 | 1 | 6 | 11 | 16 | 20 | | Mitsubishi | -2 | -3 | 3 | 2 | 5 | 1 | 1 | 1 | 1 | 6 | 7 | | Nissan | -3 | 46 | 37 | 34 | 24 | -5 | 11 | 24 | 45 | 55 | 63 | | Stellantis | -52 | -30 | -9 | 70 | 9 | -3 | -2 | 31 | 50 | 64 | 76 | | Subaru | 7 | 42 | 35 | 29 | 59 | 57 | 76 | 94 | 116 | 134 | 150 | | Tesla | 3,401 | 3,472 | 3,292 | 3,180 | 3,170 | 344 | 345 | 339 | 333 | 330 | 329 | | Toyota | 48 | 84 | 89 | 43 | 112 | 85 | 124 | 164 | 205 | 252 | 290 | | Volvo | 15 | 19 | 15 | 18 | 13 | 1 | 1 | 1 | 4 | 6 | 8 | | VWA | -13 | -2 | 20 | 21 | 18 | -7 | 5 | 14 | 24 | 37 | 44 | | Total | 3,397 | 4,225 | 4,226 | 4,147 | 4,232 | 520 | 670 | 850 | 1,025 | 1,213 | 1,358 | Table 772 - CAFE Compliance Credits (in millions) Earned by Manufacturers, Total Fleet by Model Year for Alternative PC1LT3 | CAFE Complia | nce Credi | ts (in mill | ions) Ear | | lanufactu
C1LT3 | irers, To | tal Fleet | by Mode | el Year fo | or Altern | ative | |---------------|-----------|-------------|-----------|-------|--------------------|-----------|-----------|---------|------------|-----------|-------| | Manufacturer | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | BMW | -11 | -1 | 11 | 15 | 19 | -4 | 1 | 5 | 9 | 12 | 17 | | Ford | -6 | 14 | 72 | 38 | 12 | 19 | 33 | 52 | 27 | 14 | 3 | | GM | -35 | -42 | 45 | 68 | 30 | -17 | -34 | -43 | -61 | -28 | -41 | | Honda | 14 | 66 | 18 | -1 | 10 | 8 | 26 | 34 | 45 | 55 | 60 | | Hyundai KiH | 15 | 488 | 511 | 585 | 690 | 29 | 39 | 40 | 43 | 45 | 48 | | Hyundai KiK | 10 | 24 | 47 | 23 | 24 | -4 | -10 | 2 | 3 | 8 | 9 | | JLR | -3 | 4 | 5 | 2 | 1 | -3 | -4 | -4 | -4 | -2 | -1 | | Karma | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Lucid | 27 | 27 | 25 | 24 | 24 | 3 | 3 | 3 | 3 | 2 | 3 | | Mazda | -2 | 11 | 8 | 3 | 7 | 3 | 4 | 5 | 6 | 7 | 7 | | Mercedes-Benz | -12 | 6 | 0 | -6 | 5 | -7 | -4 | -1 | 5 | 7 | 8 | | Mitsubishi | -2 | -3 | 3 | 2 | 5 | -1 | -2 | -3 | -5 | 5 | 5 | | Nissan | -3 | 46 | 37 | 34 | 24 | -15 | 5 | 8 | 20 | 20 | 18 | | Stellantis | -52 | -30 | -9 | 70 | 9 | -6 | -26 | -1 | 2 | -5 | 0 | | Subaru | 7 | 42 | 35 | 29 | 59 | 46 | 51 | 57 | 67 | 73 | 76 | | Tesla | 3,401 | 3,472 | 3,292 | 3,180 | 3,170 | 340 | 338 | 329 | 320 | 315 | 312 | | Toyota | 48 | 84 | 89 | 43 | 112 | 58 | 68 | 78 | 91 | 111 | 120 | | Volvo | 15 | 19 | 15 | 18 | 13 | 0 | -2 | -2 | 1 | 2 | 2 | | VWA | -13 | -2 | 20 | 21 | 18 | -13 | -5 | -3 | 9 | 13 | 13 | | Total | 3,397 | 4,225 | 4,226 | 4,147 | 4,232 | 436 | 480 | 555 | 581 | 654 | 658 | Table 773 - CAFE Compliance Credits (in millions) Earned by Manufacturers, Total Fleet by Model Year for Alternative PC2LT4 | CAFE Complia | nce Credi | ts (in mill | ions) Ear | | lanufactu
C2LT4 | irers, To | tal Fleet | by Mode | el Year fo | or Altern | ative | |---------------|-----------|-------------|-----------|-------|--------------------|-----------|-----------|---------|------------|-----------|-------| | Manufacturer | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | BMW | -11 | -1 | 11 | 15 | 19 | -6 | -3 | 0 | 1 | 1 | 5 | | Ford | -6 | 14 | 72 | 38 | 12 | 24 | 30 | 41 | 7 | -14 | -38 | | GM | -35 | -42 | 45 | 68 | 30 | -26 | -54 | -67 | -93 | -73 | -95 | | Honda | 14 | 66 | 18 | -1 | 10 | 1 | 13 | 18 | 29 | 30 | 31 | | Hyundai KiH | 15 | 488 | 511 | 585 | 690 | 24 | 45 | 41 | 38 | 38 | 37 | | Hyundai KiK | 10 | 24 | 47 | 23 | 24 | -7 | -18 | -5 | -7 | 1 | 2 | | JLR | -3 | 4 | 5 | 2 | 1 | -3 | -5 | -6 | -6 | -4 | -4 | | Karma | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Lucid | 27 | 27 | 25 | 24 | 24 | 3 | 3 | 3 | 2 | 2 | 2 | | Mazda | -2 | 11 | 8 | 3 | 7 | 3 | 2 | 3 | 3 | 2 | 1 | | Mercedes-Benz | -12 | 6 | 0 | -6 | 5 | -9 | -7 | -6 | 0 | 0 | 0 | | Mitsubishi | -2 | -3 | 3 | 2 | 5 | -1 | -3 | -6 | -8 | 3 | 1 | | Nissan | -3 | 46 | 37 | 34 | 24 | -20 | 1 | 1 | 22 | 16 | 11 | | Stellantis | -52 | -30 | -9 | 70 | 9 | -16 | -45 | -23 | -29 | -44 | -46 | | Subaru | 7 | 42 | 35 | 29 | 59 | 41 | 42 | 43 | 47 | 48 | 46 | | Tesla | 3,401 | 3,472 | 3,292 | 3,180 | 3,170 | 337 | 332 | 320 | 309 | 301 | 295 | | Toyota | 48 | 84 | 89 | 43 | 112 | 46 | 41 | 38 | 37 | 44 | 45 | | Volvo | 15 | 19 | 15 | 18 | 13 | -1 | -3 | -5 | 1 | 1 | 2 | | VWA | -13 | -2 | 20 | 21 | 18 | -17 | -10 | -12 | 0 | 7 | 6 | | Total | 3,397 | 4,225 | 4,226 | 4,147 | 4,232 | 374 | 360 | 378 | 353 | 357 | 300 | Table 774 - CAFE Compliance Credits (in millions) Earned by Manufacturers, Total Fleet by Model Year for Alternative PC3LT5 | CAFE Complia | nce Credi | ts (in mill | ions) Ear | | lanufactu
C3LT5 | irers, To | tal Fleet | by Mode | el Year fo | or Altern | ative | |---------------|-----------|-------------|-----------|-------|--------------------|-----------|-----------|---------|------------|-----------|-------| | Manufacturer | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | BMW | -11 | -1 | 11 | 15 | 19 | -8 | -7 | -7 | -8 | -9 | -8 | | Ford | -6 | 14 | 72 | 38 | 12 | 15 | 12 | 13 | -31 | -63 | -97 | | GM | -35 | -42 | 45 | 68 | 30 | -37 | -75 | -97 | -135 | -118 | -151 | | Honda | 14 | 66 | 18 | -1 | 10 | 0 | 15 | 11 | 26 | 17 | 10 | | Hyundai KiH | 15 | 488 | 511 | 585 | 690 | 19 | 51 | 41 | 33 | 26 | 26 | | Hyundai KiK | 10 | 24 | 47 | 23 | 24 | -11 | -25 | -10 | -11 | -6 | -1 | | JLR | -3 | 4 | 5 | 2 | 1 | -3 | -6 | -7 | -7 | -7 | -7 | | Karma | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Lucid | 27 | 27 | 25 | 24 | 24 | 3 | 3 | 2 | 2 | 2 | 2 | | Mazda | -2 | 11 | 8 | 3 | 7 | 3 | 1 | 6 | 6 | 4 | 2 | | Mercedes-Benz | -12 | 6 | 0 | -6 | 5 | -10 | -10 | -10 | -5 | -5 | -8 | | Mitsubishi | -2 | -3 | 3 | 2 | 5 | -2 | -5 | -8 | -11 | 3 | 1 | | Nissan | -3 | 46 | 37 | 34 | 24 | -26 | -11 | -17 | 19 | 8 | -3 | | Stellantis | -52 | -30 | -9 | 70 | 9 | -23 | -62 | -50 | -67 | -87 | -97 | | Subaru | 7 | 42 | 35 | 29 | 59 | 36 | 32 | 28 | 26 | 22 | 13 | | Tesla | 3,401 | 3,472 | 3,292 | 3,180 | 3,170 | 334 | 326 | 310 | 297 | 285 | 277 | | Toyota | 48 | 84 | 89 | 43 | 112 | 32 | 31 | 21 | 16 | 17 | 12 | | Volvo | 15 | 19 | 15 | 18 | 13 | -1 | -5 | -7 | -2 | -3 | -1 | | VWA | -13 | -2 | 20 | 21 |
18 | -21 | -15 | -21 | -13 | -7 | -9 | | Total | 3,397 | 4,225 | 4,226 | 4,147 | 4,232 | 298 | 251 | 199 | 136 | 78 | -37 | Table 775 - CAFE Compliance Credits (in millions) Earned by Manufacturers, Total Fleet by Model Year for Alternative PC6LT8 | CAFE Complia | ince Cred | lits (in mi | llions) Ea | | Manufac
PC6LT8 | turers, T | Total Fle | et by Mo | del Yea | r for Alter | native | |---------------|-----------|-------------|------------|-------|-------------------|-----------|-----------|----------|---------|-------------|--------| | Manufacturer | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | BMW | -11 | -1 | 11 | 15 | 19 | -14 | -18 | -25 | -31 | -41 | -46 | | Ford | -6 | 14 | 72 | 38 | 12 | -9 | -44 | -78 | -155 | -225 | -301 | | GM | -35 | -42 | 45 | 68 | 30 | -66 | -138 | -199 | -274 | -299 | -378 | | Honda | 14 | 66 | 18 | -1 | 10 | -26 | 12 | 13 | -1 | -45 | -86 | | Hyundai KiH | 15 | 488 | 511 | 585 | 690 | 3 | 18 | -11 | -39 | -62 | -50 | | Hyundai KiK | 10 | 24 | 47 | 23 | 24 | -22 | -48 | -29 | -42 | -41 | -36 | | JLR | -3 | 4 | 5 | 2 | 1 | -5 | -8 | -11 | -13 | -15 | -17 | | Karma | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Lucid | 27 | 27 | 25 | 24 | 24 | 3 | 2 | 2 | 2 | 2 | 2 | | Mazda | -2 | 11 | 8 | 3 | 7 | 4 | -1 | 13 | 10 | 3 | -5 | | Mercedes-Benz | -12 | 6 | 0 | -6 | 5 | -15 | -20 | -26 | -26 | -33 | -41 | | Mitsubishi | -2 | -3 | 3 | 2 | 5 | -4 | -10 | -15 | -20 | -6 | -12 | | Nissan | -3 | 46 | 37 | 34 | 24 | -44 | -37 | -64 | -47 | -66 | -64 | | Stellantis | -52 | -30 | -9 | 70 | 9 | -50 | -119 | -140 | -191 | -247 | -295 | | Subaru | 7 | 42 | 35 | 29 | 59 | 22 | 8 | 37 | 60 | 32 | 0 | | Tesla | 3,401 | 3,472 | 3,292 | 3,180 | 3,170 | 325 | 307 | 280 | 256 | 233 | 212 | | Toyota | 48 | 84 | 89 | 43 | 112 | -9 | -45 | -97 | -109 | -113 | -52 | | Volvo | 15 | 19 | 15 | 18 | 13 | -4 | -10 | -15 | -13 | -17 | -17 | | VWA | -13 | -2 | 20 | 21 | 18 | -32 | -31 | -51 | -57 | -65 | -85 | | Total | 3,397 | 4,225 | 4,226 | 4,147 | 4,232 | 57 | -182 | -413 | -690 | -1,006 | -1,272 | ## **Consumer Impacts** Table 776 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Total Fleet, No Action Alternative (Baseline) at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consum | ners Relative to | o Alternati | | line) for the | | | ion Alterna | tive (Base | line) at a 3 | % Discoui | nt Rate | |----------------------------|------------------|-------------|------|---------------|------|------|-------------|------------|--------------|-----------|---------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Fuel Savings | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reallocated Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Refueling Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Net Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Table 777 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Passenger Car Fleet, No Action Alternative (Baseline) at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consume | rs Relative to A | | 0 (Baselin
Rate (dolla | | | | No Action | Alternativ | e (Baselin | e) at a 3% | Discount | |----------------------------|------------------|------|---------------------------|------|------|------|-----------|------------|------------|------------|----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Fuel Savings | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reallocated Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Refueling Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Net Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Table 778 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Light Truck Fleet, No Action Alternative (Baseline) at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | s Relative to A | Iternative (| |) for the L
, per Vehic | | | Action Alte | ernative (B | aseline) at | a 3% Disc | ount Rate | |------------------------------|-----------------|--------------|------|----------------------------|------|------|-------------|-------------|-------------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Fuel Savings | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reallocated Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Refueling Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Net Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Table 779 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Total Fleet, No Action Alternative (Baseline) at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consun | ners Relative to | o Alternati | | line) for the | | | ion Alterna | ative (Base | line) at a 7 | /% Discou | nt Rate | |----------------------------|------------------|-------------|------|---------------|------|------|-------------|-------------|--------------|-----------|---------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Fuel Savings | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reallocated Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Refueling Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Net Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Table 780 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Passenger Car Fleet, No Action Alternative (Baseline) at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consume | rs Relative to A | | 0 (Baselin
Rate (dolla | | | | No Action | Alternativ | e (Baselin | e) at a 7% | Discount | |----------------------------|------------------|------|---------------------------|------|------|------|-----------|------------|------------|------------|----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Fuel Savings | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reallocated Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Refueling Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Net Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0 | Table 781 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Light Truck Fleet, No Action Alternative (Baseline) at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | s Relative to A | ternative (| | e) for the L
, per Vehic | | | Action Alte | ernative (B | aseline) at | a 7% Disc | ount Rate | |------------------------------|-----------------|-------------|------|-----------------------------|------|------|-------------|-------------|-------------|-----------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Fuel Savings | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reallocated Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Refueling Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Net Consumer Benefit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Table 782 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Total Fleet, Alternative PC1LT3 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consum | ers Relative to | Alternativ | | ine) for the | | et, Alterna | tive PC1LT | 3 at a 3% | Discount F | Rate (dolla | rs), per | |----------------------------|-----------------|------------|------|--------------|------|-------------|------------|-----------|------------|-------------|----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 311 | 455 | 518 | 546 | 544 | 601 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 30 | 44 | 50 | 52 | 52 | 57 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 17 | 25 | 29 | 30 | 30 | 33 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 359 | 525 | 597 | 628 | 626 | 691 | | Fuel Savings | 10 | 10 | 10 | 10 | 10 | -240 | -385 | -524 | -585 | -683 | -784 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 20 | 32 | 43 | 49 | 58 | 65 | | Reallocated Benefit | 7 | 8 | 8 | 9 | 10 | 11 | 11 | 13 | 14 | 16 | 17 | | Refueling Benefit | 1 | 1 | 1 | 1 | 1 | -12 | -19 | -26 | -28 | -31 | -38 | | Total Consumer Benefit | -4 | -3 | -2 | -1 | -1 | 315 | 493 | 671 | 747 | 854 | 993 | | Net Consumer Benefit | -4 | -3 | -2 | -1 | -1 | -44 | -32 | 74 | 118 | 228 | 302 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 1.3 | 0.3 | 1.0 | 1.0 | 1.0 | Table 783 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Passenger Car Fleet, Alternative PC1LT3 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | s Relative to Al | ternative (| |) for the Pa | | Car Fleet, | Alternative | PC1LT3 a | t a 3% Disc | ount Rate | (dollars), | |------------------------------|------------------|-------------|------|--------------|------|------------|-------------|----------|-------------|-----------|------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 319 | 449 | 477 | 460 | 434 | 419 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 30 | 42 | 45 | 43 | 41 | 39 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 17 | 25 | 26 | 25 | 24 | 23 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 367 | 516 | 549 | 530 | 500 | 482 | | Fuel Savings | 8 | 8 | 7 | 7 | 7 | -35 | -54 | -126 | -125 | -154 | -153 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 3 | 5 | 10 | 10 | 13 | 13 | | Reallocated Benefit | 4 | 5 | 5 | 6 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | Refueling Benefit | 1 | 1 | 1 | 1 | 1 | -1 | -2 | -6 | -5 | -7 | -7 | | Total Consumer Benefit | -4 | -3 | -2 | -2 | -1 | 47 | 70 | 151 | 151 | 185 | 185 | | Net Consumer Benefit | -4 | -3 | -2 | -2 | -1 | -321 | -447 | -397 | -379 | -315 | -296 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 2.0 | 1.0 | 1.0 | 1.0 | 1.0 | Table 784 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Light Truck Fleet, Alternative PC1LT3 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | s Relative to A | Iternative | | e) for the l | | k Fleet, Alt | ernative P | C1LT3 at a | a 3% Disco | unt Rate (c | lollars), per | |------------------------------|-----------------|------------|------|--------------|------|--------------|------------|------------|------------|-------------|---------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 306 | 457 | 535 | 584 | 595 | 687 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 29 | 43 | 50 | 55 | 56 | 65 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 17 | 25 | 29 | 32 | 32 | 38 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 352 | 525 | 615 | 672 | 684 | 790 | | Fuel Savings | 11 | 11 | 11 | 11 | 12 | -345 | -549 | -717 | -804 | -935 | -1,083 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 27 | 45 | 59 | 66 | 80 | 89 | | Reallocated Benefit | 8 | 9 | 10 | 10 | 11 | 12 | 13 | 15 | 16 | 17 | 19 | | Refueling Benefit | 0 | 1 | 1 | 1 | 1 | -17 | -26 | -35 | -39 | -43 | -53 | | Total Consumer Benefit | -3 | -2 | -2 | -1 | -1 | 449 | 700 | 920 | 1,029 | 1,172 | 1,374 | | Net Consumer Benefit | -3 | -2 | -2 | -1 | -1 | 96 | 175 | 305 | 357 | 488 | 584 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 1.0 | 1.0 | Table 785 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Total Fleet, Alternative PC1LT3 at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consum | ers Relative to | Alternativ | | ine) for the | | et, Alterna | ive PC1LT | 3 at a 7% | Discount F | Rate (dolla | rs), per | |----------------------------|-----------------|------------|------|--------------|------|-------------|-----------|-----------|------------|-------------|----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 311 | 455 | 518 | 546 | 544 | 601 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 25 | 36 | 41 | 43 | 43 | 47 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 17 | 25 | 29 | 30 | 30 | 33 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 354 | 517 | 589 | 620 | 618 | 682 | | Fuel Savings | 6 | 6 | 6 | 6 | 7 | -185 | -297 | -405 | -452 | -528 | -608 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 15 | 25 | 33 | 38 | 45 | 50 | | Reallocated Benefit | 4 | 4 | 5 | 5 | 6 | 7 | 7 | 9 | 10 | 11 | 12 | | Refueling Benefit | 0 | 0 | 0 | 0 | 1 | -9 | -15 | -20 | -22 | -25 | -30 | | Total Consumer Benefit | -3 | -2 | -2 | -1 | -1 | 249 | 390 | 533 | 593 | 675 | 789 | | Net Consumer Benefit | -3 | -2 | -2 | -1 | -1 | -105 | -128 | -56 | -27 | 58 | 107 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 1.3 | 1.3 | 1.3 | 1.0 | 0.3 | Table 786 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Passenger Car Fleet, Alternative PC1LT3 at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | s Relative to Al | ternative (| |) for the Pa | | Car Fleet, A | Alternative | PC1LT3 at | t a 7% Disc | count Rate | (dollars) | |------------------------------|------------------|-------------|------|--------------|------|--------------|-------------|-----------|-------------|------------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 319 | 449 | 477 | 460 | 434 | 419 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 25 | 35 | 37 | 36 | 34 | 33 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 17 | 25 | 26 | 25 | 24 | 23 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 362 | 509 | 541 | 522 | 493 | 475 | | Fuel Savings | 5 | 5 | 5 | 5 | 5 | -27 | -43 | -98 | -97 | -120 | -119 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 8 | 8 | 10 | 10 | | Reallocated Benefit | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | | Refueling Benefit | 0 | 0 | 0 | 1 | 1 | -1 | -2 | -5 | -4 | -5 | -5 | | Total Consumer Benefit | -3 | -3 | -2 | -1 | -1 | 36 | 54 | 117 | 117 | 144 | 144 | | Net Consumer Benefit | -3 | -3 | -2 | -1 | -1 | -326 | -456 | -424 | -405 | -349 | -331 | | Payback | 0.0 | 0.0
 0.0 | 0.0 | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 1.0 | 1.0 | Table 787 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Light Truck Fleet, Alternative PC1LT3 at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | Relative to Al | ternative (| |) for the Li
ehicle Mod | | Fleet, Alte | rnative PC | 1LT3 at a | 7% Discoι | unt Rate (d | ollars), per | |------------------------------|----------------|-------------|------|----------------------------|------|-------------|------------|-----------|-----------|-------------|--------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 306 | 457 | 535 | 584 | 595 | 687 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 24 | 36 | 42 | 46 | 47 | 54 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 17 | 25 | 29 | 32 | 32 | 38 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 348 | 518 | 607 | 662 | 674 | 779 | | Fuel Savings | 6 | 7 | 7 | 7 | 8 | -266 | -423 | -553 | -622 | -723 | -839 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 21 | 34 | 45 | 51 | 62 | 69 | | Reallocated Benefit | 4 | 5 | 5 | 6 | 7 | 8 | 8 | 10 | 12 | 13 | 14 | | Refueling Benefit | 0 | 0 | 0 | 0 | 1 | -13 | -21 | -27 | -30 | -34 | -41 | | Total Consumer Benefit | -2 | -2 | -2 | -1 | -1 | 355 | 554 | 731 | 818 | 928 | 1,094 | | Net Consumer Benefit | -2 | -2 | -2 | -1 | -1 | 7 | 36 | 124 | 156 | 254 | 315 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | Table 788 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Total Fleet, Alternative PC2LT4 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consum | ners Relative to | o Alternati | | eline) for th
ehicle Mo | | eet, Altern | ative PC2 | _T4 at a 3% | % Discoun | t Rate (doll | ars), per | |----------------------------|------------------|-------------|------|----------------------------|------|-------------|-----------|-------------|-----------|--------------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 369 | 578 | 716 | 777 | 810 | 932 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 36 | 55 | 69 | 74 | 77 | 87 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 21 | 32 | 40 | 43 | 44 | 51 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 425 | 666 | 826 | 896 | 933 | 1,072 | | Fuel Savings | 14 | 14 | 14 | 14 | 14 | -263 | -461 | -652 | -765 | -890 | -1,043 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 21 | 37 | 51 | 61 | 73 | 83 | | Reallocated Benefit | 9 | 11 | 11 | 13 | 14 | 15 | 16 | 18 | 20 | 21 | 23 | | Refueling Benefit | 1 | 1 | 1 | 1 | 1 | -13 | -23 | -34 | -38 | -43 | -52 | | Total Consumer Benefit | -5 | -4 | -3 | -2 | -1 | 347 | 597 | 850 | 987 | 1,126 | 1,326 | | Net Consumer Benefit | -5 | -4 | -3 | -2 | -1 | -78 | -69 | 25 | 91 | 193 | 254 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 1.3 | 1.3 | 1.0 | 1.3 | 1.0 | Table 789 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Passenger Car Fleet, Alternative PC2LT4 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | Relative to Al | ternative 0 | | for the Pa
Vehicle Mo | | ar Fleet, A | Iternative | PC2LT4 at | a 3% Disc | ount Rate | (dollars), | |------------------------------|----------------|-------------|------|--------------------------|------|-------------|------------|-----------|-----------|-----------|------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 384 | 554 | 697 | 683 | 650 | 654 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 36 | 52 | 66 | 64 | 61 | 61 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 21 | 30 | 38 | 37 | 35 | 36 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 442 | 638 | 802 | 786 | 749 | 753 | | Fuel Savings | 12 | 11 | 10 | 10 | 9 | -69 | -129 | -237 | -251 | -282 | -302 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 6 | 10 | 18 | 20 | 23 | 25 | | Reallocated Benefit | 6 | 7 | 8 | 8 | 9 | 10 | 11 | 13 | 14 | 16 | 17 | | Refueling Benefit | 1 | 1 | 1 | 1 | 1 | -3 | -6 | -11 | -12 | -13 | -14 | | Total Consumer Benefit | -6 | -5 | -3 | -2 | -1 | 88 | 157 | 280 | 297 | 334 | 358 | | Net Consumer Benefit | -6 | -5 | -3 | -2 | -1 | -353 | -481 | -522 | -489 | -415 | -395 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 2.0 | 2.0 | 1.0 | 2.0 | 1.0 | Table 790 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Light Truck Fleet, Alternative PC2LT4 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | s Relative to A | Alternative | | e) for the
Vehicle M | | ck Fleet, A | lternative | PC2LT4 at | a 3% Disco | unt Rate (d | ollars), per | |------------------------------|-----------------|-------------|------|-------------------------|------|-------------|------------|-----------|------------|-------------|--------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 360 | 587 | 722 | 819 | 885 | 1,064 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 34 | 55 | 68 | 77 | 83 | 100 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 20 | 32 | 39 | 45 | 48 | 58 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 414 | 675 | 830 | 943 | 1,018 | 1,224 | | Fuel Savings | 15 | 15 | 15 | 16 | 16 | -364 | -625 | -859 | -1,012 | -1,178 | -1,389 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 28 | 49 | 66 | 80 | 96 | 111 | | Reallocated Benefit | 11 | 13 | 14 | 15 | 16 | 17 | 18 | 20 | 23 | 24 | 26 | | Refueling Benefit | 1 | 1 | 1 | 1 | 1 | -18 | -31 | -44 | -51 | -57 | -69 | | Total Consumer Benefit | -4 | -3 | -3 | -2 | -1 | 478 | 812 | 1,128 | 1,316 | 1,501 | 1,779 | | Net Consumer Benefit | -4 | -3 | -3 | -2 | -1 | 64 | 137 | 298 | 373 | 483 | 555 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | Table 791 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Total Fleet, Alternative PC2LT4 at a 7% Discount Rate (dollars), per Vehicle Model Year | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | |----------------------------|------|------|------|------|------|------|------|------|------|------|-------| | Price Increase | 0 | 0 | 0 | 0 | 0 | 369 | 578 | 716 | 777 | 810 | 932 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 30 | 46 | 57 | 62 | 64 | 73 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 21 | 32 | 40 | 43 | 44 | 51 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 419 | 657 | 814 | 884 | 920 | 1,057 | | Fuel Savings | 8 | 8 | 8 | 9 | 9 | -203 | -356 | -504 | -592 | -689 | -809 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 16 | 28 | 40 | 47 | 56 | 65 | | Reallocated Benefit | 5 | 6 | 7 | 7 | 8 | 9 | 10 | 12 | 14 | 16 | 17 | | Refueling Benefit | 0 | 1 | 1 | 1 | 1 | -10 | -18 | -27 | -30 | -33 | -40 | | Total Consumer Benefit | -4 | -3 | -2 | -2 | -2 | 274 | 473 | 678 | 786 | 893 | 1,056 | | Net Consumer Benefit | -4 | -3 | -2 | -2 | -2 | -145 | -183 | -136 | -98 | -27 | -1 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 2.3 | 1.6 | 2.3 | 1.3 | 1.3 | Table 792 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Passenger Car Fleet, Alternative PC2LT4 at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | s Relative to Al | ternative (| | for the Pa | | Car Fleet, A | Iternative | PC2LT4 at | a 7% Disc | ount Rate | (dollars), | |------------------------------|------------------|-------------|------|------------|------|--------------|------------|-----------|-----------|-----------|------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 384 | 554 | 697 | 683 | 650 | 654 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 30 | 43 | 55 | 53 | 51 | 51 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 21 | 30 | 38 | 37 | 35 | 36 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 436 | 629 | 791 | 775 | 738 | 743 | | Fuel Savings | 7 | 7 | 7 | 6 | 6 | -54 | -100 | -184 | -196 | -220 | -236 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 5 | 8 | 14 | 15 | 18 | 20 | | Reallocated Benefit | 3 | 4 | 4 | 5 | 6 | 6 | 7 | 9 | 10 | 12 | 13 | | Refueling Benefit | 0 | 1 | 1 | 1 | 1 | -2 | -5 | -9 | -9 | -10 | -11 | | Total Consumer Benefit | -4 | -4 | -3 | -2 | -1 | 68 | 121 | 217 | 231 | 260 | 279 | | Net Consumer Benefit | -4 | -4 | -3 | -2 | -1
 -368 | -508 | -574 | -544 | -478 | -463 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 3.0 | 3.0 | 3.0 | 2.0 | 2.0 | Table 793 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Light Truck Fleet, Alternative PC2LT4 at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | s Relative to A | Iternative | | e) for the l | | c Fleet, Alt | ernative P | C2LT4 at a | 7% Disco | unt Rate (d | ollars), per | |------------------------------|-----------------|------------|------|--------------|------|--------------|------------|------------|----------|-------------|--------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 360 | 587 | 722 | 819 | 885 | 1,064 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 28 | 46 | 57 | 64 | 69 | 83 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 20 | 32 | 39 | 45 | 48 | 58 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 409 | 666 | 819 | 930 | 1,004 | 1,207 | | Fuel Savings | 9 | 9 | 9 | 10 | 11 | -280 | -483 | -663 | -782 | -911 | -1,076 | | Mobility Benefit | 0 | 0 | 0 | 0 | 0 | 22 | 38 | 51 | 62 | 74 | 86 | | Reallocated Benefit | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | 18 | 19 | | Refueling Benefit | 0 | 0 | 1 | 1 | 1 | -14 | -25 | -34 | -40 | -44 | -54 | | Total Consumer Benefit | -3 | -3 | -2 | -2 | -2 | 378 | 644 | 901 | 1,050 | 1,194 | 1,420 | | Net Consumer Benefit | -3 | -3 | -2 | -2 | -2 | -31 | -22 | 83 | 120 | 189 | 212 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 2.0 | 1.0 | 2.0 | 1.0 | 1.0 | Table 794 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Total Fleet, Alternative PC3LT5 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consur | ners Relative t | o Alternat | | eline) for t
Vehicle M | | Fleet, Alte | rnative PC | 3LT5 at a 3 | % Discour | nt Rate (doll | ars), per | |----------------------------|-----------------|------------|------|---------------------------|------|-------------|------------|-------------|-----------|---------------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 490 | 743 | 957 | 1,097 | 1,194 | 1,602 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 47 | 71 | 92 | 104 | 113 | 150 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 27 | 41 | 53 | 60 | 65 | 87 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 4 | 7 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 565 | 857 | 1,105 | 1,265 | 1,376 | 1,846 | | Fuel Savings | 26 | 27 | 26 | 27 | 27 | -264 | -514 | -732 | -910 | -1,072 | -1,296 | | Mobility Benefit | 0 | 0 | 0 | 1 | 1 | 23 | 44 | 61 | 76 | 91 | 106 | | Reallocated Benefit | 17 | 19 | 21 | 23 | 25 | 27 | 30 | 33 | 36 | 39 | 41 | | Refueling Benefit | 1 | 2 | 2 | 2 | 2 | -13 | -25 | -37 | -44 | -50 | -61 | | Total Consumer Benefit | -11 | -9 | -7 | -5 | -4 | 361 | 656 | 947 | 1,160 | 1,348 | 1,638 | | Net Consumer Benefit | -11 | -9 | -7 | -5 | -4 | -204 | -200 | -158 | -106 | -28 | -207 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 1.6 | 1.6 | 2.0 | 2.3 | 2.3 | Table 795 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Passenger Car Fleet, Alternative PC3LT5 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumer | s Relative to A | lternative | | | Passenge
Model Yea | | , Alternativ | ve PC3LT5 | at a 3% Dis | scount Rate | e (dollars), | |-----------------------------|-----------------|------------|------|------|-----------------------|------|--------------|-----------|-------------|-------------|--------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 501 | 725 | 984 | 1,004 | 1,058 | 1,205 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 47 | 68 | 93 | 95 | 100 | 113 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 27 | 40 | 54 | 55 | 58 | 66 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 4 | 7 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 577 | 834 | 1,133 | 1,157 | 1,219 | 1,392 | | Fuel Savings | 23 | 22 | 20 | 19 | 19 | -69 | -190 | -315 | -396 | -480 | -529 | | Mobility Benefit | 0 | 0 | 1 | 1 | 1 | 7 | 16 | 25 | 32 | 41 | 46 | | Reallocated Benefit | 11 | 12 | 14 | 15 | 16 | 19 | 20 | 23 | 26 | 28 | 30 | | Refueling Benefit | 2 | 2 | 2 | 2 | 3 | -2 | -8 | -14 | -18 | -21 | -24 | | Total Consumer Benefit | -13 | -11 | -8 | -6 | -4 | 96 | 234 | 378 | 474 | 571 | 628 | | Net Consumer Benefit | -13 | -11 | -8 | -6 | -4 | -480 | -600 | -755 | -683 | -648 | -764 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 3.0 | 3.0 | 2.0 | 3.0 | 3.0 | Table 796 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Light Truck Fleet, Alternative PC3LT5 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumer | s Relative to | Alternative | 0 (Baseli | | Light Tru | | Alternative | PC3LT5 a | t a 3% Disc | ount Rate (| dollars), per | |-----------------------------|---------------|-------------|-----------|------|-----------|------|-------------|----------|-------------|-------------|---------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 483 | 750 | 942 | 1,139 | 1,257 | 1,795 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 46 | 71 | 89 | 107 | 119 | 169 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 26 | 41 | 51 | 62 | 69 | 98 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 4 | 7 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 556 | 864 | 1,085 | 1,312 | 1,448 | 2,069 | | Fuel Savings | 28 | 30 | 30 | 30 | 32 | -364 | -673 | -943 | -1,156 | -1,355 | -1,643 | | Mobility Benefit | 0 | 0 | 0 | 1 | 1 | 30 | 57 | 77 | 96 | 115 | 135 | | Reallocated Benefit | 21 | 23 | 25 | 27 | 29 | 31 | 34 | 37 | 41 | 44 | 47 | | Refueling Benefit | 1 | 1 | 2 | 2 | 2 | -17 | -32 | -46 | -55 | -63 | -80 | | Total Consumer Benefit | -9 | -8 | -6 | -5 | -4 | 494 | 861 | 1,229 | 1,485 | 1,718 | 2,102 | | Net Consumer Benefit | -9 | -8 | -6 | -5 | -4 | -62 | -3 | 144 | 173 | 270 | 33 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 2.0 | 2.0 | 2.0 | Table 797 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Total Fleet, Alternative PC3LT5 at a 7% Discount Rate (dollars), per Vehicle Model Year | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | |----------------------------|------|------|------|------|------|------|------|-------|-------|-------|--------| | Price Increase | 0 | 0 | 0 | 0 | 0 | 490 | 743 | 957 | 1,097 | 1,194 | 1,602 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 39 | 59 | 77 | 87 | 94 | 124 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 27 | 41 | 53 | 60 | 65 | 87 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 4 | 7 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 557 | 845 | 1,090 | 1,248 | 1,357 | 1,820 | | Fuel Savings | 15 | 16 | 16 | 17 | 17 | -206 | -399 | -568 | -706 | -832 | -1,006 | | Mobility Benefit | 0 | 0 | 0 | 0 | 1 | 17 | 34 | 47 | 59 | 71 | 82 | | Reallocated Benefit | 9 | 10 | 12 | 13 | 15 | 17 | 19 | 22 | 25 | 28 | 30 | | Refueling Benefit | 1 | 1 | 1 | 1 | 2 | -10 | -20 | -29 | -34 | -39 | -48 | | Total Consumer Benefit | -7 | -6 | -5 | -4 | -4 | 285 | 515 | 750 | 917 | 1,065 | 1,300 | | Net Consumer Benefit | -7 | -6 | -5 | -4 | -4 | -272 | -330 | -339 | -330 | -292 | -520 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3 | 2.6 | 2.6 | 2.6 | 2.3 | 3.3 | Table 798 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Passenger Car Fleet, Alternative PC3LT5 at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumer | s Relative to A | Iternative | | | Passenge
Model Yea | | t, Alternati | ve PC3LT5 | at a 7% Di | scount Rat | e (dollars), | |-----------------------------|-----------------|------------|------|------|-----------------------|------|--------------|-----------|------------|------------|--------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 501 | 725 | 984 | 1,004 | 1,058 | 1,205 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 39 | 57 | 77 | 79 | 83 | 94 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 27 | 40 | 54 | 55 | 58 | 66 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 4 | 7 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 569 | 823 | 1,117 | 1,141 | 1,203 | 1,373 | | Fuel Savings | 14 | 14 | 13 | 13 | 12 | -55 | -149 | -246 | -310 | -376 | -415 | | Mobility Benefit | 0 | 0 | 0 | 0 | 1 | 5 | 13 | 20 | 25 | 32 | 36 | | Reallocated Benefit | 6 | 7 | 8 | 9 | 10 | 12 | 13 | 15 | 18 | 20 | 23 | | Refueling Benefit | 1 | 1 | 1 | 1 | 2 | -2 | -7 | -12 | -14 |
-17 | -19 | | Total Consumer Benefit | -9 | -8 | -6 | -5 | -4 | 74 | 180 | 292 | 369 | 446 | 490 | | Net Consumer Benefit | -9 | -8 | -6 | -5 | -4 | -495 | -643 | -825 | -773 | -757 | -882 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 4.0 | 4.0 | 4.0 | 3.0 | 4.0 | Table 799 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Light Truck Fleet, Alternative PC3LT5 at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumers | s Relative to A | Alternative | | | Light Truc | k Fleet, A | Alternative | PC3LT5 at | a 7% Disco | ount Rate (d | ollars), per | |------------------------------|-----------------|-------------|------|------|------------|------------|-------------|-----------|------------|--------------|--------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 483 | 750 | 942 | 1,139 | 1,257 | 1,795 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 38 | 59 | 74 | 89 | 99 | 141 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 26 | 41 | 51 | 62 | 69 | 98 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 4 | 7 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 548 | 852 | 1,070 | 1,294 | 1,428 | 2,041 | | Fuel Savings | 16 | 17 | 18 | 19 | 20 | -283 | -522 | -730 | -895 | -1,049 | -1,274 | | Mobility Benefit | 0 | 0 | 0 | 0 | 1 | 23 | 44 | 59 | 74 | 89 | 105 | | Reallocated Benefit | 11 | 12 | 14 | 15 | 17 | 19 | 21 | 25 | 28 | 31 | 34 | | Refueling Benefit | 1 | 1 | 1 | 1 | 2 | -14 | -25 | -37 | -44 | -49 | -62 | | Total Consumer Benefit | -6 | -6 | -5 | -4 | -4 | 390 | 677 | 976 | 1,178 | 1,360 | 1,673 | | Net Consumer Benefit | -6 | -6 | -5 | -4 | -4 | -158 | -175 | -94 | -116 | -68 | -368 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 3.0 | Table 800 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Total Fleet, Alternative PC6LT8 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consur | mers Relative | to Alterna | tive 0 (Bas | | the Total
lodel Year | | ernative PC | 6LT8 at a | 3% Discour | nt Rate (doll | ars), per | |----------------------------|---------------|------------|-------------|------|-------------------------|------|-------------|-----------|------------|---------------|-----------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 666 | 1,149 | 1,696 | 2,315 | 2,754 | 3,485 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 64 | 110 | 162 | 220 | 261 | 327 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 37 | 63 | 94 | 128 | 151 | 190 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 10 | 18 | 26 | 41 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 769 | 1,326 | 1,962 | 2,681 | 3,192 | 4,043 | | Fuel Savings | 49 | 49 | 48 | 49 | 50 | -248 | -586 | -931 | -1,296 | -1,554 | -2,002 | | Mobility Benefit | 0 | 1 | 1 | 1 | 1 | 24 | 53 | 78 | 97 | 119 | 149 | | Reallocated Benefit | 33 | 38 | 41 | 45 | 49 | 53 | 58 | 63 | 68 | 72 | 75 | | Refueling Benefit | 3 | 3 | 3 | 4 | 4 | -11 | -28 | -47 | -63 | -73 | -95 | | Total Consumer Benefit | -18 | -14 | -9 | -6 | -4 | 371 | 770 | 1,229 | 1,706 | 2,002 | 2,555 | | Net Consumer Benefit | -18 | -14 | -9 | -6 | -4 | -398 | -557 | -733 | -976 | -1,190 | -1,489 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | 2.6 | 3.6 | 4.6 | 5.0 | 5.6 | Table 801 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Passenger Car Fleet, Alternative PC6LT8 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consume | rs Relative to | Alternativ | | line) for th | | | eet, Altern | ative PC6L1 | Γ8 at a 3% D | iscount Rat | e (dollars), | |----------------------------|----------------|------------|------|--------------|------|------|-------------|-------------|--------------|-------------|--------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 704 | 1,204 | 1,785 | 2,285 | 2,656 | 3,080 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 66 | 114 | 168 | 216 | 250 | 290 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 38 | 66 | 98 | 125 | 145 | 168 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 10 | 18 | 26 | 41 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 810 | 1,388 | 2,061 | 2,644 | 3,077 | 3,580 | | Fuel Savings | 43 | 39 | 35 | 34 | 32 | -62 | -408 | -677 | -901 | -1,123 | -1,426 | | Mobility Benefit | 1 | 1 | 1 | 1 | 1 | 8 | 35 | 56 | 73 | 92 | 115 | | Reallocated Benefit | 22 | 25 | 27 | 30 | 32 | 36 | 39 | 43 | 47 | 50 | 53 | | Refueling Benefit | 3 | 3 | 4 | 4 | 4 | 0 | -19 | -32 | -43 | -52 | -68 | | Total Consumer Benefit | -23 | -17 | -11 | -6 | -3 | 107 | 501 | 814 | 1,081 | 1,333 | 1,683 | | Net Consumer Benefit | -23 | -17 | -11 | -6 | -3 | -703 | -887 | -1,247 | -1,562 | -1,744 | -1,897 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 7.0 | Table 802 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Light Truck Fleet, Alternative PC6LT8 at a 3% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumer | s Relative to | Alternative | e 0 (Baseli | | Light Tru
Iodel Year | | Alternative | PC6LT8 at | a 3% Disco | unt Rate (do | ollars), per | |-----------------------------|---------------|-------------|-------------|------|-------------------------|------|-------------|-----------|------------|--------------|--------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 647 | 1,121 | 1,652 | 2,326 | 2,797 | 3,680 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 61 | 106 | 156 | 219 | 264 | 347 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 35 | 61 | 90 | 127 | 153 | 201 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 10 | 18 | 26 | 41 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 745 | 1,293 | 1,908 | 2,690 | 3,239 | 4,270 | | Fuel Savings | 53 | 55 | 55 | 56 | 59 | -347 | -683 | -1,075 | -1,501 | -1,770 | -2,263 | | Mobility Benefit | 0 | 0 | 1 | 1 | 2 | 32 | 61 | 87 | 108 | 131 | 165 | | Reallocated Benefit | 40 | 45 | 49 | 53 | 57 | 61 | 66 | 72 | 77 | 82 | 85 | | Refueling Benefit | 2 | 3 | 3 | 4 | 5 | -16 | -31 | -53 | -72 | -83 | -108 | | Total Consumer Benefit | -15 | -12 | -9 | -6 | -5 | 507 | 910 | 1,447 | 2,016 | 2,331 | 2,955 | | Net Consumer Benefit | -15 | -12 | -9 | -6 | -5 | -238 | -383 | -460 | -675 | -909 | -1,315 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 4.0 | 5.0 | Table 803 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Total Fleet, Alternative PC6LT8 at a 7% Discount Rate (dollars), per Vehicle Model Year | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | |----------------------------|------|------|------|------|------|------|-------|-------|--------|--------|--------| | Price Increase | 0 | 0 | 0 | 0 | 0 | 666 | 1,149 | 1,696 | 2,315 | 2,754 | 3,485 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 53 | 91 | 135 | 183 | 217 | 272 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 37 | 63 | 94 | 128 | 151 | 190 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 10 | 18 | 26 | 41 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 758 | 1,308 | 1,935 | 2,644 | 3,148 | 3,988 | | Fuel Savings | 29 | 30 | 30 | 31 | 33 | -196 | -457 | -725 | -1,006 | -1,206 | -1,555 | | Mobility Benefit | 0 | 0 | 1 | 1 | 1 | 18 | 41 | 60 | 76 | 92 | 116 | | Reallocated Benefit | 18 | 21 | 23 | 26 | 30 | 33 | 37 | 42 | 47 | 52 | 56 | | Refueling Benefit | 2 | 2 | 2 | 2 | 3 | -9 | -22 | -37 | -50 | -57 | -74 | | Total Consumer Benefit | -13 | -11 | -8 | -6 | -5 | 291 | 602 | 974 | 1,359 | 1,592 | 2,034 | | Net Consumer Benefit | -13 | -11 | -8 | -6 | -5 | -467 | -706 | -961 | -1,285 | -1,556 | -1,954 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 6.6 | 33.8 | 36.3 | 38.0 | 95.6 | Table 804 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Passenger Car Fleet, Alternative PC6LT8 at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumer | s Relative to | Alternative | | | Passeng
Model Ye | | et, Alterna | tive PC6LT8 | 3 at a 7% Dis | scount Rate | e (dollars), | |-----------------------------|---------------|-------------|------|------|---------------------|------|-------------|-------------|---------------|-------------|--------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 704 | 1,204 | 1,785 | 2,285 | 2,656 | 3,080 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 55 | 94 | 140 | 179 | 208 | 241 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 38 | 66 | 98 | 125 | 145 | 168 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 10 | 18 | 26 | 41 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 |
799 | 1,369 | 2,033 | 2,607 | 3,035 | 3,531 | | Fuel Savings | 27 | 25 | 23 | 23 | 22 | -50 | -320 | -530 | -706 | -881 | -1,120 | | Mobility Benefit | 0 | 0 | 1 | 1 | 1 | 6 | 27 | 43 | 57 | 72 | 91 | | Reallocated Benefit | 12 | 14 | 15 | 18 | 20 | 23 | 25 | 29 | 33 | 37 | 40 | | Refueling Benefit | 2 | 2 | 2 | 2 | 3 | -1 | -15 | -26 | -34 | -41 | -53 | | Total Consumer Benefit | -16 | -13 | -10 | -7 | -4 | 80 | 387 | 634 | 848 | 1,046 | 1,326 | | Net Consumer Benefit | -16 | -13 | -10 | -7 | -4 | -719 | -982 | -1,399 | -1,760 | -1,988 | -2,206 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 10.0 | 95.0 | 96.0 | 96.0 | 97.0 | Table 805 - Average Impacts to Consumers Relative to Alternative 0 (Baseline) for the Light Truck Fleet, Alternative PC6LT8 at a 7% Discount Rate (dollars), per Vehicle Model Year | Average Impacts to Consumer | s Relative to A | Alternative | e 0 (Baseli | | e Light Tri
Nodel Yea | | Alternative | PC6L18 a | it a 7% Disc | ount Rate (d | ioliars), pe | |-----------------------------|-----------------|-------------|-------------|------|--------------------------|------|-------------|----------|--------------|--------------|--------------| | Model Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Price Increase | 0 | 0 | 0 | 0 | 0 | 647 | 1,121 | 1,652 | 2,326 | 2,797 | 3,680 | | Implicit Opportunity Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Financing Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Increase in Insurance Cost | 0 | 0 | 0 | 0 | 0 | 51 | 88 | 130 | 182 | 219 | 289 | | Increase in Taxes/Fees | 0 | 0 | 0 | 0 | 0 | 35 | 61 | 90 | 127 | 153 | 201 | | Lost Consumer Surplus | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 10 | 18 | 26 | 41 | | Total Consumer Cost | 0 | 0 | 0 | 0 | 0 | 735 | 1,275 | 1,881 | 2,653 | 3,195 | 4,211 | | Fuel Savings | 31 | 33 | 34 | 35 | 38 | -273 | -532 | -834 | -1,161 | -1,369 | -1,751 | | Mobility Benefit | 0 | 0 | 1 | 1 | 1 | 24 | 47 | 67 | 84 | 101 | 128 | | Reallocated Benefit | 21 | 25 | 27 | 31 | 34 | 38 | 42 | 48 | 54 | 59 | 63 | | Refueling Benefit | 1 | 2 | 2 | 2 | 3 | -13 | -25 | -42 | -57 | -65 | -85 | | Total Consumer Benefit | -11 | -10 | -8 | -6 | -5 | 399 | 714 | 1,151 | 1,612 | 1,859 | 2,361 | | Net Consumer Benefit | -11 | -10 | -8 | -6 | -5 | -336 | -561 | -730 | -1,042 | -1,336 | -1,850 | | Payback | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 5.0 | 6.0 | 9.0 | 11.0 | 95.0 | # **Environmental Impacts** Table 806 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Total Fleet in Calendar Year 2030, by Alternative (1,000 metric tons) | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Total Fleet in Calendar Year 2030, by Alternative (1,000 metric tons) | | | | | | | | |--|----------|--------|--------|--------|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fleetwide Change in Upstream E | missions | | | | | | | | CO Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Tailpipe En | nissions | | | | | | | | CO Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Total Emiss | sions | | | | | | | | CO Total | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Total | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Total | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Total | 0 | 0 | 0 | 0 | | | | | PM Total | 0 | 0 | 0 | 0 | | | | Table 807 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Passenger Car Fleet in Calendar Year 2030, by Alternative (1,000 metric tons) | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Passenger Car Fleet in Calendar Year 2030, by Alternative (1,000 metric tons) | | | | | | | | |--|--------------|--------|--------|--------|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fleetwide Change in Upstrea | am Emissions | | | • | | | | | CO Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Tailpipe | Emissions | · | , | , | | | | | CO Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Total Er | missions | | | , | | | | | CO Total | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Total | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Total | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Total | 0 | 0 | 0 | 0 | | | | | PM Total | 0 | 0 | 0 | 0 | | | | Table 808 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Light Truck Fleet in Calendar Year 2030, by Alternative (1,000 metric tons) | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Light Truck Fleet in Calendar Year 2030, by Alternative (1,000 metric tons) | | | | | | | | |--|-------------|--------|--------|--------|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fleetwide Change in Upstream | m Emissions | | • | · | | | | | CO Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Tailpipe | Emissions | | | • | | | | | CO Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Total En | nissions | | • | • | | | | | CO Total | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Total | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Total | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Total | 0 | 0 | 0 | 0 | | | | | PM Total | 0 | 0 | 0 | 0 | | | | | | | | | | | | | Table 809 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Total Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Total Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | | | | | | | | |--|---------------|--------|--------|--------|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fleetwide Change in Upstre | eam Emissions | | · | | | | | | CO Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Upstream | -1.0 | -1.3 | -1.6 | -2.6 | | | | | NOx Upstream | 0.0 | -0.1 | -0.2 | -0.3 | | | | | SO2 Upstream | 0.1 | 0.2 | 0.1 | 0.2 | | | | | PM Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Tailpir | oe Emissions | | • | | | | | | CO Tailpipe | -2.2 | -3.2 | -3.8 | -7.9 | | | | | VOC Tailpipe | -0.1 | -0.2 | -0.2 | -0.5 | | | | | NOx Tailpipe | 0.0 | -0.1 | -0.1 | -0.2 | | | | | SO2 Tailpipe | 0.0 | 0.0 | 0.0 | -0.1 | | | | | PM Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Total | Emissions | | • | | | | | | CO Total | -2.1 | -3.2 | -3.8 | -7.9 | | | | | VOC Total | -1.1 | -1.5 | -1.9 | -3.1 | | | | | NOx Total | -0.1 | -0.1 | -0.3 | -0.4 | | | | | SO2 Total | 0.1 | 0.2 | 0.1 | 0.1 | | | | | PM Total | 0 | 0 | 0 | 0 | | | | Table 810 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Passenger Car Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Passenger Car Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | | | | | | | | |--|----------|--------|--------|--------|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fleetwide Change in Upstream I | missions | · | • | · | | | | | CO Upstream | 0.0 | 0.0 | 0.0 | -0.1 | | | | | VOC Upstream | -0.1 | -0.1 | -0.2 | -0.6 | | | | | NOx Upstream | 0.0 | 0.0 | -0.1 | -0.2 | | | | | SO2 Upstream | 0.0 | 0.0 | 0.0 | -0.1 | | | | | PM Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Tailpipe En | nissions | • | | | | | | | CO Tailpipe | 0.0 | 0.0 | 0.1 | -0.4 | | | | | VOC Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Total Emiss | sions | • | | | | | | | CO Total | 0.0 | 0.0 | 0.1 | -0.5 | | | | | VOC Total | -0.1 | -0.1 | -0.2 | -0.6 | | | | | NOx Total | 0.0 | 0.0 | -0.1 | -0.2 | | | | | SO2 Total | 0 | 0 | 0 | -0.1 | | | | | PM
Total | 0 | 0 | 0 | 0 | | | | Table 811 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Light Truck Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Light Truck Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | | | | | | | | |--|---------------|--------|--------|--------|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fleetwide Change in Upstr | eam Emissions | · | · | | | | | | CO Upstream | 0.0 | 0.0 | 0.0 | 0.1 | | | | | VOC Upstream | -0.9 | -1.2 | -1.4 | -2.1 | | | | | NOx Upstream | 0.0 | 0.0 | -0.1 | -0.1 | | | | | SO2 Upstream | 0.1 | 0.2 | 0.2 | 0.3 | | | | | PM Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Tailpi | pe Emissions | • | • | , | | | | | CO Tailpipe | -2.1 | -3.2 | -3.9 | -7.5 | | | | | VOC Tailpipe | -0.1 | -0.2 | -0.2 | -0.5 | | | | | NOx Tailpipe | 0.0 | -0.1 | -0.1 | -0.2 | | | | | SO2 Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Total | Emissions | • | • | , | | | | | CO Total | -2.1 | -3.2 | -3.9 | -7.4 | | | | | VOC Total | -1.0 | -1.4 | -1.7 | -2.5 | | | | | NOx Total | -0.1 | -0.1 | -0.2 | -0.2 | | | | | SO2 Total | 0 | -0.1 | -0.2 | -0.3 | | | | | PM Total | 0.1 | 0.2 | 0.2 | 0.3 | | | | Table 812 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Total Fleet in Calendar Year 2040, by Alternative (1,000 metric tons) | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Total Fleet in Calendar Year 2040, by Alternative (1,000 metric tons) | | | | | | | | |--|----------------|--------|--------|--------|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fleetwide Change in Upst | ream Emissions | | | | | | | | CO Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Upstream | -0.7 | -1.0 | -1.3 | -2.0 | | | | | NOx Upstream | 0.0 | -0.1 | -0.1 | -0.2 | | | | | SO2 Upstream | 0.1 | 0.1 | 0.1 | 0.2 | | | | | PM Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Tailp | ipe Emissions | | | • | | | | | CO Tailpipe | -2.6 | -3.9 | -4.5 | -9.2 | | | | | VOC Tailpipe | -0.1 | -0.2 | -0.2 | -0.5 | | | | | NOx Tailpipe | -0.1 | -0.1 | -0.1 | -0.2 | | | | | SO2 Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Total | l Emissions | | | • | | | | | CO Total | -2.6 | -3.8 | -4.5 | -9.3 | | | | | VOC Total | -0.9 | -1.2 | -1.5 | -2.5 | | | | | NOx Total | -0.1 | -0.1 | -0.2 | -0.4 | | | | | SO2 Total | 0.1 | 0.1 | 0.1 | 0.2 | | | | | PM Total | 0 | 0 | 0 | 0 | | | | Table 813 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Passenger Car Fleet in Calendar Year 2040, by Alternative (1,000 metric tons) | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Passenger Car Fleet in Calendar Year 2040, by Alternative (1,000 metric tons) | | | | | | | | |--|----------|--------|--------|--------|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fleetwide Change in Upstream E | missions | | | · | | | | | CO Upstream | 0.0 | 0.0 | 0.0 | -0.1 | | | | | VOC Upstream | 0.0 | -0.1 | -0.2 | -0.4 | | | | | NOx Upstream | 0.0 | 0.0 | -0.1 | -0.1 | | | | | SO2 Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Tailpipe Em | nissions | • | | • | | | | | CO Tailpipe | 0.0 | 0.0 | 0.1 | -0.5 | | | | | VOC Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | NOx Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | SO2 Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Total Emiss | sions | • | | | | | | | CO Total | 0.0 | 0.0 | 0.1 | -0.5 | | | | | VOC Total | -0.1 | -0.1 | -0.1 | -0.5 | | | | | NOx Total | 0.0 | 0.0 | -0.1 | -0.2 | | | | | SO2 Total | 0 | 0 | 0 | 0 | | | | | PM Total | 0 | 0 | 0 | 0 | | | | Table 814 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Light Truck Fleet in Calendar Year 2040, by Alternative (1,000 metric tons) | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) from the MY 2032 Light Truck Fleet in Calendar Year 2040, by Alternative (1,000 metric tons) | | | | | | | | |--|-------------|--------|--------|--------|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fleetwide Change in Upstrea | m Emissions | | · | · | | | | | CO Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | VOC Upstream | -0.7 | -0.9 | -1.1 | -1.6 | | | | | NOx Upstream | 0.0 | 0.0 | -0.1 | -0.1 | | | | | SO2 Upstream | 0.1 | 0.1 | 0.1 | 0.2 | | | | | PM Upstream | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Tailpipe | Emissions | | | , | | | | | CO Tailpipe | -2.6 | -3.9 | -4.6 | -8.8 | | | | | VOC Tailpipe | -0.1 | -0.2 | -0.2 | -0.5 | | | | | NOx Tailpipe | -0.1 | -0.1 | -0.1 | -0.2 | | | | | SO2 Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | PM Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Fleetwide Change in Total Er | nissions | | | , | | | | | CO Total | -2.6 | -3.9 | -4.6 | -8.7 | | | | | VOC Total | -0.8 | -1.1 | -1.3 | -2.0 | | | | | NOx Total | -0.1 | -0.1 | -0.2 | -0.2 | | | | | SO2 Total | 0.1 | 0.1 | 0.1 | 0.2 | | | | | PM Total | 0.0 | 0.0 | 0.0 | 0.0 | | | | Table 815 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) Over Lifetimes of Vehicles Through 2032 for the Total Fleet, by Alternative (1,000 metric tons) | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) Over Lifetimes of Vehicles Through 2032 for the Total Fleet, by Alternative (1,000 metric tons) | | | | | | | | |---|---------------|--------|--------|--------|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | Fleetwide Change in Upstr | eam Emissions | | · | · | | | | | CO Upstream | 2.6 | 3.1 | 0.6 | 2.5 | | | | | VOC Upstream | -58.0 | -73.5 | -83.8 | -117.0 | | | | | NOx Upstream | -0.2 | -0.5 | -5.4 | -4.7 | | | | | SO2 Upstream | 9.0 | 11.2 | 9.0 | 14.7 | | | | | PM Upstream | 0.3 | 0.3 | 0.0 | 0.2 | | | | | Fleetwide Change in Tailpi | pe Emissions | | • | • | | | | | CO Tailpipe | -61.4 | -92.2 | 82.7 | 151.2 | | | | | VOC Tailpipe | -3.8 | -5.8 | 10.4 | 15.5 | | | | | NOx Tailpipe | -0.6 | -0.9 | 2.4 | 4.5 | | | | | SO2 Tailpipe | -1.3 | -1.6 | -1.8 | -2.5 | | | | | PM Tailpipe | -0.4 | -0.5 | -0.3 | -0.6 | | | | | Fleetwide Change in Total | Emissions | | | • | | | | | CO Total | -58.8 | -89.1 | 83.4 | 153.8 | | | | | VOC Total | -61.8 | -79.3 | -73.4 | -101.5 | | | | | NOx Total | -0.8 | -1.4 | -3.0 | -0.2 | | | | | SO2 Total | 7.7 | 9.6 | 7.2 | 12.2 | | | | | PM Total | -0.1 | -0.2 | -0.3 | -0.4 | | | | Table 816 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) Over Lifetimes of Vehicles Through 2032 for the Light Truck Fleet, by Alternative (1,000 metric tons) | Incremental Change in C
Through | | | ve 0 (Baseline) Over I | | |------------------------------------|-------------|--------|------------------------|--------| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Fleetwide Change in Upstrear | n Emissions | | · | · | | CO Upstream | 3.4 | 4.6 | 2.5 | 6.3 | | VOC Upstream | -54.8 | -67.3 | -75.3 | -96.3 | | NOx Upstream | 1.4 | 2.3 | -1.7 | 2.9 | | SO2 Upstream | 9.7 | 12.4 | 10.5 | 17.4 | | PM Upstream | 0.4 | 0.5 | 0.3 | 0.7 | | Fleetwide Change in Tailpipe | Emissions | | • | , | | CO Tailpipe | -129.5 | -192.8 | -109.3 | -203.3 | | VOC Tailpipe | -10.0 | -14.8 | -7.2 | -16.5 | | NOx Tailpipe | -1.8 | -2.7 | -0.9 | -1.5 | | SO2 Tailpipe | -1.2 | -1.5 | -1.6 | -2.1 | | PM Tailpipe | -0.4 | -0.6 | -0.5 | -0.9 | | Fleetwide Change in Total Em | nissions | | • | , | | CO Total | -126.1 | -188.2 | -106.8 | -197.1 | | VOC Total | -64.7 | -82.2 | -82.5 | -112.9 | | NOx Total | -0.4 | -0.4 | -2.6 | 1.5 | | SO2 Total | 8.5 | 10.9 | 8.9 | 15.3 | | PM Total | 0 | -0.1 | -0.2 | -0.2 | Table 817 - Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) Over Lifetimes of Vehicles Through 2032 for the Passenger Car Fleet, by Alternative (1,000 metric tons) | | Incremental Change in Criteria Emissions Relative to Alternative 0 (Baseline) Over Lifetimes of Vehicles Through 2032 for the Passenger Car Fleet, by Alternative (1,000 metric tons) | | | | | | | | | | |-----------------------------|---|--------|--------|--------|--|--|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | Fleetwide Change in Upstre | eam Emissions | | • | | | | | | | | | CO Upstream | -0.8 | -1.4 | -1.8 | -3.7 | | | | | | | | VOC Upstream | -3.2 | -6.2 | -8.5 | -20.7 | | | | | | | | NOx Upstream | -1.6 | -2.8 | -3.7 | -7.7 | | | | | | | | SO2 Upstream | -0.7 |
-1.2 | -1.5 | -2.7 | | | | | | | | PM Upstream | -0.1 | -0.2 | -0.3 | -0.5 | | | | | | | | Fleetwide Change in Tailpip | e Emissions | | • | • | | | | | | | | CO Tailpipe | 68.1 | 100.5 | 192.0 | 354.6 | | | | | | | | VOC Tailpipe | 6.2 | 9.0 | 17.6 | 32.0 | | | | | | | | NOx Tailpipe | 1.2 | 1.8 | 3.2 | 6.0 | | | | | | | | SO2 Tailpipe | -0.1 | -0.1 | -0.2 | -0.4 | | | | | | | | PM Tailpipe | 0.1 | 0.1 | 0.2 | 0.4 | | | | | | | | Fleetwide Change in Total B | Emissions | | • | • | | | | | | | | CO Total | 67.3 | 99.1 | 190.1 | 350.8 | | | | | | | | VOC Total | 3.0 | 2.8 | 9.1 | 11.3 | | | | | | | | NOx Total | -0.4 | -1.0 | -0.4 | -1.7 | | | | | | | | SO2 Total | -0.8 | -1.3 | -1.7 | -3.1 | | | | | | | | PM Total | 0 | -0.1 | -0.1 | -0.1 | | | | | | | Table 818 - Total Criteria Emissions from the MY 2032 Total Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | Total Criteria Emissions f | rom the MY 2032 Tota | al Fleet in Calendar | Year 2035, by Altern | ative (1,000 metric tons) | |-----------------------------|----------------------|----------------------|----------------------|---------------------------| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Fleetwide Change in Upstre | eam Emissions | | | · | | CO Upstream | 4.8 | 4.8 | 4.8 | 4.8 | | VOC Upstream | 12.9 | 12.6 | 12.3 | 11.3 | | NOx Upstream | 9.0 | 9.0 | 8.9 | 8.8 | | SO2 Upstream | 5.2 | 5.2 | 5.2 | 5.3 | | PM Upstream | 0.7 | 0.7 | 0.7 | 0.7 | | Fleetwide Change in Tailpip | e Emissions | • | | | | CO Tailpipe | 117.1 | 116.1 | 115.5 | 111.4 | | VOC Tailpipe | 7.5 | 7.4 | 7.4 | 7.1 | | NOx Tailpipe | 2.6 | 2.5 | 2.5 | 2.4 | | SO2 Tailpipe | 0.2 | 0.2 | 0.2 | 0.2 | | PM Tailpipe | 0.3 | 0.3 | 0.3 | 0.3 | | Fleetwide Change in Total B | Emissions | | | • | | CO Total | 122.0 | 120.9 | 120.3 | 116.2 | | VOC Total | 20.4 | 20.0 | 19.6 | 18.4 | | NOx Total | 11.6 | 11.5 | 11.4 | 11.2 | | SO2 Total | 5.4 | 5.4 | 5.4 | 5.5 | | PM Total | 1 | 1 | 1 | 1 | Table 819 - Total Criteria Emissions from the MY 2032 Passenger Car Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | Total Criteria Emissions from the MY 2032 Passenger Car Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | | | | | | | | | |---|----------------|--------|--------|----------|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Fleetwide Change in Upst | ream Emissions | | • | <u>.</u> | | | | | | CO Upstream | 1.4 | 1.4 | 1.4 | 1.3 | | | | | | VOC Upstream | 3.1 | 3.0 | 2.9 | 2.6 | | | | | | NOx Upstream | 2.6 | 2.5 | 2.5 | 2.4 | | | | | | SO2 Upstream | 1.6 | 1.5 | 1.5 | 1.5 | | | | | | PM Upstream | 0.2 | 0.2 | 0.2 | 0.2 | | | | | | Fleetwide Change in Tailp | ipe Emissions | • | | • | | | | | | CO Tailpipe | 31.7 | 31.8 | 31.9 | 31.4 | | | | | | VOC Tailpipe | 2.1 | 2.1 | 2.1 | 2.1 | | | | | | NOx Tailpipe | 0.7 | 0.7 | 0.7 | 0.7 | | | | | | SO2 Tailpipe | 0.1 | 0.1 | 0.1 | 0.0 | | | | | | PM Tailpipe | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | Fleetwide Change in Total | l Emissions | | | • | | | | | | CO Total | 33.1 | 33.2 | 33.2 | 32.7 | | | | | | VOC Total | 5.2 | 5.1 | 5.0 | 4.6 | | | | | | NOx Total | 3.3 | 3.3 | 3.2 | 3.1 | | | | | | SO2 Total | 1.7 | 1.6 | 1.6 | 1.5 | | | | | | PM Total | 0.3 | 0.3 | 0.3 | 0.3 | | | | | Table 820 - Total Criteria Emissions from the MY 2032 Light Truck Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | Total Criteria Emissions from the MY 2032 Light Truck Fleet in Calendar Year 2035, by Alternative (1,000 metric tons) | | | | | | | | | |---|-----------------|--------|--------|--------|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Fleetwide Change in Ups | tream Emissions | · | · | · | | | | | | CO Upstream | 3.4 | 3.4 | 3.4 | 3.5 | | | | | | VOC Upstream | 9.9 | 9.6 | 9.3 | 8.7 | | | | | | NOx Upstream | 6.5 | 6.5 | 6.4 | 6.4 | | | | | | SO2 Upstream | 3.6 | 3.6 | 3.6 | 3.8 | | | | | | PM Upstream | 0.5 | 0.5 | 0.5 | 0.5 | | | | | | Fleetwide Change in Tail | pipe Emissions | • | • | , | | | | | | CO Tailpipe | 85.4 | 84.3 | 83.6 | 80.0 | | | | | | VOC Tailpipe | 5.4 | 5.3 | 5.3 | 5.1 | | | | | | NOx Tailpipe | 1.8 | 1.8 | 1.8 | 1.7 | | | | | | SO2 Tailpipe | 0.2 | 0.2 | 0.2 | 0.2 | | | | | | PM Tailpipe | 0.2 | 0.2 | 0.2 | 0.2 | | | | | | Fleetwide Change in Tota | al Emissions | | | , | | | | | | CO Total | 88.8 | 87.8 | 87.0 | 83.5 | | | | | | VOC Total | 15.2 | 14.9 | 14.6 | 13.7 | | | | | | NOx Total | 8.3 | 8.3 | 8.2 | 8.1 | | | | | | SO2 Total | 3.8 | 3.8 | 3.8 | 4 | | | | | | PM Total | 0.7 | 0.7 | 0.7 | 0.7 | | | | | Table 821 - Total Criteria Emissions from the MY 2032 Total Fleet in Calendar Year 2040, by Alternative (1,000 metric tons) | Total Criteria Emissions | from the MY 2032 Tota | al Fleet in Calendar | Year 2040, by Altern | ative (1,000 metric tons) | |----------------------------|-----------------------|----------------------|----------------------|---------------------------| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Fleetwide Change in Upstr | eam Emissions | | | · | | CO Upstream | 3.6 | 3.6 | 3.6 | 3.6 | | VOC Upstream | 9.9 | 9.7 | 9.4 | 8.6 | | NOx Upstream | 6.7 | 6.7 | 6.6 | 6.5 | | SO2 Upstream | 3.7 | 3.7 | 3.7 | 3.7 | | PM Upstream | 0.5 | 0.5 | 0.5 | 0.5 | | Fleetwide Change in Tailpi | pe Emissions | | | • | | CO Tailpipe | 139.1 | 137.8 | 137.2 | 132.4 | | VOC Tailpipe | 7.2 | 7.1 | 7.1 | 6.9 | | NOx Tailpipe | 2.6 | 2.6 | 2.6 | 2.5 | | SO2 Tailpipe | 0.2 | 0.2 | 0.2 | 0.2 | | PM Tailpipe | 0.4 | 0.4 | 0.4 | 0.4 | | Fleetwide Change in Total | Emissions | | | • | | CO Total | 142.7 | 141.5 | 140.8 | 136.0 | | VOC Total | 17.1 | 16.8 | 16.5 | 15.5 | | NOx Total | 9.3 | 9.3 | 9.2 | 9.0 | | SO2 Total | 3.9 | 3.9 | 3.9 | 3.9 | | PM Total | 0.9 | 0.9 | 0.9 | 0.9 | Table 822 - Total Criteria Emissions from the MY 2032 Passenger Car Fleet in Calendar Year 2040, by Alternative (1,000 metric tons) | Total Criteria Emissio | ons from the MY 2032 Pa | assenger Car Fleet in
metric tons) | n Calendar Year 2040 |), by Alternative (1,000 | |--------------------------|-------------------------|---------------------------------------|----------------------|--------------------------| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Fleetwide Change in Ups | tream Emissions | | | | | CO Upstream | 1.0 | 1.0 | 1.0 | 1.0 | | VOC Upstream | 2.4 | 2.3 | 2.3 | 2.0 | | NOx Upstream | 1.9 | 1.9 | 1.9 | 1.8 | | SO2 Upstream | 1.1 | 1.1 | 1.1 | 1.1 | | PM Upstream | 0.1 | 0.1 | 0.1 | 0.1 | | Fleetwide Change in Tail | pipe Emissions | | | | | CO Tailpipe | 38.4 | 38.5 | 38.6 | 38.0 | | VOC Tailpipe | 2.0 | 2.0 | 2.0 | 2.0 | | NOx Tailpipe | 0.7 | 0.7 | 0.7 | 0.7 | | SO2 Tailpipe | 0.0 | 0.0 | 0.0 | 0.0 | | PM Tailpipe | 0.1 | 0.1 | 0.1 | 0.1 | | Fleetwide Change in Tota | al Emissions | | , | | | CO Total | 39.5 | 39.5 | 39.6 | 39.0 | | VOC Total | 4.4 | 4.3 | 4.3 | 4.0 | | NOx Total | 2.6 | 2.6 | 2.5 | 2.4 | | SO2 Total | 1.1 | 1.1 | 1.1 | 1.1 | | PM Total | 0.2 | 0.2 | 0.2 | 0.2 | Table 823 - Total Criteria Emissions from the MY 2032 Light Truck Fleet in Calendar Year 2040, by Alternative (1,000 metric tons) | Total Criteria Emissions from the MY 2032 Light Truck Fleet in Calendar Year 2040, by Alternative (1,000 metric tons) | | | | | | | | | |---|----------------|--------|--------|--------|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Fleetwide Change in Upstr | ream Emissions | | - | | | | | | | CO Upstream | 2.6 | 2.6 | 2.6 | 2.6 | | | | | | VOC Upstream | 7.5 | 7.3 | 7.1 | 6.6 | | | | | | NOx Upstream | 4.8 | 4.8 | 4.8 | 4.8 | | | | | | SO2 Upstream | 2.6 | 2.6 | 2.6 | 2.7 | | | | | | PM Upstream | 0.3 | 0.4 | 0.3 | 0.4 | | | | | | Fleetwide Change in Tailpi | ipe Emissions | | | | | | | | | CO Tailpipe | 100.6 | 99.3 | 98.6 | 94.4 | | | | | | VOC Tailpipe | 5.2 | 5.1 | 5.1 | 4.9 | | | | | | NOx Tailpipe | 1.9 | 1.9 | 1.9 | 1.8 | | | | | | SO2 Tailpipe | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | PM Tailpipe | 0.3 | 0.3 | 0.3 | 0.3 | | | | | | Fleetwide Change in Total | Emissions | | | | | | | | | CO Total | 103.2 | 101.9 | 101.2 | 97.0 | | | | | | VOC Total | 12.7 | 12.5 | 12.2 | 11.5 | | | | | | NOx Total | 6.8 | 6.7 | 6.7 | 6.6 | | | | | | SO2 Total | 2.7 | 2.7 | 2.7 | 2.8 | | | | | | PM Total | 0.6 | 0.7 | 0.6 | 0.7 | | | | | ## **Electrification Costs** Table 824 - Total Electrification Costs for Manufacturer (Total), MY 2032 Total Fleet | Total Electrification Costs for Manufacturer (Total), MY 2032 Total Fleet | | | | | | | | | | |---|-------------|--------|--------|--------|--|--|--|--|--| | | Alternative | | | | | | | | | | | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | Retrievable Electrification Costs (\$b) | 26.2 | 35.7 | 42.5 | 65.9 | | | | | | | Electrification Tax Credits (\$b) | 1.1 | 1.5 | 1.6 | 2.6 | | | | | | | Irretrievable Electrification Costs (\$b) | 4.9 | 6.7 | 8.0 | 12.4 | | | | | | | Total Electrification Costs (\$b) | 20.1 | 27.3 | 32.8 | 50.5 | | | | | | #### Table 825 - Total Electrification Costs for Manufacturer (Total), MY 2032 Passenger Car Fleet | Total Electrification Costs for Manufacturer (Total), MY 2032 Passenger Car Fleet | | | | | | | | | | |---|---------------|-----|--------|--------|--|--|--|--|--| | | Alternative | | | | | | | | | | | PC1LT3 PC2LT4 | | PC3LT5 | PC6LT8 | | | | | | | Retrievable Electrification Costs (\$b) | 1.7 | 4.1 | 6.5 | 19.6 | | | | | | | Electrification Tax Credits (\$b) | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | |
Irretrievable Electrification Costs (\$b) | 0.3 | 0.8 | 1.3 | 4.0 | | | | | | | Total Electrification Costs (\$b) | 1.4 | 3.2 | 5.2 | 15.6 | | | | | | #### Table 826 - Total Electrification Costs for Manufacturer (Total), MY 2032 Light Truck Fleet | Total Electrification Costs for Manufacturer (Total), MY 2032 Light Truck Fleet | | | | | | | | | |---|-------------|--------|--------|--------|--|--|--|--| | | Alternative | | | | | | | | | | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | Retrievable Electrification Costs (\$b) | 24.5 | 31.6 | 36.0 | 46.3 | | | | | | Electrification Tax Credits (\$b) | 1.1 | 1.5 | 1.6 | 2.6 | | | | | | Irretrievable Electrification Costs (\$b) | 4.5 | 5.8 | 6.6 | 8.4 | | | | | | Total Electrification Costs (\$b) | 18.7 | 24.0 | 27.6 | 35.0 | | | | | ### **Fleet Characteristics** Table 827 - Changes in Fleet Characteristics for Model Years 2022-2032 for No Action Alternative (Baseline) | Changes in Fleet Characterist | Changes in Fleet Characteristics for Model Years 2022-2032 for No Action Alternative (Baseline) | | | | | | | | | | | | | |---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------| | Model Year | 20
22 | 20
23 | 20
24 | 20
25 | 20
26 | 20
27 | 20
28 | 20
29 | 20
30 | 20
31 | 20
32 | Tot
al | Av
g. | | Changes in Fleet Size, Usage and Fuel Consumption | | | | | | | | | | | | | | | Changes in Fleet Size (m) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Light Truck Share (%) | 64
% | 66
% | 68
% | 69
% | 70
% | 70
% | 70
% | 71
% | 70
% | 70
% | 70
% | N/
A | 69
% | | Pass. Car Share (%) | 36
% | 34
% | 32
% | 31
% | 30
% | 30
% | 30
% | 29
% | 30
% | 30
% | 30
% | N/
A | 31
% | | VMT from Rebound (b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Volume - Total (b gallons) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Volume - Lt. Truck (b gallons) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Volume - Pass. Car (b gallons) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Changes in Fatalities by Source | | | | | | | | | | | | | | | Fatalities from Rebound Miles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Fatalities from Curb Weight Change | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Changes in Fatalities | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Changes in Non-Fatal Safety Impacts | S | • | • | • | • | • | - | • | • | • | • | • | , | | Injuries from Rebound Miles (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | | Injuries from Curb Weight (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Change in Injuries (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Property Damage from Rebound Miles (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Property Damage from Curb
Weight (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Property Damaged Vehicles (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Table 828 - Changes in Fleet Characteristics for Model Years 2022-2032 for Alternative PC1LT3 | Changes in Fleet Characteristics for Model Years 2022-2032 for Alternative PC1LT3 | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|----------| | Model Year | 20
22 | 20
23 | 20
24 | 20
25 | 20
26 | 20
27 | 20
28 | 20
29 | 20
30 | 20
31 | 20
32 | Tot
al | Av
g. | | Changes in Fleet Size, Usage and F | uel Co | nsum | otion | | | | | | | | | | | | Changes in Fleet Size (m) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -
0.6 | -
0.9 | -
0.9 | -
0.9 | 0.9 | 0.9 | -
5.0 | -
0.5 | | Light Truck Share (%) | 64
% | 66
% | 68
% | 69
% | 70
% | 70
% | 71
% | 71
% | 71
% | 70
% | 70
% | N/
A | 69
% | | Pass. Car Share (%) | 36
% | 34
% | 32
% | 31
% | 30
% | 30
% | 29
% | 29
% | 29
% | 30
% | 30
% | N/
A | 31
% | | VMT from Rebound (b) | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 3.2 | 5.4 | 7.3 | 7.9 | 9.3 | 10.
4 | 43.
5 | 4.0 | | Fuel Volume - Total (b gallons) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -
1.9 | 3.0 | 3.9 | -
4.1 | -
4.6 | -
5.2 | -
22.
3 | 2.0 | | Fuel Volume - Lt. Truck (b gallons) | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 1.7 | 2.7 | -
3.5 | 3.8 | -
4.2 | -
4.8 | -
20.
5 | 1.9 | | Fuel Volume - Pass. Car (b gallons) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - 0.2 | - 0.3 | -
0.4 | -
0.4 | - 0.4 | -
0.4 | -
1.9 | - 0.2 | | Changes in Fatalities by Source | • | · | · | • | • | | • | • | • | • | • | • | • | | Fatalities from Rebound Miles | 0 | 0 | 0 | 0 | 0 | 15 | 25 | 33 | 36 | 42 | 47 | 19
8 | 18 | | Fatalities from Curb Weight Change | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | -2 | -1 | -2 | -1 | 0 | | Total Changes in Fatalities | 11 | 11 | 12 | 12 | 13 | 1 | -4 | 3 | 3 | 14 | 18 | 94 | 9 | | Changes in Non-Fatal Safety Impact | S | | | | | | | | | | | | | | Injuries from Rebound Miles (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3 | 3.8 | 5.2 | 5.6 | 6.5 | 7.3 | 31 | 3 | | Injuries from Curb Weight (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | - 0.3 | -
0.1 | 0.0 | | Total Change in Injuries (thousands) | 1.6 | 1.7 | 1.8 | 1.8 | 2.0 | 0.1 | -
0.7 | 0.5 | 0.5 | 2.2 | 2.8 | 14.
4 | 1.3 | | Property Damage from Rebound
Miles (thousands) | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 6.9 | 11.
7 | 15.
8 | 17.
2 | 20.
0 | 22.
4 | 94.
4 | 8.6 | | Property Damage from Curb
Weight (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.8 | 0.6 | -
0.8 | -
0.6 | -
0.9 | - 0.2 | 0.0 | | Total Property Damaged Vehicles (thousands) | 3.8 | 4.2 | 4.4 | 4.7 | 5.2 | -
0.6 | -
2.8 | 1.0 | 1.4 | 6.7 | 8.9 | 36.
8 | 3.3 | Table 829 - Changes in Fleet Characteristics for Model Years 2022-2032 for Alternative PC3LT5 | Changes in Fleet Characteristics for Model Years 2022-2032 for Alternative PC3LT5 | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|---------------|----------| | Model Year | 20
22 | 20
23 | 20
24 | 20
25 | 20
26 | 20
27 | 20
28 | 20
29 | 20
30 | 20
31 | 20
32 | Tot
al | Av
g. | | Changes in Fleet Size, Usage and F | uel Co | nsum | ption | , | , | • | | ! | | , | ! | , | | | Changes in Fleet Size (m) | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 1.0 | 1.6 | 1.9 | -
2.1 | -
2.2 | 3.1 | -
11.
6 | -
1.1 | | Light Truck Share (%) | 64
% | 66
% | 68
% | 69
% | 70
% | 70
% | 71
% | 71
% | 71
% | 70
% | 70
% | N/A | 69
% | | Pass. Car Share (%) | 36
% | 34
% | 32
% | 31
% | 30
% | 30
% | 29
% | 29
% | 29
% | 30
% | 30
% | N/A | 31
% | | VMT from Rebound (b) | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 3.8 | 7.7 | 10.
5 | 12.
7 | 14.
9 | 17.
1 | 67.
1 | 6.1 | | Fuel Volume - Total (b gallons) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | -
2.2 | -
4.1 | -
5.5 | -
6.6 | -
7.4 | 9.0 | -
33.
8 | -
3.1 | | Fuel Volume - Lt. Truck (b gallons) | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 1.9 | 3.5 | -
4.6 | -
5.6 | 6.3 | -
7.8 | -
29.
0 | -
2.6 | | Fuel Volume - Pass. Car (b gallons) | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | - 0.3 | -
0.6 | -
0.9 | 1.0 | -
1.1 | -
1.1 | -4.8 | - 0.4 | | Changes in Fatalities by Source | | | | | | | | | | | | | | | Fatalities from Rebound Miles | 0 | 0 | 1 | 1 | 1 | 17 | 35 | 48 | 58 | 67 | 77 | 305 | 28 | | Fatalities from Curb Weight Change | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -2 | 0 | 1 | -2 | 0 | | Total Changes in Fatalities | 29 | 31 | 32 | 34 | 36 | 2 | -8 | -7 | -10 | -3 | -37 | 99 | 9 | | Changes in Non-Fatal Safety Impact | ts | | | | | | | | | | | | | | Injuries from Rebound Miles (thousands) | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 2.7 | 5.4 | 7.5 | 9.0 | 10.
4 | 12.
0 | 47 | 4 | | Injuries from Curb Weight (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | -
0.1 | 0.0 | 0.2 | 0.0 | 0.2 | -0.2 | 0.0 | | Total Change in Injuries (thousands) | 4.3 | 4.7 | 4.8 | 5.0 | 5.5 | 0.2 | -
1.4 | -
1.2 | -
1.6 | -
0.5 | -
5.6 | 14.
3 | 1.3 | | Property Damage from Rebound Miles (thousands) | 0.1 | 0.1 | 0.2 | 0.3 | 0.3 | 8.1 | 16.
6 | 22.
8 | 27.
6 | 32.
1 | 36.
9 | 145
.1 | 13.
2 | | Property Damage from Curb
Weight (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.2 | 0.1 | 0.7 | 0.0 | 0.7 | -0.5 | 0.0 | | Total Property Damaged Vehicles (thousands) | 10.
1 | 11. | 11.
7 | 12.
6 | 14.
0 | 2.0 | 6.7 | -
5.6 | 6.3 | 2.2 | -
16.
7 | 20.
0 | 1.8 | Table 830 - Changes in Fleet Characteristics for Model Years 2022-2032 for Alternative PC2LT4 | Changes in Fleet Chara | acteris | stics f | or Mo | del Y | ears 2 | 022-2 | 032 fc | or Alte | rnativ | e PC | 2LT4 | | | |---|----------|----------|----------|----------|----------|----------|----------
----------|----------|----------|----------|---------------|----------| | Model Year | 20
22 | 20
23 | 20
24 | 20
25 | 20
26 | 20
27 | 20
28 | 20
29 | 20
30 | 20
31 | 20
32 | Tot
al | Av
g. | | Changes in Fleet Size, Usage and F | uel Co | nsum | ption | , | , | | • | • | • | | , | • | | | Changes in Fleet Size (m) | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | -
1.1 | -
1.3 | -
1.4 | -
1.4 | -
1.5 | -7.3 | 0.7 | | Light Truck Share (%) | 64
% | 66
% | 68
% | 69
% | 70
% | 70
% | 71
% | 71
% | 71
% | 70
% | 70
% | N/A | 69
% | | Pass. Car Share (%) | 36
% | 34
% | 32
% | 31
% | 30
% | 30
% | 29
% | 29
% | 29
% | 30
% | 30
% | N/A | 31
% | | VMT from Rebound (b) | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 3.5 | 6.4 | 8.9 | 10.
2 | 11.
8 | 13.
6 | 54.
7 | 5.0 | | Fuel Volume - Total (b gallons) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -
2.1 | 3.6 | -
4.8 | -
5.4 | -
6.1 | 7.0 | -
28.
5 | -
2.6 | | Fuel Volume - Lt. Truck (b gallons) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1.8 | 3.2 | -
4.1 | -
4.8 | -
5.4 | 6.3 | -
25.
2 | 2.3 | | Fuel Volume - Pass. Car (b gallons) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - 0.3 | -
0.4 | -
0.7 | -
0.7 | -
0.7 | -
0.7 | -3.3 | - 0.3 | | Changes in Fatalities by Source | • | • | • | • | | • | | | | | • | • | • | | Fatalities from Rebound Miles | 0 | 0 | 0 | 0 | 0 | 16 | 29 | 40 | 46 | 54 | 61 | 249 | 23 | | Fatalities from Curb Weight Change | 0 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | -4 | -3 | -1 | -10 | -1 | | Total Changes in Fatalities | 15 | 16 | 16 | 17 | 18 | 1 | -10 | -4 | -4 | 5 | 7 | 78 | 7 | | Changes in Non-Fatal Safety Impact | S | | _ | | | | | | | | | | | | Injuries from Rebound Miles (thousands) | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 2.5 | 4.5 | 6.3 | 7.2 | 8.3 | 9.5 | 39 | 4 | | Injuries from Curb Weight (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | -
0.2 | -
0.2 | -
0.7 | -
0.5 | -
0.1 | -1.5 | -
0.1 | | Total Change in Injuries (thousands) | 2.2 | 2.4 | 2.5 | 2.6 | 2.8 | 0.1 | -
1.5 | -
0.6 | -
0.6 | 0.8 | 1.2 | 11.
8 | 1.1 | | Property Damage from Rebound Miles (thousands) | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 7.7 | 13.
9 | 19.
3 | 22.
1 | 25.
5 | 29.
4 | 118
.4 | 10.
8 | | Property Damage from Curb
Weight (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | -
0.5 | -
0.6 | -
2.0 | -
1.5 | -
0.2 | -4.5 | -
0.4 | | Total Property Damaged Vehicles (thousands) | 5.3 | 5.9 | 6.1 | 6.6 | 7.3 | -
1.1 | -
5.7 | -
2.7 | -
2.2 | 2.4 | 4.4 | 26.
2 | 2.4 | Table 831 - Changes in Fleet Characteristics for Model Years 2022-2032 for Alternative PC6LT8 | Changes in Fleet Characteristics for Model Years 2022-2032 for Alternative PC6LT8 | | | | | | | | | | | | | | |---|----------|----------|----------|----------|----------|----------|---------------|---------------|---------------|---------------|---------------|----------------|---------------| | Model Year | 20
22 | 20
23 | 20
24 | 20
25 | 20
26 | 20
27 | 20
28 | 20
29 | 20
30 | 20
31 | 20
32 | Tot
al | Av
g. | | Changes in Fleet Size, Usage and F | uel C | onsun | nption | | 1 | l | | | 1 | 1 | 1 | | | | Changes in Fleet Size (m) | 0.2 | 0.1 | 0.0 | 0.1 | 0.1 | -
1.6 | 2.7 | 3.7 | -
4.9 | -
5.7 | -
7.2 | -
25.
7 | 2.3 | | Light Truck Share (%) | 64
% | 66
% | 68
% | 69
% | 70
% | 70
% | 71
% | 71
% | 71
% | 70
% | 70
% | N/A | 69
% | | Pass. Car Share (%) | 36
% | 34
% | 32
% | 31
% | 30
% | 30
% | 29
% | 29
% | 29
% | 30
% | 30
% | N/A | 31
% | | VMT from Rebound (b) | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 3.9 | 9.2 | 13.
6 | 16.
6 | 19.
6 | 24.
7 | 88.
5 | 8.0 | | Fuel Volume - Total (b gallons) | 0.4 | 0.4 | 0.4 | 0.3 | 0.4 | 2.3 | -
4.9 | -
7.4 | -
9.9 | -
11.
5 | -
14.
4 | -
48.
6 | -
4.4 | | Fuel Volume - Lt. Truck (b gallons) | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | -
1.9 | 3.7 | -
5.6 | -
7.7 | -
8.8 | -
11.
3 | -
37.
6 | 3.4 | | Fuel Volume - Pass. Car (b gallons) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.3 | -
1.2 | -
1.8 | 2.3 | -
2.7 | -
3.1 | -
10.
9 | 1.0 | | Changes in Fatalities by Source | | | | | 1 | 1 | | 1 | 1 | 1 | 1 | _ | | | Fatalities from Rebound Miles | 0 | 1 | 1 | 1 | 2 | 18 | 42 | 62 | 75 | 88 | 11
1 | 402 | 37 | | Fatalities from Curb Weight Change | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | -3 | -3 | 4 | -3 | 0 | | Total Changes in Fatalities | 54 | 57 | 58 | 60 | 65 | 9 | -24 | -53 | -
10
2 | -
13
5 | -
18
3 | -
195 | -18 | | Changes in Non-Fatal Safety Impac | ts | | | | | | | | | | | | | | Injuries from Rebound Miles (thousands) | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 2.8 | 6.5 | 9.7 | 11.
7 | 13.
8 | 17.
3 | 63 | 6 | | Injuries from Curb Weight (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -
0.1 | -
0.1 | 0.0 | -
0.4 | -
0.5 | 0.7 | -0.4 | 0.0 | | Total Change in Injuries (thousands) | 8.0 | 8.6 | 8.7 | 9.1 | 9.9 | 1.3 | 3.8 | 8.3 | -
15.
8 | -
20.
8 | -
28.
2 | -
31.
2 | 2.8 | | Property Damage from Rebound
Miles (thousands) | 0.2 | 0.2 | 0.4 | 0.5 | 0.6 | 8.5 | 20.
0 | 29.
7 | 36.
2 | 42.
5 | 53.
6 | 192
.3 | 17.
5 | | Property Damage from Curb
Weight (thousands) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -
0.3 | -
0.3 | 0.0 | -
1.1 | -
1.4 | 2.2 | -0.9 | -
0.1 | | Total Property Damaged Vehicles (thousands) | 19.
2 | 21.
0 | 21.
8 | 23.
2 | 25.
7 | 0.2 | -
15.
1 | -
28.
1 | -
49.
8 | -
63.
7 | -
84.
3 | -
130
.4 | -
11.
9 | ## **Liquid Fuel and Electricity Consumption** Table 832 - Change in Liquid Fuel Consumed (b Gallons), Total Fleet, Undiscounted Over the Lifetime of the Model Year | Change in Liquid Fuel Consumed (b Gallons), Total Fleet, Undiscounted Over the Lifetime of the Model Year | | | | | | | | | | | | | |---|---------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|------------| | Model Year | 1983-
2022 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | Total | | Alternative PC1LT3 | 1263.4 | 0.1 | 0.1 | 0.1 | 0.1 | -1.9 | -3.0 | -3.9 | -4.1 | -4.6 | -5.2 | 1241.
0 | | Alternative
PC2LT4 | 1263.8 | 0.1 | 0.1 | 0.1 | 0.1 | -2.1 | -3.6 | -4.8 | -5.4 | -6.1 | -7.0 | 1235.
2 | | Alternative PC3LT5 | 1265.1 | 0.2 | 0.2 | 0.2 | 0.2 | -2.2 | -4.1 | -5.5 | -6.6 | -7.4 | -9.0 | 1231.
1 | | Alternative
PC6LT8 | 1267.9 | 0.4 | 0.4 | 0.3 | 0.4 | -2.3 | -4.9 | -7.4 | -9.9 | -
11.5 | -
14.4 | 1219.
0 | Table 833 - Change in Liquid Fuel Consumed (b Gallons), Passenger Car Fleet, Undiscounted Over the Lifetime of the Model Year | Change in Liquid Fuel Consumed (b Gallons), Passenger Car Fleet, Undiscounted Over the Lifetime of the Model Year | | | | | | | | | | | | | |---|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------| | Model Year | 1983-
2022 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | Total | | Alternative PC1LT3 | 479.3 | 0.0 | 0.0 | 0.0 | 0.0 | -0.2 | -0.3 | -0.4 | -0.4 | -0.4 | -0.4 | 477.
4 | | Alternative
PC2LT4 | 479.5 | 0.0 | 0.0 | 0.0 | 0.0 | -0.3 | -0.4 | -0.7 | -0.7 | -0.7 | -0.7 | 476.
2 | | Alternative
PC3LT5 | 480.1 | 0.1 | 0.0 | 0.0 | 0.0 | -0.3 | -0.6 | -0.9 | -1.0 | -1.1 | -1.1 | 475.
3 | | Alternative
PC6LT8 | 481.6 | 0.1 | 0.1 | 0.1 | 0.1 | -0.3 | -1.2 | -1.8 | -2.3 | -2.7 | -3.1 | 470.
5 | Table 834 - Change in Liquid Fuel Consumed (b Gallons), Light Truck Fleet, Undiscounted Over the Lifetime of the Model Year | Change in Liquid | Change in Liquid Fuel Consumed (b Gallons), Light Truck Fleet, Undiscounted Over the Lifetime of the Model Year | | | | | | | | | | | | |-----------------------|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------| | Model Year | 1983-
2022 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | Total | | Alternative PC1LT3 | 784.1 | 0.1 | 0.1 | 0.1 | 0.1 | -1.7 | -2.7 | -3.5 | -3.8 | -4.2 | -4.8 | 763.
6 | | Alternative
PC2LT4 | 784.3 | 0.1 | 0.1 | 0.1 | 0.1 | -1.8 | -3.2 | -4.1 | -4.8 | -5.4 | -6.3 | 759.
0 | | Alternative
PC3LT5 | 785.0 | 0.1 | 0.1 | 0.1 | 0.2 | -1.9 | -3.5 | -4.6 | -5.6 | -6.3 | -7.8 | 755.
9 | | Alternative
PC6LT8 | 786.3 | 0.3 | 0.3 | 0.3 | 0.3 | -1.9 | -3.7 | -5.6 | -7.7 | -8.8 | -
11.3 | 748.
5 | Table 835 - Change in Electricity (G-Wh) Consumed, Total Fleet, Undiscounted Over the Lifetime of the Model Year | Change in Electi | ricity (G-Wh) | Consu | ned, To | otal Fle | et, Und | liscoun | ted Ov | er the l | _ifetime | e of the | Model | Year | |-----------------------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------| | Model Year | 1983-
2022 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | Total | | Alternative PC1LT3 | 90.1 | 0.1 | 0.1 | 0.1 | 0.1 | 10.5 | 11.2 | 13.6 | 14.5 | 12.9 | 16.2 | 169.
4 | | Alternative PC2LT4 | 90.2 | 0.1 |
0.1 | 0.1 | 0.2 | 11.1 | 13.2 | 17.6 | 18.4 | 17.2 | 21.1 | 189.
3 | | Alternative
PC3LT5 | 90.3 | 0.2 | 0.2 | 0.3 | 0.4 | 11.0 | 10.6 | 15.7 | 16.3 | 15.7 | 20.4 | 180.
9 | | Alternative PC6LT8 | 90.5 | 0.3 | 0.4 | 0.5 | 0.7 | 11.0 | 10.7 | 18.8 | 30.9 | 29.8 | 35.5 | 229.
0 | Table 836 - Change in Electricity (G-Wh) Consumed, Passenger Car Fleet, Undiscounted Over the Lifetime of the Model Year | Change in Electricity (G-Wh) Consumed, Passenger Car Fleet, Undiscounted Over the Lifetime of the Model Year | | | | | | | | | | | | | |--|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------| | Model Year | 1983-
2022 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | Tota
I | | Alternative PC1LT3 | 66.9 | 0.0 | 0.0 | 0.0 | 0.1 | -0.4 | -0.6 | -0.6 | -0.6 | -0.5 | -0.4 | 64.0 | | Alternative PC2LT4 | 67.0 | 0.0 | 0.1 | 0.1 | 0.1 | -0.5 | -0.6 | -1.0 | -1.0 | -0.9 | -0.7 | 62.4 | | Alternative
PC3LT5 | 67.0 | 0.1 | 0.1 | 0.1 | 0.1 | -0.5 | -0.7 | -1.3 | -1.2 | -1.3 | -0.9 | 61.6 | | Alternative
PC6LT8 | 67.2 | 0.2 | 0.2 | 0.2 | 0.2 | -0.6 | -1.1 | -1.7 | -1.6 | -1.9 | -1.4 | 59.6 | Table 837 - Change in Electricity (G-Wh) Consumed, Light Truck Fleet, Undiscounted Over the Lifetime of the Model Year | Change in Electricity (G-Wh) Consumed, Light Truck Fleet, Undiscounted Over the Lifetime of the Model Year | | | | | | | | | | | | | |--|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------| | Model Year | 1983-
2022 | 202
3 | 202
4 | 202
5 | 202
6 | 202
7 | 202
8 | 202
9 | 203
0 | 203
1 | 203
2 | Total | | Alternative
PC1LT3 | 23.2 | 0.0 | 0.0 | 0.1 | 0.1 | 10.9 | 11.8 | 14.2 | 15.1 | 13.5 | 16.6 | 105.
4 | | Alternative
PC2LT4 | 23.2 | 0.0 | 0.1 | 0.1 | 0.1 | 11.6 | 13.8 | 18.6 | 19.4 | 18.1 | 21.8 | 126.
8 | | Alternative
PC3LT5 | 23.2 | 0.1 | 0.1 | 0.1 | 0.2 | 11.5 | 11.3 | 17.0 | 17.5 | 17.0 | 21.4 | 119.
4 | | Alternative
PC6LT8 | 23.3 | 0.1 | 0.2 | 0.3 | 0.4 | 11.6 | 11.8 | 20.5 | 32.5 | 31.6 | 37.0 | 169.
3 | ## **Sales Impacts** Table 838 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Total) | Estimated S | ales Impacts by Alterr | native, Tota | al Fleet for | Manufactu | rer (Total) | |-------------|------------------------|--------------|--------------|-----------|-------------| | Model Year | Regulatory Alternative | , | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | 2022 | 14,381,000 | 0 | 0 | 0 | 0 | | 2023 | 15,201,000 | 0 | 0 | 0 | 0 | | 2024 | 14,945,000 | 0 | 0 | 0 | 0 | | 2025 | 14,892,000 | 0 | 0 | 0 | 0 | | 2026 | 15,245,000 | 0 | 0 | 0 | 0 | | 2027 | 15,663,000 | -33,000 | -40,000 | -57,000 | -82,000 | | 2028 | 15,823,000 | -48,000 | -62,000 | -87,000 | -142,000 | | 2029 | 15,606,000 | -50,000 | -71,000 | -104,000 | -200,000 | | 2030 | 15,260,000 | -51,000 | -74,000 | -116,000 | -263,000 | | 2031 | 14,988,000 | -47,000 | -73,000 | -121,000 | -310,000 | | 2032 | 14,912,000 | -48,000 | -82,000 | -165,000 | -390,000 | Table 839 - Estimated Sales Impacts by Alternative, Passenger Car Fleet for Manufacturer (Total) | Estimated Sal | es Impacts by Alternative | e, Passengei | Car Fleet fo | or Manufact | urer (Total) | |---------------|---------------------------|--------------|--------------|-------------|--------------| | Model Year | Regulatory Alternative | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | 2022 | 5,476,000 | 0 | 0 | 0 | 0 | | 2023 | 5,474,000 | 0 | 0 | 0 | 0 | | 2024 | 5,148,000 | 0 | 0 | 0 | 0 | | 2025 | 4,918,000 | 0 | 0 | 0 | 0 | | 2026 | 4,926,000 | 0 | 0 | 0 | 0 | | 2027 | 4,995,000 | -25,000 | -30,000 | -34,000 | -48,000 | | 2028 | 5,011,000 | -34,000 | -38,000 | -43,000 | -72,000 | | 2029 | 4,920,000 | -33,000 | -51,000 | -69,000 | -112,000 | | 2030 | 4,830,000 | -27,000 | -41,000 | -52,000 | -122,000 | | 2031 | 4,794,000 | -23,000 | -30,000 | -49,000 | -126,000 | | 2032 | 4,784,000 | -16,000 | -18,000 | -23,000 | -102,000 | Table 840 - Estimated Sales Impacts by Alternative, Light Truck Fleet for Manufacturer (Total) | Estimated Sales Impacts by Alternative, Light Truck Fleet for Manufacturer (Total) | | | | | | | | |--|------------------------|---------|---------|----------|----------|--|--| | Model Year | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 8,905,000 | 0 | 0 | 0 | 0 | | | | 2023 | 9,727,000 | 0 | 0 | 0 | 0 | | | | 2024 | 9,797,000 | 0 | 0 | 0 | 0 | | | | 2025 | 9,975,000 | 0 | 0 | 0 | 0 | | | | 2026 | 10,319,000 | 0 | 0 | 0 | 0 | | | | 2027 | 10,668,000 | -8,000 | -11,000 | -23,000 | -34,000 | | | | 2028 | 10,812,000 | -14,000 | -24,000 | -43,000 | -70,000 | | | | 2029 | 10,685,000 | -17,000 | -20,000 | -35,000 | -88,000 | | | | 2030 | 10,430,000 | -23,000 | -33,000 | -64,000 | -141,000 | | | | 2031 | 10,194,000 | -24,000 | -44,000 | -72,000 | -185,000 | | | | 2032 | 10,128,000 | -32,000 | -64,000 | -142,000 | -288,000 | | | Table 841 - Estimated Sales Impacts by Alternative, Domestic Car Fleet for Manufacturer (Total) | Estimated Sales Impacts by Alternative, Domestic Car Fleet for Manufacturer (Total) | | | | | | | | | |---|------------------------|---------|---------|---------|---------|--|--|--| | Model Year | Regulatory Alternative | | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 2,704,000 | 0 | 0 | 0 | 0 | | | | | 2023 | 2,703,000 | 0 | 0 | 0 | 0 | | | | | 2024 | 2,542,000 | 0 | 0 | 0 | 0 | | | | | 2025 | 2,428,000 | 0 | 0 | 0 | 0 | | | | | 2026 | 2,433,000 | 0 | 0 | 0 | 0 | | | | | 2027 | 2,466,000 | -13,000 | -15,000 | -17,000 | -24,000 | | | | | 2028 | 2,475,000 | -17,000 | -19,000 | -21,000 | -36,000 | | | | | 2029 | 2,430,000 | -16,000 | -25,000 | -34,000 | -55,000 | | | | | 2030 | 2,385,000 | -13,000 | -20,000 | -26,000 | -60,000 | | | | | 2031 | 2,367,000 | -11,000 | -15,000 | -24,000 | -62,000 | | | | | 2032 | 2,362,000 | -8,000 | -9,000 | -11,000 | -50,000 | | | | Table 842 - Estimated Sales Impacts by Alternative, Imported Car Fleet for Manufacturer (Total) | Estimated Sales Impacts by Alternative, Imported Car Fleet for Manufacturer (Total) | | | | | | | | |---|------------------------|---------|---------|---------|---------|--|--| | Model Year | Regulatory Alternative | | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 2,772,000 | 0 | 0 | 0 | 0 | | | | 2023 | 2,771,000 | 0 | 0 | 0 | 0 | | | | 2024 | 2,606,000 | 0 | 0 | 0 | 0 | | | | 2025 | 2,489,000 | 0 | 0 | 0 | 0 | | | | 2026 | 2,493,000 | 0 | 0 | 0 | 0 | | | | 2027 | 2,528,000 | -13,000 | -15,000 | -17,000 | -24,000 | | | | 2028 | 2,537,000 | -17,000 | -19,000 | -22,000 | -37,000 | | | | 2029 | 2,491,000 | -17,000 | -26,000 | -35,000 | -56,000 | | | | 2030 | 2,445,000 | -14,000 | -21,000 | -26,000 | -62,000 | | | | 2031 | 2,426,000 | -11,000 | -15,000 | -25,000 | -64,000 | | | | 2032 | 2,421,000 | -8,000 | -9,000 | -12,000 | -52,000 | | | Table 843 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (BMW) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (BMW) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Model Year | Regulatory Alternative | | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 361,000 | 0 | 0 | 0 | 0 | | | | 2023 | 376,000 | 0 | 0 | 0 | 0 | | | | 2024 | 365,000 | 0 | 0 | 0 | 0 | | | | 2025 | 360,000 | 0 | 0 | 0 | 0 | | | | 2026 | 367,000 | 0 | 0 | 0 | 0 | | | | 2027 | 376,000 | -1,000 | -1,000 | -2,000 | -2,000 | | | | 2028 | 379,000 | -1,000 | -2,000 | -2,000 | -4,000 | | | | 2029 | 374,000 | -2,000 | -2,000 | -3,000 | -6,000 | | | | 2030 | 366,000 | -1,000 | -2,000 | -3,000 | -7,000 | | | | 2031 | 360,000 | -1,000 | -2,000 | -3,000 | -8,000 | | | | 2032 | 358,000 | -1,000 | -2,000 | -4,000 | -9,000 | | | Table 844 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Ford) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Ford) | | | | | | | | |---|------------------------|--------|---------|---------|---------|--|--| | Model Year | Regulatory Alternative | | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 1,629,000 | 0 | 0 | 0 | 0 | | | | 2023 | 1,762,000 | 0 | 0 | 0 | 0 | | | | 2024 | 1,762,000 | 0 | 0 | 0 | 0 | | | | 2025 | 1,782,000 | 0 | 0 | 0 | 0 | | | | 2026 | 1,838,000 | 0 | 0 | 0 | 0 | | | | 2027 | 1,897,000 | -2,000 | -3,000 | -5,000 | -7,000 | | | | 2028 | 1,921,000 | -3,000 | -5,000 | -8,000 | -14,000 | | | | 2029 | 1,897,000 | -4,000 | -5,000 | -8,000 | -18,000 | | | | 2030 | 1,853,000 | -5,000 | -7,000 | -12,000 | -27,000 | | | | 2031 | 1,814,000 | -5,000 | -8,000 | -13,000 | -34,000 | | | | 2032 | 1,803,000 | -6,000 | -11,000 | -24,000 | -50,000 | | | Table 845 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (GM) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (GM) | | | | | | | |
---|------------------------|--------|---------|---------|---------|--|--| | Madal Vaar | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 1,826,000 | 0 | 0 | 0 | 0 | | | | 2023 | 1,952,000 | 0 | 0 | 0 | 0 | | | | 2024 | 1,936,000 | 0 | 0 | 0 | 0 | | | | 2025 | 1,944,000 | 0 | 0 | 0 | 0 | | | | 2026 | 1,998,000 | 0 | 0 | 0 | 0 | | | | 2027 | 2,057,000 | -3,000 | -4,000 | -6,000 | -9,000 | | | | 2028 | 2,081,000 | -5,000 | -7,000 | -10,000 | -17,000 | | | | 2029 | 2,054,000 | -5,000 | -7,000 | -11,000 | -23,000 | | | | 2030 | 2,007,000 | -6,000 | -8,000 | -14,000 | -32,000 | | | | 2031 | 1,967,000 | -6,000 | -9,000 | -15,000 | -39,000 | | | | 2032 | 1,956,000 | -6,000 | -11,000 | -24,000 | -53,000 | | | Table 846 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Honda) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Honda) | | | | | | | | | |--|------------------------|--------|--------|---------|---------|--|--|--| | Model Year | Regulatory Alternative | | | | | | | | | Model Teal | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | 2022 | 1,454,000 | 0 | 0 | 0 | 0 | | | | | 2023 | 1,515,000 | 0 | 0 | 0 | 0 | | | | | 2024 | 1,474,000 | 0 | 0 | 0 | 0 | | | | | 2025 | 1,454,000 | 0 | 0 | 0 | 0 | | | | | 2026 | 1,481,000 | 0 | 0 | 0 | 0 | | | | | 2027 | 1,517,000 | -4,000 | -5,000 | -7,000 | -9,000 | | | | | 2028 | 1,530,000 | -6,000 | -7,000 | -9,000 | -16,000 | | | | | 2029 | 1,508,000 | -6,000 | -9,000 | -13,000 | -23,000 | | | | | 2030 | 1,476,000 | -6,000 | -8,000 | -12,000 | -28,000 | | | | | 2031 | 1,453,000 | -5,000 | -8,000 | -12,000 | -32,000 | | | | | 2032 | 1,446,000 | -5,000 | -7,000 | -14,000 | -36,000 | | | | Table 847 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Hyundai KiH) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Hyundai KiH) | | | | | | | | |--|------------------------|--------|--------|--------|---------|--|--| | Model Year | Regulatory Alternative | | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 902,000 | 0 | 0 | 0 | 0 | | | | 2023 | 934,000 | 0 | 0 | 0 | 0 | | | | 2024 | 904,000 | 0 | 0 | 0 | 0 | | | | 2025 | 887,000 | 0 | 0 | 0 | 0 | | | | 2026 | 902,000 | 0 | 0 | 0 | 0 | | | | 2027 | 923,000 | -3,000 | -3,000 | -4,000 | -6,000 | | | | 2028 | 930,000 | -4,000 | -5,000 | -6,000 | -10,000 | | | | 2029 | 916,000 | -4,000 | -6,000 | -8,000 | -15,000 | | | | 2030 | 897,000 | -4,000 | -5,000 | -8,000 | -18,000 | | | | 2031 | 884,000 | -3,000 | -5,000 | -8,000 | -20,000 | | | | 2032 | 880,000 | -3,000 | -4,000 | -8,000 | -22,000 | | | Table 848 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Hyundai KiK) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Hyundai KiK) | | | | | | | | |--|------------------------|--------|--------|--------|---------|--|--| | Model Year | Regulatory Alternative | | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 617,000 | 0 | 0 | 0 | 0 | | | | 2023 | 640,000 | 0 | 0 | 0 | 0 | | | | 2024 | 621,000 | 0 | 0 | 0 | 0 | | | | 2025 | 611,000 | 0 | 0 | 0 | 0 | | | | 2026 | 622,000 | 0 | 0 | 0 | 0 | | | | 2027 | 636,000 | -2,000 | -2,000 | -3,000 | -4,000 | | | | 2028 | 642,000 | -3,000 | -3,000 | -4,000 | -7,000 | | | | 2029 | 632,000 | -3,000 | -4,000 | -6,000 | -10,000 | | | | 2030 | 619,000 | -2,000 | -4,000 | -5,000 | -12,000 | | | | 2031 | 610,000 | -2,000 | -3,000 | -5,000 | -14,000 | | | | 2032 | 607,000 | -2,000 | -3,000 | -6,000 | -15,000 | | | Table 849 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (JLR) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (JLR) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Model Year | Regulatory Alternative | | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 73,000 | 0 | 0 | 0 | 0 | | | | 2023 | 80,000 | 0 | 0 | 0 | 0 | | | | 2024 | 80,000 | 0 | 0 | 0 | 0 | | | | 2025 | 81,000 | 0 | 0 | 0 | 0 | | | | 2026 | 84,000 | 0 | 0 | 0 | 0 | | | | 2027 | 87,000 | 0 | 0 | 0 | 0 | | | | 2028 | 88,000 | 0 | 0 | 0 | -1,000 | | | | 2029 | 87,000 | 0 | 0 | 0 | -1,000 | | | | 2030 | 85,000 | 0 | 0 | -1,000 | -1,000 | | | | 2031 | 83,000 | 0 | 0 | -1,000 | -2,000 | | | | 2032 | 82,000 | 0 | -1,000 | -1,000 | -2,000 | | | Table 850 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Karma) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Karma) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Model Year | Regulatory Alternative | | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 0 | 0 | 0 | 0 | 0 | | | | 2023 | 0 | 0 | 0 | 0 | 0 | | | | 2024 | 0 | 0 | 0 | 0 | 0 | | | | 2025 | 0 | 0 | 0 | 0 | 0 | | | | 2026 | 0 | 0 | 0 | 0 | 0 | | | | 2027 | 0 | 0 | 0 | 0 | 0 | | | | 2028 | 0 | 0 | 0 | 0 | 0 | | | | 2029 | 0 | 0 | 0 | 0 | 0 | | | | 2030 | 0 | 0 | 0 | 0 | 0 | | | | 2031 | 0 | 0 | 0 | 0 | 0 | | | | 2032 | 0 | 0 | 0 | 0 | 0 | | | Table 851 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Lucid) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Lucid) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Model Year | Regulatory Alternative | | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 4,000 | 0 | 0 | 0 | 0 | | | | 2023 | 4,000 | 0 | 0 | 0 | 0 | | | | 2024 | 4,000 | 0 | 0 | 0 | 0 | | | | 2025 | 3,000 | 0 | 0 | 0 | 0 | | | | 2026 | 3,000 | 0 | 0 | 0 | 0 | | | | 2027 | 4,000 | 0 | 0 | 0 | 0 | | | | 2028 | 4,000 | 0 | 0 | 0 | 0 | | | | 2029 | 3,000 | 0 | 0 | 0 | 0 | | | | 2030 | 3,000 | 0 | 0 | 0 | 0 | | | | 2031 | 3,000 | 0 | 0 | 0 | 0 | | | | 2032 | 3,000 | 0 | 0 | 0 | 0 | | | Table 852 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Mazda) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Mazda) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Model Year | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 174,000 | 0 | 0 | 0 | 0 | | | | 2023 | 188,000 | 0 | 0 | 0 | 0 | | | | 2024 | 187,000 | 0 | 0 | 0 | 0 | | | | 2025 | 189,000 | 0 | 0 | 0 | 0 | | | | 2026 | 195,000 | 0 | 0 | 0 | 0 | | | | 2027 | 201,000 | 0 | 0 | -1,000 | -1,000 | | | | 2028 | 204,000 | 0 | -1,000 | -1,000 | -2,000 | | | | 2029 | 201,000 | 0 | -1,000 | -1,000 | -2,000 | | | | 2030 | 196,000 | -1,000 | -1,000 | -1,000 | -3,000 | | | | 2031 | 192,000 | -1,000 | -1,000 | -1,000 | -4,000 | | | | 2032 | 191,000 | -1,000 | -1,000 | -2,000 | -5,000 | | | Table 853 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Mercedes-Benz) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Mercedes-Benz) | | | | | | |--|------------------------|--------|--------|--------|--------| | Model Veer | Regulatory Alternative | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | 2022 | 269,000 | 0 | 0 | 0 | 0 | | 2023 | 281,000 | 0 | 0 | 0 | 0 | | 2024 | 274,000 | 0 | 0 | 0 | 0 | | 2025 | 271,000 | 0 | 0 | 0 | 0 | | 2026 | 277,000 | 0 | 0 | 0 | 0 | | 2027 | 284,000 | -1,000 | -1,000 | -1,000 | -2,000 | | 2028 | 286,000 | -1,000 | -1,000 | -2,000 | -3,000 | | 2029 | 282,000 | -1,000 | -2,000 | -2,000 | -4,000 | | 2030 | 276,000 | -1,000 | -1,000 | -2,000 | -5,000 | | 2031 | 271,000 | -1,000 | -1,000 | -2,000 | -6,000 | | 2032 | 270,000 | -1,000 | -1,000 | -3,000 | -7,000 | Table 854 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Mitsubishi) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Mitsubishi) | | | | | | | | |---|------------------------|--------|--------|--------|--------|--|--| | Model Veer | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 115,000 | 0 | 0 | 0 | 0 | | | | 2023 | 119,000 | 0 | 0 | 0 | 0 | | | | 2024 | 116,000 | 0 | 0 | 0 | 0 | | | | 2025 | 114,000 | 0 | 0 | 0 | 0 | | | | 2026 | 116,000 | 0 | 0 | 0 | 0 | | | | 2027 | 119,000 | 0 | 0 | -1,000 | -1,000 | | | | 2028 | 120,000 | 0 | -1,000 | -1,000 | -1,000 | | | | 2029 | 118,000 | 0 | -1,000 | -1,000 | -2,000 | | | | 2030 | 116,000 | 0 | -1,000 | -1,000 | -2,000 | | | | 2031 | 114,000 | 0 | -1,000 | -1,000 | -3,000 | | | | 2032 | 113,000 | 0 | -1,000 | -1,000 | -3,000 | | | Table 855 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Nissan) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Nissan) | | | | | | |---|------------------------|--------|--------|--------|---------| | Model Year | Regulatory Alternative | | | | | | iviodei reai | No Action (Baseline) | PC1LT3 |
PC2LT4 | PC3LT5 | PC6LT8 | | 2022 | 1,003,000 | 0 | 0 | 0 | 0 | | 2023 | 1,041,000 | 0 | 0 | 0 | 0 | | 2024 | 1,009,000 | 0 | 0 | 0 | 0 | | 2025 | 993,000 | 0 | 0 | 0 | 0 | | 2026 | 1,010,000 | 0 | 0 | 0 | 0 | | 2027 | 1,033,000 | -3,000 | -4,000 | -5,000 | -7,000 | | 2028 | 1,042,000 | -4,000 | -5,000 | -7,000 | -11,000 | | 2029 | 1,026,000 | -4,000 | -6,000 | -9,000 | -16,000 | | 2030 | 1,005,000 | -4,000 | -6,000 | -9,000 | -20,000 | | 2031 | 990,000 | -4,000 | -5,000 | -9,000 | -22,000 | | 2032 | 986,000 | -3,000 | -5,000 | -9,000 | -24,000 | Table 856 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Stellantis) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Stellantis) | | | | | | | | |---|------------------------|--------|---------|---------|---------|--|--| | Model Year | Regulatory Alternative | | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 1,582,000 | 0 | 0 | 0 | 0 | | | | 2023 | 1,708,000 | 0 | 0 | 0 | 0 | | | | 2024 | 1,706,000 | 0 | 0 | 0 | 0 | | | | 2025 | 1,723,000 | 0 | 0 | 0 | 0 | | | | 2026 | 1,776,000 | 0 | 0 | 0 | 0 | | | | 2027 | 1,832,000 | -2,000 | -3,000 | -5,000 | -7,000 | | | | 2028 | 1,855,000 | -4,000 | -5,000 | -8,000 | -14,000 | | | | 2029 | 1,832,000 | -4,000 | -5,000 | -8,000 | -18,000 | | | | 2030 | 1,789,000 | -5,000 | -7,000 | -12,000 | -27,000 | | | | 2031 | 1,752,000 | -5,000 | -8,000 | -13,000 | -33,000 | | | | 2032 | 1,741,000 | -6,000 | -10,000 | -23,000 | -48,000 | | | Table 857 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Subaru) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Subaru) | | | | | | | |---|------------------------|--------|--------|---------|---------|--| | Model Year | Regulatory Alternative | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | 2022 | 747,000 | 0 | 0 | 0 | 0 | | | 2023 | 805,000 | 0 | 0 | 0 | 0 | | | 2024 | 802,000 | 0 | 0 | 0 | 0 | | | 2025 | 810,000 | 0 | 0 | 0 | 0 | | | 2026 | 834,000 | 0 | 0 | 0 | 0 | | | 2027 | 860,000 | -1,000 | -1,000 | -2,000 | -3,000 | | | 2028 | 871,000 | -2,000 | -3,000 | -4,000 | -7,000 | | | 2029 | 860,000 | -2,000 | -3,000 | -4,000 | -9,000 | | | 2030 | 840,000 | -2,000 | -3,000 | -6,000 | -13,000 | | | 2031 | 823,000 | -2,000 | -4,000 | -6,000 | -16,000 | | | 2032 | 818,000 | -3,000 | -5,000 | -11,000 | -23,000 | | Table 858 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Tesla) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Tesla) | | | | | | | | |--|------------------------|--------|--------|--------|---------|--|--| | Madal Vaar | Regulatory Alternative | | | | | | | | Model Year | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 513,000 | 0 | 0 | 0 | 0 | | | | 2023 | 515,000 | 0 | 0 | 0 | 0 | | | | 2024 | 486,000 | 0 | 0 | 0 | 0 | | | | 2025 | 466,000 | 0 | 0 | 0 | 0 | | | | 2026 | 467,000 | 0 | 0 | 0 | 0 | | | | 2027 | 474,000 | -2,000 | -3,000 | -3,000 | -4,000 | | | | 2028 | 476,000 | -3,000 | -3,000 | -4,000 | -7,000 | | | | 2029 | 468,000 | -3,000 | -5,000 | -6,000 | -10,000 | | | | 2030 | 459,000 | -2,000 | -4,000 | -5,000 | -11,000 | | | | 2031 | 455,000 | -2,000 | -3,000 | -5,000 | -12,000 | | | | 2032 | 454,000 | -2,000 | -2,000 | -2,000 | -10,000 | | | Table 859 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Toyota) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Toyota) | | | | | | | | |---|------------------------|------------------------|---------|---------|---------|--|--| | Model Year | Regulatory Alternative | Regulatory Alternative | | | | | | | Wodel Teal | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 2,367,000 | 0 | 0 | 0 | 0 | | | | 2023 | 2,494,000 | 0 | 0 | 0 | 0 | | | | 2024 | 2,446,000 | 0 | 0 | 0 | 0 | | | | 2025 | 2,432,000 | 0 | 0 | 0 | 0 | | | | 2026 | 2,486,000 | 0 | 0 | 0 | 0 | | | | 2027 | 2,553,000 | -6,000 | -7,000 | -10,000 | -14,000 | | | | 2028 | 2,578,000 | -8,000 | -11,000 | -15,000 | -24,000 | | | | 2029 | 2,542,000 | -9,000 | -12,000 | -18,000 | -34,000 | | | | 2030 | 2,486,000 | -9,000 | -12,000 | -19,000 | -44,000 | | | | 2031 | 2,443,000 | -8,000 | -12,000 | -20,000 | -51,000 | | | | 2032 | 2,431,000 | -8,000 | -13,000 | -26,000 | -63,000 | | | Table 860 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Volvo) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (Volvo) | | | | | | | | |--|------------------------|--------|--------|--------|--------|--|--| | Model Year | Regulatory Alternative | | | | | | | | Model Teal | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 131,000 | 0 | 0 | 0 | 0 | | | | 2023 | 140,000 | 0 | 0 | 0 | 0 | | | | 2024 | 138,000 | 0 | 0 | 0 | 0 | | | | 2025 | 138,000 | 0 | 0 | 0 | 0 | | | | 2026 | 141,000 | 0 | 0 | 0 | 0 | | | | 2027 | 145,000 | 0 | 0 | -1,000 | -1,000 | | | | 2028 | 147,000 | 0 | -1,000 | -1,000 | -1,000 | | | | 2029 | 145,000 | 0 | -1,000 | -1,000 | -2,000 | | | | 2030 | 142,000 | 0 | -1,000 | -1,000 | -2,000 | | | | 2031 | 139,000 | 0 | -1,000 | -1,000 | -3,000 | | | | 2032 | 138,000 | 0 | -1,000 | -2,000 | -4,000 | | | Table 861 - Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (VWA) | Estimated Sales Impacts by Alternative, Total Fleet for Manufacturer (VWA) | | | | | | | | |--|------------------------|--------|--------|--------|---------|--|--| | Model Year | Regulatory Alternative | | | | | | | | woder rear | No Action (Baseline) | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | 2022 | 615,000 | 0 | 0 | 0 | 0 | | | | 2023 | 648,000 | 0 | 0 | 0 | 0 | | | | 2024 | 636,000 | 0 | 0 | 0 | 0 | | | | 2025 | 632,000 | 0 | 0 | 0 | 0 | | | | 2026 | 646,000 | 0 | 0 | 0 | 0 | | | | 2027 | 664,000 | -1,000 | -2,000 | -3,000 | -4,000 | | | | 2028 | 670,000 | -2,000 | -3,000 | -4,000 | -6,000 | | | | 2029 | 661,000 | -2,000 | -3,000 | -5,000 | -9,000 | | | | 2030 | 646,000 | -2,000 | -3,000 | -5,000 | -11,000 | | | | 2031 | 635,000 | -2,000 | -3,000 | -5,000 | -13,000 | | | | 2032 | 632,000 | -2,000 | -3,000 | -7,000 | -16,000 | | | ## Regulatory Costs per Vehicle, by Vehicle Type Table 862 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Total) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Total) | | | | | | | |--|----------------|--------------|-------------|--|--|--| | | Passenger Cars | Light Trucks | Total Fleet | | | | | No Action Alternative (Baseline) | 1,312 | 2,438 | 2,077 | | | | | Alternative PC1LT3 | 1,731 | 3,125 | 2,678 | | | | | Alternative PC2LT4 | 1,966 | 3,502 | 3,008 | | | | | Alternative PC3LT5 | 2,517 | 4,232 | 3,679 | | | | | Alternative PC6LT8 | 4,393 | 6,118 | 5,562 | | | | # Table 863 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (BMW) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (BMW) | | | | |--|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | 1,722 | 2,380 | 2,066 | | Alternative PC1LT3 | 1,722 | 2,540 | 2,150 | | Alternative PC2LT4 | 1,871 | 2,802 | 2,357 | | Alternative PC3LT5 | 2,150 | 3,103 | 2,646 | | Alternative PC6LT8 | 3,918 | 5,091 | 4,529 | # Table 864 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Ford) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Ford) | | | | |---|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | 878 | 2,536 | 2,384 | | Alternative PC1LT3 | 1,043 | 3,380 | 3,165 | | Alternative PC2LT4 | 1,937 | 3,901 | 3,720 | | Alternative PC3LT5 | 2,379 | 4,367 | 4,183 | | Alternative PC6LT8 | 7,277 | 6,230 | 6,327 | Table 865 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (GM) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (GM) | | | | |---|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | 1,368 | 2,690 | 2,422 | | Alternative PC1LT3 | 3,342 | 4,286 | 4,095 | | Alternative PC2LT4 | 3,613 | 4,688 | 4,469 | | Alternative PC3LT5 | 6,720 | 5,222 | 5,528 | | Alternative PC6LT8 | 8,688 | 7,067 | 7,398 | # Table 866 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Honda) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Honda) | | | | |--|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline)
| 955 | 1,929 | 1,467 | | Alternative PC1LT3 | 1,013 | 2,064 | 1,565 | | Alternative PC2LT4 | 1,013 | 2,324 | 1,701 | | Alternative PC3LT5 | 1,430 | 2,652 | 2,069 | | Alternative PC6LT8 | 3,157 | 4,705 | 3,967 | # Table 867 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Hyundai KiH) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Hyundai KiH) | | | | |--|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | 1,802 | 1,767 | 1,786 | | Alternative PC1LT3 | 3,507 | 3,076 | 3,312 | | Alternative PC2LT4 | 3,642 | 3,776 | 3,703 | | Alternative PC3LT5 | 3,940 | 7,165 | 5,390 | | Alternative PC6LT8 | 6,645 | 8,839 | 7,632 | # Table 868 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Hyundai KiK) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Hyundai KiK) | | | | |--|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | 851 | 1,471 | 1,151 | | Alternative PC1LT3 | 1,712 | 2,646 | 2,165 | | Alternative PC2LT4 | 3,337 | 3,440 | 3,387 | | Alternative PC3LT5 | 3,756 | 8,179 | 5,888 | | Alternative PC6LT8 | 6,094 | 9,746 | 7,856 | # Table 869 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (JLR) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (JLR) | | | | |--|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | 2,715 | 1,800 | 1,819 | | Alternative PC1LT3 | 2,890 | 2,652 | 2,657 | | Alternative PC2LT4 | 3,273 | 3,187 | 3,189 | | Alternative PC3LT5 | 3,821 | 3,739 | 3,741 | | Alternative PC6LT8 | 5,393 | 5,704 | 5,697 | Table 870 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Karma) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Karma) | | | | |--|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | -3,543 | 0 | -3,543 | | Alternative PC1LT3 | -3,543 | 0 | -3,543 | | Alternative PC2LT4 | -3,543 | 0 | -3,543 | | Alternative PC3LT5 | -3,543 | 0 | -3,543 | | Alternative PC6LT8 | -3,543 | 0 | -3,543 | # Table 871 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Lucid) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Lucid) | | | | |--|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | -62 | 0 | -62 | | Alternative PC1LT3 | -62 | 0 | -62 | | Alternative PC2LT4 | -62 | 0 | -62 | | Alternative PC3LT5 | -62 | 0 | -62 | | Alternative PC6LT8 | -62 | 0 | -62 | # Table 872 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Mazda) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Mazda) | | | | |--|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | 1,629 | 2,398 | 2,303 | | Alternative PC1LT3 | 1,694 | 2,420 | 2,330 | | Alternative PC2LT4 | 1,694 | 2,461 | 2,366 | | Alternative PC3LT5 | 11,032 | 6,730 | 7,266 | | Alternative PC6LT8 | 13,340 | 11,579 | 11,798 | # Table 873 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Mercedes-Benz) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Mercedes-Benz) | | | | |--|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | 2,129 | 2,733 | 2,470 | | Alternative PC1LT3 | 2,169 | 3,026 | 2,653 | | Alternative PC2LT4 | 2,326 | 3,229 | 2,836 | | Alternative PC3LT5 | 2,816 | 3,583 | 3,247 | | Alternative PC6LT8 | 4,675 | 5,718 | 5,262 | # Table 874 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Mitsubishi) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Mitsubishi) | | | | |---|----------------|--------------|-------------| | | Passenger Cars | Light Trucks | Total Fleet | | No Action Alternative (Baseline) | 1,475 | 1,368 | 1,421 | | Alternative PC1LT3 | 1,702 | 2,233 | 1,969 | | Alternative PC2LT4 | 1,695 | 2,414 | 2,057 | | Alternative PC3LT5 | 2,016 | 4,380 | 3,201 | | Alternative PC6LT8 | 4,256 | 5,913 | 5,088 | Table 875 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Nissan) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Nissan) | | | | | |---|----------------|--------------|-------------|--| | | Passenger Cars | Light Trucks | Total Fleet | | | No Action Alternative (Baseline) | 1,498 | 3,306 | 2,363 | | | Alternative PC1LT3 | 1,499 | 3,714 | 2,558 | | | Alternative PC2LT4 | 1,689 | 4,229 | 2,902 | | | Alternative PC3LT5 | 1,975 | 4,555 | 3,203 | | | Alternative PC6LT8 | 4,288 | 5,803 | 5,010 | | # Table 876 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Stellantis) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Stellantis) | | | | | |---|----------------|--------------|-------------|--| | | Passenger Cars | Light Trucks | Total Fleet | | | No Action Alternative (Baseline) | 3,217 | 2,924 | 2,956 | | | Alternative PC1LT3 | 3,372 | 3,861 | 3,807 | | | Alternative PC2LT4 | 4,031 | 4,433 | 4,388 | | | Alternative PC3LT5 | 4,687 | 4,918 | 4,892 | | | Alternative PC6LT8 | 6,465 | 7,583 | 7,459 | | # Table 877 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Subaru) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Subaru) | | | | | | |---|----------------|--------------|-------------|--|--| | | Passenger Cars | Light Trucks | Total Fleet | | | | No Action Alternative (Baseline) | 1,500 | 2,516 | 2,384 | | | | Alternative PC1LT3 | 1,500 | 2,516 | 2,384 | | | | Alternative PC2LT4 | 1,500 | 2,516 | 2,384 | | | | Alternative PC3LT5 | 1,550 | 2,515 | 2,389 | | | | Alternative PC6LT8 | 2,563 | 3,401 | 3,292 | | | # Table 878 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Tesla) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Tesla) | | | | | | |--|----------------|--------------|-------------|--|--| | | Passenger Cars | Light Trucks | Total Fleet | | | | No Action Alternative (Baseline) | 0 | 226 | 13 | | | | Alternative PC1LT3 | 0 | 226 | 13 | | | | Alternative PC2LT4 | 0 | 226 | 13 | | | | Alternative PC3LT5 | 0 | 226 | 13 | | | | Alternative PC6LT8 | 0 | 226 | 13 | | | # Table 879 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Toyota) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Toyota) | | | | | |---|----------------|--------------|-------------|--| | | Passenger Cars | Light Trucks | Total Fleet | | | No Action Alternative (Baseline) | 1,285 | 2,075 | 1,794 | | | Alternative PC1LT3 | 1,285 | 2,074 | 1,794 | | | Alternative PC2LT4 | 1,285 | 2,188 | 1,867 | | | Alternative PC3LT5 | 1,335 | 2,628 | 2,166 | | | Alternative PC6LT8 | 2,847 | 4,141 | 3,679 | | # Table 880 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Volvo) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (Volvo) | | | | | | | | |--|---|-------|-------|--|--|--|--| | | Passenger Cars Light Trucks Total Fleet | | | | | | | | No Action Alternative (Baseline) | 484 | 1,466 | 1,202 | | | | | | Alternative PC1LT3 | 557 | 1,871 | 1,517 | | | | | | Alternative PC2LT4 | 699 | 2,163 | 1,768 | | | | | | Alternative PC3LT5 | 909 | 2,641 | 2,172 | | | | | | Alternative PC6LT8 |
2,594 | 4,616 | 4,068 | | | | | # Table 881 - Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (VWA) | Estimated Average Per Vehicle Regulatory Costs (\$) for MY 2032, by Alternative for Manufacturer (VWA) | | | | | | | |--|-------|-------|-------|--|--|--| | Passenger Cars Light Trucks Total Fleet | | | | | | | | No Action Alternative (Baseline) | 2,004 | 2,383 | 2,249 | | | | | Alternative PC1LT3 | 2,045 | 2,959 | 2,635 | | | | | Alternative PC2LT4 | 2,136 | 3,341 | 2,913 | | | | | Alternative PC3LT5 | 2,566 | 3,800 | 3,360 | | | | | Alternative PC6LT8 | 4,539 | 5,792 | 5,346 | | | | Table 882 - Estimated Average Per Vehicle Fuel Costs (\$) for MY 2032 Total Fleet, by Alternative | Estimated Average Per Vehicle Fuel Costs (\$) for MY 2032 Total Fleet, by Alternative | | | | | | |---|---------------------|----------------------------|---------------------|---------------------|--| | | Lifetime Fuel Ex | Lifetime Fuel Expenditures | | Э | | | | 7% Discount
Rate | 3% Discount
Rate | 7% Discount
Rate | 3% Discount
Rate | | | No Action Alternative (Baseline) | 10,678 | 13,727 | 0 | 0 | | | Alternative PC1LT3 | 10,070 | 12,943 | -608 | -784 | | | Alternative PC2LT4 | 9,869 | 12,684 | -809 | -1,043 | | | Alternative PC3LT5 | 9,672 | 12,432 | -1,006 | -1,296 | | | Alternative PC6LT8 | 9,123 | 11,725 | -1,555 | -2,002 | | Table 883 - Estimated Average Per Vehicle Fuel Costs (\$) for MY 2032 Passenger Car Fleet, by Alternative | Estimated Average Per Vehicle Fuel Costs (\$) for MY 2032 Passenger Car Fleet, by Alternative | | | | | | |---|---------------------|----------------------------|---------------------|---------------------|--| | | Lifetime Fuel Expe | Lifetime Fuel Expenditures | | | | | | 7% Discount
Rate | 3% Discount
Rate | 7% Discount
Rate | 3% Discount
Rate | | | No Action Alternative (Baseline) | 7,646 | 9,705 | 0 | 0 | | | Alternative PC1LT3 | 7,526 | 9,552 | -119 | -153 | | | Alternative PC2LT4 | 7,410 | 9,403 | -236 | -302 | | | Alternative PC3LT5 | 7,231 | 9,176 | -415 | -529 | | | Alternative PC6LT8 | 6,525 | 8,279 | -1,120 | -1,426 | | #### Table 884 - Estimated Average Per Vehicle Fuel Costs (\$) for MY 2032 Light Truck Fleet, by Alternative | Estimated Average Per Vehicle Fuel Costs (\$) for MY 2032 Light Truck Fleet, by Alternative | | | | | | |---|---------------------|----------------------------|---------------------|---------------------|--| | | Lifetime Fuel Ex | Lifetime Fuel Expenditures | |) | | | | 7% Discount
Rate | 3% Discount
Rate | 7% Discount
Rate | 3% Discount
Rate | | | No Action Alternative (Baseline) | 12,109 | 15,627 | 0 | 0 | | | Alternative PC1LT3 | 11,271 | 14,544 | -839 | -1,083 | | | Alternative PC2LT4 | 11,033 | 14,238 | -1,076 | -1,389 | | | Alternative PC3LT5 | 10,836 | 13,984 | -1,274 | -1,643 | | | Alternative PC6LT8 | 10,358 | 13,365 | -1,751 | -2,263 | | #### **Vehicle-Mass-Related Fatality Impacts** Table 885 - Vehicle-Mass-Related Fatality Impacts over the Lifetime of MY 1983-2032 for Total Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | Vehicle-Mass-Related Fatality Impacts over the Lifetime of MY 1983-2032 for Total Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | | | | | | |--|------------|-------------|--------|--------|--| | Catagory | Regulatory | Alternative | | | | | Category | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fatalities | 251 | 298 | 480 | 559 | | | Fatality Costs (\$ Billion, 3% Discount Rate) | 2.0 | 2.4 | 3.9 | 5.1 | | | Fatality Costs (\$ Billion, 7% Discount Rate) | 1.2 | 1.5 | 2.3 | 3.3 | | | Non-Fatal Crash Costs (\$ Billion, 3% Discount Rate) | 3.5 | 4.2 | 6.6 | 8.1 | | | Non-Fatal Crash Costs (\$ Billion, 7% Discount Rate) | 2.1 | 2.5 | 4.0 | 5.4 | | | Total Crash Costs (\$ Billion, 3% Discount Rate) | 5.6 | 6.7 | 10.5 | 13.2 | | | Total Crash Costs (\$ Billion, 7% Discount Rate) | 3.3 | 4.0 | 6.3 | 8.7 | | # Table 886 - Vehicle-Mass-Related Fatality Impacts over the Lifetime of MY 1983-2032 for Passenger Car Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | Vehicle-Mass-Related Fatality Impacts over the Lifetime of MY 1983-2032 for Passenger Car Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | | | | | | | |--|------------|-------------|--------|--------|--|--| | Catagony | Regulatory | Alternative | | | | | | Category | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | Fatalities | -4 | 17 | 141 | 210 | | | | Fatality Costs (\$ Billion, 3% Discount Rate) | 0.1 | 0.3 | 1.3 | 2.1 | | | | Fatality Costs (\$ Billion, 7% Discount Rate) | 0.1 | 0.3 | 0.8 | 1.5 | | | | Non-Fatal Crash Costs (\$ Billion, 3% Discount Rate) | -0.1 | 0.3 | 2.0 | 3.2 | | | | Non-Fatal Crash Costs (\$ Billion, 7% Discount Rate) | 0.1 | 0.3 | 1.3 | 2.4 | | | | Total Crash Costs (\$ Billion, 3% Discount Rate) | 0.0 | 0.5 | 3.3 | 5.3 | | | | Total Crash Costs (\$ Billion, 7% Discount Rate) | 0.2 | 0.5 | 2.2 | 3.8 | | | # Table 887 - Vehicle-Mass-Related Fatality Impacts over the Lifetime of MY 1983-2032 for Light Truck Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | Vehicle-Mass-Related Fatality Impacts over the Lifetime of MY 1983-2032 for Light Truck Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | | | | | | | | | | | | |--|------------------------|--------|--------|--------|--|--|--|--|--|--|--| | Catagory | Regulatory Alternative | | | | | | | | | | | | Category | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | | Fatalities | 255 | 280 | 339 | 349 | | | | | | | | | Fatality Costs (\$ Billion, 3% Discount Rate) | 1.9 | 2.2 | 2.6 | 3.0 | | | | | | | | | Fatality Costs (\$ Billion, 7% Discount Rate) | 1.1 | 1.2 | 1.5 | 1.8 | | | | | | | | | Non-Fatal Crash Costs (\$ Billion, 3% Discount Rate) | 3.6 | 4.0 | 4.6 | 4.9 | | | | | | | | | Non-Fatal Crash Costs (\$ Billion, 7% Discount Rate) | 2.0 | 2.3 | 2.6 | 3.0 | | | | | | | | | Total Crash Costs (\$ Billion, 3% Discount Rate) | 5.5 | 6.1 | 7.3 | 7.9 | | | | | | | | | Total Crash Costs (\$ Billion, 7% Discount Rate) | 3.1 | 3.5 | 4.1 | 4.8 | | | | | | | | # Table 888 - Vehicle-Mass-Related Fatality Impacts for CY 2039-2048 for Total Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | Vehicle-Mass-Related Fatality Impacts for CY 2039-2048 for Total Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | | | | | | | | | | | | |---|------------|------------------------|--------|--------|--|--|--|--|--|--|--| | Cotogony | Regulatory | Regulatory Alternative | | | | | | | | | | | Category | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | | Fatalities | 249 | 349 | 488 | 717 | | | | | | | | | Fatality Costs (\$ Billion, 3% Discount Rate) | 1.6 | 2.2 | 3.1 | 4.5 | | | | | | | | | Fatality Costs (\$ Billion, 7% Discount Rate) | 0.7 | 1.0 | 1.3 | 2.0 | | | | | | | | | Non-Fatal Crash Costs (\$ Billion, 3% Discount Rate) | 3.1 | 4.4 | 6.0 | 9.0 | | | | | | | | | Non-Fatal Crash Costs (\$ Billion, 7% Discount Rate) | 1.3 | 1.9 | 2.6 | 3.9 | | | | | | | | | Total Crash Costs (\$ Billion, 3% Discount Rate) | 4.7 | 6.6 | 9.1 | 13.5 | | | | | | | | | Total Crash Costs (\$ Billion, 7% Discount Rate) | 2.0 | 2.8 | 3.9 | 5.8 | | | | | | | | # Table 889 - Vehicle-Mass-Related Fatality Impacts for CY 2039-2048 for Passenger Car Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | Vehicle-Mass-Related Fatality Impacts for CY 2039-2048 for Passenger Car Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | | | | | | | | | | | | |---|------------|-------------|--------|--------|--|--|--|--|--|--|--| | Catagory | Regulatory | Alternative | | | | | | | | | | | Category | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | | Fatalities | -73 | -126 | -34 | 42 | | | | | | | | | Fatality Costs (\$ Billion, 3% Discount Rate) | -0.4 | -0.8 | -0.2 | 0.3 | | | | | | | | | Fatality Costs (\$ Billion, 7% Discount Rate) | -0.2 | -0.3 | -0.1 | 0.1 | | | | | | | | | Non-Fatal Crash Costs (\$ Billion, 3% Discount Rate) | -0.9 | -1.5 | -0.4 | 0.6 | | | | | | | | | Non-Fatal Crash Costs (\$ Billion, 7% Discount Rate) | -0.4 | -0.6 | -0.1 | 0.3 | | | | | | | | | Total Crash Costs (\$ Billion, 3% Discount Rate) | -1.3 | -2.3 | -0.6 | 0.9 | | | | | | | | | Total Crash Costs (\$ Billion, 7% Discount
Rate) | -0.5 | -0.9 | -0.2 | 0.4 | | | | | | | | # Table 890 - Vehicle-Mass-Related Fatality Impacts for CY 2039-2048 for Light Truck Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | Vehicle-Mass-Related Fatality Impacts for CY 2039-2048 for Light Truck Fleet, Compared to Alternative 0 (Baseline) - Fatalities Undiscounted, Dollars Discounted at 3% and 7% | | | | | | | | | | | | |---|------------------------|--------|--------|--------|--|--|--|--|--|--|--| | Cotogon | Regulatory Alternative | | | | | | | | | | | | Category | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | | | Fatalities | 322 | 475 | 522 | 674 | | | | | | | | | Fatality Costs (\$ Billion, 3% Discount Rate) | 2.0 | 3.0 | 3.3 | 4.2 | | | | | | | | | Fatality Costs (\$ Billion, 7% Discount Rate) | 0.9 | 1.3 | 1.4 | 1.8 | | | | | | | | | Non-Fatal Crash Costs (\$ Billion, 3% Discount Rate) | 4.0 | 5.9 | 6.4 | 8.4 | | | | | | | | | Non-Fatal Crash Costs (\$ Billion, 7% Discount Rate) | 1.7 | 2.5 | 2.7 | 3.6 | | | | | | | | | Total Crash Costs (\$ Billion, 3% Discount Rate) | 6.0 | 8.9 | 9.7 | 12.6 | | | | | | | | | Total Crash Costs (\$ Billion, 7% Discount Rate) | 2.6 | 3.8 | 4.1 | 5.4 | | | | | | | | # Table 891 - Incremental Vehicle-Mass-Related Fatality Impacts by Model Year and Fleet, No Action Alternative (Baseline) Compared to Alternative 0 (Baseline), Undiscounted | Incremental Vehicle-Mass-Related Fatality Impacts by Model Year and Fleet, No Action Alternative (Baseline) Compared to Alternative 0 (Baseline), Undiscounted | | | | | | | | | | | | | | |--|---------------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Passenger
Cars | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Light Trucks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | # Table 892 - Incremental Vehicle-Mass-Related Fatality Impacts by Model Year and Fleet, Alternative PC2LT4 Compared to Alternative 0 (Baseline), Undiscounted | Incremental Vehicle-Mass-Related Fatality Impacts by Model Year and Fleet, Alternative PC2LT4 Compared to Alternative 0 (Baseline), Undiscounted | | | | | | | | | | | | | | |--|---------------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Passenger
Cars | 124 | 6 | 5 | 5 | 5 | -21 | -28 | -39 | -27 | -15 | 1 | 17 | | | Light Trucks | 110 | 10 | 11 | 12 | 13 | 22 | 19 | 35 | 23 | 19 | 6 | 280 | | | Total | 235 | 16 | 16 | 17 | 18 | 1 | -10 | -4 | -4 | 5 | 7 | 298 | | # Table 893 - Incremental Vehicle-Mass-Related Fatality Impacts by Model Year and Fleet, Alternative PC3LT5 Compared to Alternative 0 (Baseline), Undiscounted | Incremental Vehicle-Mass-Related Fatality Impacts by Model Year and Fleet, Alternative PC3LT5 Compared to Alternative 0 (Baseline), Undiscounted | | | | | | | | | | | | | | |--|---------------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Passenger
Cars | 213 | 12 | 11 | 10 | 10 | -20 | -24 | -45 | -25 | -17 | 15 | 141 | | | Light Trucks | 197 | 20 | 21 | 23 | 26 | 22 | 15 | 38 | 14 | 13 | -51 | 339 | | | Total | 410 | 31 | 32 | 34 | 36 | 2 | -8 | -7 | -10 | -3 | -37 | 480 | | # Table 894 - Incremental Vehicle-Mass-Related Fatality Impacts by Model Year and Fleet, Alternative PC6LT8 Compared to Alternative 0 (Baseline), Undiscounted | Incremental Vehicle-Mass-Related Fatality Impacts by Model Year and Fleet, Alternative PC6LT8 Compared to Alternative 0 (Baseline), Undiscounted | | | | | | | | | | | | | | |--|---------------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Passenger
Cars | 422 | 21 | 19 | 17 | 17 | -25 | -38 | -67 | -69 | -64 | -22 | 210 | | | Light Trucks | 386 | 37 | 39 | 43 | 48 | 35 | 14 | 14 | -33 | -71 | -161 | 349 | | | Total | 808 | 57 | 58 | 60 | 65 | 9 | -24 | -53 | -102 | -135 | -183 | 559 | | # Table 895 - Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, No Action Alternative (Baseline) Compared to Alternative 0 (Baseline), 3% Discount Rate | Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, No Action Alternative (Baseline) Compared to Alternative 0 (Baseline), 3% Discount Rate | | | | | | | | | | | | | |---|---------------|------|------|------|------|------|------|------|------|------|------|-------| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Passenger
Cars | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Light Trucks | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | # Table 896 - Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC1LT3 Compared to Alternative 0 (Baseline), 3% Discount Rate | Incremental Ve | Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC1LT3 Compared to Alternative 0 (Baseline), 3% Discount Rate | | | | | | | | | | | | | |-------------------|---|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Passenger
Cars | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | -0.2 | -0.2 | -0.2 | -0.1 | -0.1 | 0.0 | 0.1 | | | Light Trucks | 0.6 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 1.9 | | | Total | 1.4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 2.0 | | # Table 897 - Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC2LT4 Compared to Alternative 0 (Baseline), 3% Discount Rate | Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC2LT4 Compared to Alternative 0 (Baseline), 3% Discount Rate | | | | | | | | | | | | | | |---|---------------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Passenger
Cars | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | -0.2 | -0.2 | -0.3 | -0.2 | -0.1 | 0.0 | 0.3 | | | Light Trucks | 0.9 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.3 | 0.2 | 0.1 | 0.0 | 2.2 | | | Total | 2.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | -0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 2.4 | | # Table 898 - Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC3LT5 Compared to Alternative 0 (Baseline), 3% Discount Rate | Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC3LT5 Compared to Alternative 0 (Baseline), 3% Discount Rate | | | | | | | | | | | | | | |---|---------------|------|------|------|------|------|------|------|------|------|------|-------|--| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | | Passenger
Cars | 1.8 | 0.1 | 0.1 | 0.1 | 0.1 | -0.2 | -0.2 | -0.3 | -0.2 | -0.1 | 0.1 | 1.3 | | | Light Trucks | 1.6 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.3 | 0.1 | 0.1 | -0.3 | 2.6 | | | Total | 3.4 | 0.2 | 0.2 | 0.2 | 0.3 | 0.0 | -0.1 | -0.1 | -0.1 | 0.0 | -0.2 | 3.9 | | # Table 899 - Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC6LT8 Compared to Alternative 0 (Baseline), 3% Discount Rate | Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC6LT8 Compared to Alternative 0 (Baseline), 3% Discount Rate | | | | | | | | | | | | | |---|---------------|------|------|------|------|------|------|------|------|------|------|-------| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | |
Passenger
Cars | 3.6 | 0.2 | 0.1 | 0.1 | 0.1 | -0.2 | -0.3 | -0.5 | -0.5 | -0.4 | -0.1 | 2.1 | | Light Trucks | 3.1 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 | -0.2 | -0.5 | -1.1 | 3.0 | | Total | 6.8 | 0.4 | 0.4 | 0.5 | 0.5 | 0.0 | -0.2 | -0.4 | -0.7 | -0.9 | -1.2 | 5.1 | ### Table 900 - Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, No Action Alternative (Baseline) Compared to Alternative 0 (Baseline), 7% Discount Rate | Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, No Action Alternative (Baseline) Compared to Alternative 0 (Baseline), 7% Discount Rate | | | | | | | | | | | 1 | | |---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Model Year 1983-
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 Total | | | | | | | | | | | | | | Passenger
Cars | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Light Trucks | Light Trucks 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | | | | | | | | Total | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | # Table 901 - Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC1LT3 Compared to Alternative 0 (Baseline), 7% Discount Rate | Incremental Ve | Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC1LT3 Compared to Alternative 0 (Baseline), 7% Discount Rate | | | | | | | | | | | 1LT3 | |-------------------|---|------|------|------|------|------|------|------|------|------|------|-------| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Passenger
Cars | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | 0.0 | 0.0 | 0.1 | | Light Trucks | Light Trucks 0.4 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 1.1 | | | | | | | | | | | | | Total | 0.9 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 1.2 | # Table 902 - Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC2LT4 Compared to Alternative 0 (Baseline), 7% Discount Rate | Incremental Ve | Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC2LT4 Compared to Alternative 0 (Baseline), 7% Discount Rate | | | | | | | | | | | | |-------------------|---|------|------|------|------|------|------|------|------|------|------|-------| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Passenger
Cars | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.2 | -0.1 | -0.1 | 0.0 | 0.3 | | Light Trucks | Light Trucks 0.6 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 1.2 | | | | | | | | | | | | | Total | 1.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | -0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | # Table 903 - Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC3LT5 Compared to Alternative 0 (Baseline), 7% Discount Rate | Incremental Ve | Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC3LT5 Compared to Alternative 0 (Baseline), 7% Discount Rate | | | | | | | | | | | | |-------------------|---|------|------|------|------|------|------|------|------|------|------|-------| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Passenger
Cars | 1.2 | 0.1 | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.2 | -0.1 | -0.1 | 0.1 | 0.8 | | Light Trucks | 1.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | -0.2 | 1.5 | | Total | 2.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | -0.1 | -0.1 | -0.1 | 0.0 | -0.1 | 2.3 | # Table 904 - Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC6LT8 Compared to Alternative 0 (Baseline), 7% Discount Rate | Incremental Vehicle-Mass-Related Fatality Costs (\$ billion) by Model Year and Fleet, Alternative PC6LT8 Compared to Alternative 0 (Baseline), 7% Discount Rate | | | | | | | | | | | | | |---|---|------|------|------|------|------|------|------|------|------|------|-------| | Model Year | 1983-
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total | | Passenger
Cars | 2.3 | 0.1 | 0.1 | 0.1 | 0.1 | -0.1 | -0.2 | -0.3 | -0.3 | -0.2 | -0.1 | 1.5 | | Light Trucks | Light Trucks 1.9 0.2 0.2 0.2 0.1 0.0 0.0 -0.1 -0.3 -0.5 1.8 | | | | | | | | | | | | | Total | 4.2 | 0.3 | 0.2 | 0.2 | 0.3 | 0.0 | -0.2 | -0.3 | -0.4 | -0.5 | -0.6 | 3.3 | ### **Change in Safety Parameters** Table 905 - Change in Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Total Fleet, 3% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Ba
Discount Rate | seline) for MY
, by Alternative | | r Total Fleet, | 3% Percent | |---|------------------------------------|--------|----------------|------------| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Fatalities | | | | | | Fatalities From Mass Changes | -1 | -10 | -2 | -3 | | Fatalities from Rebound Effect | 199 | 249 | 306 | 404 | | Fatalities from Sales/Scrappage | 53 | 59 | 176 | 158 | | Total Changes in Fatalities | 251 | 298 | 480 | 559 | | Fatality Costs (\$b) | | | • | <u>.</u> | | Fatality Costs From Mass Changes | 0.0 | -0.1 | 0.0 | 0.0 | | Fatality Costs From Rebound Effect | 1.4 | 1.8 | 2.2 | 2.9 | | Fatality Costs from Sales/Scrappage | 0.6 | 0.7 | 1.7 | 2.1 | | Total - Fatality Costs (\$b) | 2.0 | 2.4 | 3.9 | 5.1 | | Non-Fatal Crash Costs (\$b) | · | | | | | Non-Fatal Crash Costs From Mass Changes | 0.0 | -0.1 | 0.0 | 0.0 | | Non-Fatal Crash Costs From Rebound Effect | 2.8 | 3.6 | 4.4 | 5.8 | | Non-Fatal Crash Costs from Sales/Scrappage | 0.7 | 0.8 | 2.3 | 2.4 | | Total - Non-Fatal Crash Costs (\$b) | 3.5 | 4.2 | 6.6 | 8.1 | | Property Damage Costs (\$b) | · | | | | | Property Damage Costs From Mass Changes | 0.0 | 0.0 | 0.0 | 0.0 | | Property Damage Costs From Rebound Effect | 0.5 | 0.6 | 0.7 | 0.9 | | Property Damage Costs From Sales/Scrappage | -0.1 | -0.1 | -0.1 | -0.5 | | Total - Property Damage Costs (\$b) | 0.4 | 0.4 | 0.6 | 0.5 | | Societal Crash Costs (\$b) | | | | | | Crash Costs from Mass Changes | 0.0 | -0.2 | 0.0 | -0.1 | | Crash Costs from Rebound Effect | 4.7 | 5.9 | 7.3 | 9.6 | | Crash Costs from Sales/Scrappage | 1.2 | 1.4 | 3.9 | 4.1 | | Total - Societal Crash Costs (\$b) | 6.0 | 7.1 | 11.1 | 13.6 | Table 906 - Change in Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Passenger Car Fleet, 3% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Bas
Percent Discount R | | | Passenger (| Car Fleet, 3% | |---|--------|--------|-------------|---------------| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Fatalities | | | | • | | Fatalities From Mass Changes | 2 | 4 | 23 | 32 | | Fatalities from Rebound Effect | 12 | 26 | 46 | 107 | | Fatalities from Sales/Scrappage | -19 | -13 | 73 | 71 | | Total Changes in Fatalities | -4 | 17 | 141 | 210 | | Fatality Costs (\$b) | | | | | | Fatality Costs From Mass Changes | 0.0 | 0.0 | 0.2 | 0.2 | | Fatality Costs From Rebound Effect | 0.1 | 0.2 | 0.3 | 0.8 | | Fatality Costs from Sales/Scrappage | 0.0 | 0.1 | 0.8 | 1.1 | | Total - Fatality Costs (\$b) | 0.1 | 0.3 | 1.3 | 2.1 | | Non-Fatal Crash Costs (\$b) | | | | | | Non-Fatal Crash Costs From Mass Changes | 0.0 | 0.1 | 0.3 | 0.5 | | Non-Fatal Crash Costs From Rebound Effect | 0.2 | 0.4 | 0.7 | 1.5 | | Non-Fatal Crash Costs from Sales/Scrappage | -0.3 | -0.2 | 1.0 | 1.2 | | Total - Non-Fatal Crash Costs (\$b) | -0.1 | 0.3 | 2.0 | 3.2 | | Property Damage Costs (\$b) | | | | | | Property Damage Costs From Mass Changes | 0.0 | 0.0 | 0.1 | 0.1 | | Property Damage Costs From Rebound Effect | 0.0 | 0.1 | 0.1 | 0.3 | | Property Damage Costs From Sales/Scrappage | -0.1 | -0.1 | 0.0 | -0.2 | | Total - Property Damage Costs (\$b) | -0.1 | -0.1 | 0.1 | 0.1 | | Societal Crash Costs (\$b) | · | • | · | · | | Crash Costs from Mass Changes | 0.1 | 0.1 | 0.5 | 0.8 | | Crash Costs from Rebound Effect | 0.3 | 0.6 | 1.1 | 2.6 | | Crash Costs from Sales/Scrappage | -0.4 | -0.3 | 1.8 | 2.1 | | Total - Societal Crash Costs (\$b) | -0.1 | 0.5 | 3.4 | 5.4 | Table 907 - Change in Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Light Truck Fleet, 3% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Light Truck Fleet, 3% Percent Discount Rate, by Alternative | | | | | | | | | | |--|--------|--------|--------|--------|--|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | Fatalities | | • | | · | | | | | | | Fatalities From Mass
Changes | -3 | -14 | -24 | -35 | | | | | | | Fatalities from Rebound Effect | 186 | 223 | 260 | 297 | | | | | | | Fatalities from Sales/Scrappage | 72 | 71 | 103 | 87 | | | | | | | Total Changes in Fatalities | 255 | 280 | 339 | 349 | | | | | | | Fatality Costs (\$b) | | | | | | | | | | | Fatality Costs From Mass Changes | 0.0 | -0.1 | -0.2 | -0.2 | | | | | | | Fatality Costs From Rebound Effect | 1.4 | 1.6 | 1.9 | 2.1 | | | | | | | Fatality Costs from Sales/Scrappage | 0.6 | 0.6 | 0.9 | 1.1 | | | | | | | Total - Fatality Costs (\$b) | 1.9 | 2.2 | 2.6 | 3.0 | | | | | | | Non-Fatal Crash Costs (\$b) | | | | | | | | | | | Non-Fatal Crash Costs From Mass Changes | 0.0 | -0.2 | -0.3 | -0.5 | | | | | | | Non-Fatal Crash Costs From Rebound Effect | 2.7 | 3.2 | 3.7 | 4.2 | | | | | | | Non-Fatal Crash Costs from Sales/Scrappage | 1.0 | 1.0 | 1.3 | 1.2 | | | | | | | Total - Non-Fatal Crash Costs (\$b) | 3.6 | 4.0 | 4.6 | 4.9 | | | | | | | Property Damage Costs (\$b) | | | | | | | | | | | Property Damage Costs From Mass Changes | 0.0 | 0.0 | -0.1 | -0.1 | | | | | | | Property Damage Costs From Rebound Effect | 0.4 | 0.5 | 0.6 | 0.7 | | | | | | | Property Damage Costs From Sales/Scrappage | 0.1 | 0.0 | 0.0 | -0.3 | | | | | | | Total - Property Damage Costs (\$b) | 0.5 | 0.5 | 0.5 | 0.3 | | | | | | | Societal Crash Costs (\$b) | | | | | | | | | | | Crash Costs from Mass Changes | -0.1 | -0.3 | -0.6 | -0.8 | | | | | | | Crash Costs from Rebound Effect | 4.5 | 5.3 | 6.2 | 7.1 | | | | | | | Crash Costs from Sales/Scrappage | 1.6 | 1.6 | 2.1 | 2.0 | | | | | | | Total - Societal Crash Costs (\$b) | 6.0 | 6.6 | 7.8 | 8.2 | | | | | | Table 908 - Change in Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Total Fleet, 7% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Basel Discount Rate, by | | 983-2032 for | Total Fleet, 7 | % Percent | |---|--------|--------------|----------------|-----------| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Fatalities | • | • | • | • | | Fatalities From Mass Changes | -1 | -10 | -2 | -3 | | Fatalities from Rebound Effect | 199 | 249 | 306 | 404 | | Fatalities from Sales/Scrappage | 53 | 59 | 176 | 158 | | Total Changes in Fatalities | 251 | 298 | 480 | 559 | | Fatality Costs (\$b) | | | | | | Fatality Costs From Mass Changes | 0.0 | 0.0 | 0.0 | 0.0 | | Fatality Costs From Rebound Effect | 0.8 | 1.0 | 1.2 | 1.6 | | Fatality Costs from Sales/Scrappage | 0.4 | 0.5 | 1.1 | 1.8 | | Total - Fatality Costs (\$b) | 1.2 | 1.5 | 2.3 | 3.3 | | Non-Fatal Crash Costs (\$b) | | | | | | Non-Fatal Crash Costs From Mass Changes | 0.0 | -0.1 | 0.0 | 0.0 | | Non-Fatal Crash Costs From Rebound Effect | 1.5 | 1.9 | 2.4 | 3.1 | | Non-Fatal Crash Costs from Sales/Scrappage | 0.6 | 0.7 | 1.6 | 2.2 | | Total - Non-Fatal Crash Costs (\$b) | 2.1 | 2.5 | 4.0 | 5.4 | | Property Damage Costs (\$b) | | | | | | Property Damage Costs From Mass Changes | 0.0 | 0.0 | 0.0 | 0.0 | | Property Damage Costs From Rebound Effect | 0.3 | 0.3 | 0.4 | 0.5 | | Property Damage Costs From Sales/Scrappage | 0.0 | -0.1 | 0.0 | -0.2 | | Total - Property Damage Costs (\$b) | 0.2 | 0.3 | 0.4 | 0.3 | | Societal Crash Costs (\$b) | | | | | | Crash Costs from Mass Changes | 0.0 | -0.1 | 0.0 | 0.0 | | Crash Costs from Rebound Effect | 2.6 | 3.2 | 4.0 | 5.2 | | Crash Costs from Sales/Scrappage | 1.0 | 1.2 | 2.7 | 3.8 | | Total - Societal Crash Costs (\$b) | 3.5 | 4.3 | 6.7 | 9.0 | Table 909 - Change in Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Passenger Car Fleet, 7% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Passenger Car Fleet, 7% Percent Discount Rate, by Alternative | | | | | | | | | | |--|--------|--------|--------|----------|--|--|--|--|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | | | | | Fatalities | • | • | • | • | | | | | | | Fatalities From Mass Changes | 2 | 4 | 23 | 32 | | | | | | | Fatalities from Rebound Effect | 12 | 26 | 46 | 107 | | | | | | | Fatalities from Sales/Scrappage | -19 | -13 | 73 | 71 | | | | | | | Total Changes in Fatalities | -4 | 17 | 141 | 210 | | | | | | | Fatality Costs (\$b) | • | | | <u>.</u> | | | | | | | Fatality Costs From Mass Changes | 0.0 | 0.0 | 0.1 | 0.1 | | | | | | | Fatality Costs From Rebound Effect | 0.0 | 0.1 | 0.2 | 0.4 | | | | | | | Fatality Costs from Sales/Scrappage | 0.1 | 0.1 | 0.6 | 1.0 | | | | | | | Total - Fatality Costs (\$b) | 0.1 | 0.3 | 0.8 | 1.5 | | | | | | | Non-Fatal Crash Costs (\$b) | • | | | <u>.</u> | | | | | | | Non-Fatal Crash Costs From Mass Changes | 0.0 | 0.0 | 0.2 | 0.2 | | | | | | | Non-Fatal Crash Costs From Rebound Effect | 0.1 | 0.2 | 0.4 | 0.8 | | | | | | | Non-Fatal Crash Costs from Sales/Scrappage | 0.0 | 0.1 | 0.8 | 1.3 | | | | | | | Total - Non-Fatal Crash Costs (\$b) | 0.1 | 0.3 | 1.3 | 2.4 | | | | | | | Property Damage Costs (\$b) | • | | | <u>.</u> | | | | | | | Property Damage Costs From Mass Changes | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | Property Damage Costs From Rebound Effect | 0.0 | 0.0 | 0.1 | 0.1 | | | | | | | Property Damage Costs From Sales/Scrappage | -0.1 | -0.1 | 0.0 | -0.1 | | | | | | | Total - Property Damage Costs (\$b) | 0.0 | 0.0 | 0.1 | 0.1 | | | | | | | Societal Crash Costs (\$b) | | | | | | | | | | | Crash Costs from Mass Changes | 0.0 | 0.0 | 0.3 | 0.4 | | | | | | | Crash Costs from Rebound Effect | 0.2 | 0.3 | 0.6 | 1.4 | | | | | | | Crash Costs from Sales/Scrappage | 0.0 | 0.1 | 1.4 | 2.2 | | | | | | | Total - Societal Crash Costs (\$b) | 0.1 | 0.5 | 2.3 | 4.0 | | | | | | Table 910 - Change in Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Light Truck Fleet, 7% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Bas
Percent Discount Ra | | | or Light Trucl | Fleet, 7% | |--|--------|--------|----------------|-----------| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Fatalities | | • | | • | | Fatalities From Mass Changes | -3 | -14 | -24 | -35 | | Fatalities from Rebound Effect | 186 | 223 | 260 | 297 | | Fatalities from Sales/Scrappage | 72 | 71 | 103 | 87 | | Total Changes in Fatalities | 255 | 280 | 339 | 349 | | Fatality Costs (\$b) | | | | | | Fatality Costs From Mass Changes | 0.0 | 0.0 | -0.1 | -0.1 | | Fatality Costs From Rebound Effect | 0.7 | 0.9 | 1.0 | 1.1 | | Fatality Costs from Sales/Scrappage | 0.4 | 0.4 | 0.6 | 0.8 | | Total - Fatality Costs (\$b) | 1.1 | 1.2 | 1.5 | 1.8 | | Non-Fatal Crash Costs (\$b) | | | | | | Non-Fatal Crash Costs From Mass Changes | 0.0 | -0.1 | -0.2 | -0.3 | | Non-Fatal Crash Costs From Rebound Effect | 1.5 | 1.7 | 2.0 | 2.3 | | Non-Fatal Crash Costs from Sales/Scrappage | 0.6 | 0.6 | 0.8 | 1.0 | | Total - Non-Fatal Crash Costs (\$b) | 2.0 | 2.3 | 2.6 | 3.0 | | Property Damage Costs (\$b) | | | | | | Property Damage Costs From Mass Changes | 0.0 | 0.0 | 0.0 | 0.0 | | Property Damage Costs From Rebound Effect | 0.2 | 0.3 | 0.3 | 0.4 | | Property Damage Costs From Sales/Scrappage | 0.0 | 0.0 | 0.0 | -0.1 | | Total - Property Damage Costs (\$b) | 0.3 | 0.3 | 0.3 | 0.2 | | Societal Crash Costs (\$b) | | | | | | Crash Costs from Mass Changes | 0.0 | -0.2 | -0.3 | -0.4 | | Crash Costs from Rebound Effect | 2.4 | 2.9 | 3.4 | 3.8 | | Crash Costs from Sales/Scrappage | 1.0 | 1.0 | 1.4 | 1.6 | | Total - Societal Crash Costs (\$b) | 3.4 | 3.8 | 4.4 | 5.0 | Table 911 - Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Total Fleet, 3% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Total Fleet, 3% Percent Discount Rate, by Alternative | | | | | | |--|--------|--------|--------|--------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fatalities | • | • | • | • | | | Fatalities From Mass Changes | -36 | -30 | -6 | 22 | | | Fatalities from Rebound Effect | 305 | 406 | 532 | 814 | | | Fatalities from Sales/Scrappage | -21 | -27 | -38 | -118 | | | Total Changes in Fatalities | 249 | 349 | 488 | 717 | | | Fatality Costs (\$b) | • | | - | | | | Fatality Costs From Mass Changes | -0.2 | -0.2 | 0.0 | 0.1 | | | Fatality Costs From Rebound Effect | 1.9 | 2.5 | 3.3 | 5.1 | | | Fatality Costs from Sales/Scrappage | -0.1 | -0.2 | -0.2 | -0.7 | | | Total - Fatality Costs (\$b) | 1.6 | 2.2 | 3.1 | 4.5 | | | Non-Fatal Crash Costs (\$b) | • | | - | • | | | Non-Fatal Crash Costs From Mass Changes | -0.4 | -0.4 | -0.1 | 0.3 | | | Non-Fatal Crash Costs From Rebound Effect | 3.8 | 5.1 | 6.6 | 10.2 | | | Non-Fatal Crash Costs from Sales/Scrappage | -0.3 | -0.3 | -0.5 | -1.5 | | | Total - Non-Fatal Crash Costs (\$b) | 3.1 | 4.4 | 6.0 | 9.0 | | | Property Damage Costs (\$b) | • | • | | | | | Property Damage Costs From Mass Changes | -0.1 | -0.1 | 0.0 | 0.1 | | | Property Damage Costs From Rebound Effect | 0.6 | 0.8 | 1.1 | 1.7 | | | Property Damage Costs From Sales/Scrappage | 0.0 | 0.0 | -0.1 | -0.1 | | | Total - Property Damage Costs (\$b) | 0.5 | 0.7 | 1.0 | 1.6 | | | Societal Crash Costs (\$b) | · | | | | | | Crash Costs from Mass Changes | -0.7 | -0.6 | -0.1 | 0.5 | | | Crash Costs from Rebound Effect | 6.4 | 8.4 | 11.1 | 17.0 | | | Crash Costs from Sales/Scrappage | -0.4 | -0.5 | -0.9 | -2.4 | | | Total - Societal Crash Costs (\$b) | 5.2 | 7.3 | 10.1 | 15.1 | | Table 912 - Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Passenger Car Fleet, 3% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0
(Baseline) for CY 2039-2048 for Passenger Car Fleet, 3% Percent Discount Rate, by Alternative | | | | | | |--|--------|--------|--------|----------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fatalities | | • | • | <u> </u> | | | Fatalities From Mass Changes | 6 | 33 | 92 | 152 | | | Fatalities from Rebound Effect | 9 | 25 | 63 | 200 | | | Fatalities from Sales/Scrappage | -88 | -184 | -189 | -310 | | | Total Changes in Fatalities | -73 | -126 | -34 | 42 | | | Fatality Costs (\$b) | • | | | | | | Fatality Costs From Mass Changes | 0.0 | 0.2 | 0.6 | 0.9 | | | Fatality Costs From Rebound Effect | 0.1 | 0.2 | 0.4 | 1.3 | | | Fatality Costs from Sales/Scrappage | -0.5 | -1.1 | -1.1 | -1.9 | | | Total - Fatality Costs (\$b) | -0.4 | -0.8 | -0.2 | 0.3 | | | Non-Fatal Crash Costs (\$b) | | | | <u>.</u> | | | Non-Fatal Crash Costs From Mass Changes | 0.1 | 0.4 | 1.2 | 1.9 | | | Non-Fatal Crash Costs From Rebound Effect | 0.1 | 0.3 | 0.8 | 2.5 | | | Non-Fatal Crash Costs from Sales/Scrappage | -1.1 | -2.3 | -2.3 | -3.8 | | | Total - Non-Fatal Crash Costs (\$b) | -0.9 | -1.5 | -0.4 | 0.6 | | | Property Damage Costs (\$b) | · | | · | | | | Property Damage Costs From Mass Changes | 0.0 | 0.1 | 0.2 | 0.3 | | | Property Damage Costs From Rebound Effect | 0.0 | 0.0 | 0.1 | 0.4 | | | Property Damage Costs From Sales/Scrappage | -0.2 | -0.4 | -0.4 | -0.6 | | | Total - Property Damage Costs (\$b) | -0.1 | -0.3 | -0.1 | 0.1 | | | Societal Crash Costs (\$b) | · | · | | | | | Crash Costs from Mass Changes | 0.1 | 0.7 | 1.9 | 3.2 | | | Crash Costs from Rebound Effect | 0.2 | 0.5 | 1.3 | 4.2 | | | Crash Costs from Sales/Scrappage | -1.8 | -3.8 | -3.9 | -6.4 | | | Total - Societal Crash Costs (\$b) | -1.5 | -2.6 | -0.7 | 1.0 | | Table 913 - Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Light Truck Fleet, 3% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Light Truck Fleet, 3% Percent Discount Rate, by Alternative | | | | | | |--|--------|--------|--------|--------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fatalities | • | • | • | | | | Fatalities From Mass Changes | -42 | -63 | -99 | -131 | | | Fatalities from Rebound Effect | 297 | 380 | 469 | 613 | | | Fatalities from Sales/Scrappage | 67 | 157 | 151 | 192 | | | Total Changes in Fatalities | 322 | 475 | 522 | 674 | | | Fatality Costs (\$b) | | | | | | | Fatality Costs From Mass Changes | -0.3 | -0.4 | -0.6 | -0.8 | | | Fatality Costs From Rebound Effect | 1.9 | 2.4 | 2.9 | 3.8 | | | Fatality Costs from Sales/Scrappage | 0.4 | 1.0 | 0.9 | 1.2 | | | Total - Fatality Costs (\$b) | 2.0 | 3.0 | 3.3 | 4.2 | | | Non-Fatal Crash Costs (\$b) | | | | | | | Non-Fatal Crash Costs From Mass Changes | -0.5 | -0.8 | -1.2 | -1.6 | | | Non-Fatal Crash Costs From Rebound Effect | 3.7 | 4.8 | 5.9 | 7.7 | | | Non-Fatal Crash Costs from Sales/Scrappage | 0.8 | 1.9 | 1.8 | 2.3 | | | Total - Non-Fatal Crash Costs (\$b) | 4.0 | 5.9 | 6.4 | 8.4 | | | Property Damage Costs (\$b) | | | | | | | Property Damage Costs From Mass Changes | -0.1 | -0.1 | -0.2 | -0.3 | | | Property Damage Costs From Rebound Effect | 0.6 | 0.8 | 1.0 | 1.3 | | | Property Damage Costs From Sales/Scrappage | 0.1 | 0.4 | 0.3 | 0.5 | | | Total - Property Damage Costs (\$b) | 0.7 | 1.0 | 1.1 | 1.4 | | | Societal Crash Costs (\$b) | • | | • | • | | | Crash Costs from Mass Changes | -0.9 | -1.3 | -2.0 | -2.7 | | | Crash Costs from Rebound Effect | 6.2 | 7.9 | 9.8 | 12.8 | | | Crash Costs from Sales/Scrappage | 1.4 | 3.2 | 3.0 | 4.0 | | | Total - Societal Crash Costs (\$b) | 6.7 | 9.8 | 10.8 | 14.1 | | Table 914 - Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Total Fleet, 7% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Total Fleet, 7% Percent Discount Rate, by Alternative | | | | | | |--|--------|--------|--------|--------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fatalities | • | • | | | | | Fatalities From Mass Changes | -36 | -30 | -6 | 22 | | | Fatalities from Rebound Effect | 305 | 406 | 532 | 814 | | | Fatalities from Sales/Scrappage | -21 | -27 | -38 | -118 | | | Total Changes in Fatalities | 249 | 349 | 488 | 717 | | | Fatality Costs (\$b) | | • | | | | | Fatality Costs From Mass Changes | -0.1 | -0.1 | 0.0 | 0.1 | | | Fatality Costs From Rebound Effect | 0.8 | 1.1 | 1.4 | 2.2 | | | Fatality Costs from Sales/Scrappage | 0.0 | -0.1 | -0.1 | -0.3 | | | Total - Fatality Costs (\$b) | 0.7 | 1.0 | 1.3 | 2.0 | | | Non-Fatal Crash Costs (\$b) | | | | | | | Non-Fatal Crash Costs From Mass Changes | -0.2 | -0.2 | 0.0 | 0.1 | | | Non-Fatal Crash Costs From Rebound Effect | 1.6 | 2.2 | 2.9 | 4.4 | | | Non-Fatal Crash Costs from Sales/Scrappage | -0.1 | -0.1 | -0.2 | -0.6 | | | Total - Non-Fatal Crash Costs (\$b) | 1.3 | 1.9 | 2.6 | 3.9 | | | Property Damage Costs (\$b) | | | | | | | Property Damage Costs From Mass Changes | 0.0 | 0.0 | 0.0 | 0.0 | | | Property Damage Costs From Rebound Effect | 0.3 | 0.4 | 0.5 | 0.7 | | | Property Damage Costs From Sales/Scrappage | 0.0 | 0.0 | 0.0 | -0.1 | | | Total - Property Damage Costs (\$b) | 0.2 | 0.3 | 0.4 | 0.7 | | | Societal Crash Costs (\$b) | | | | | | | Crash Costs from Mass Changes | -0.3 | -0.3 | 0.0 | 0.2 | | | Crash Costs from Rebound Effect | 2.7 | 3.6 | 4.8 | 7.3 | | | Crash Costs from Sales/Scrappage | -0.2 | -0.2 | -0.3 | -1.0 | | | Total - Societal Crash Costs (\$b) | 2.2 | 3.1 | 4.4 | 6.5 | | Table 915 - Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Passenger Car Fleet, 7% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Passenger Car Fleet, 7% Percent Discount Rate, by Alternative | | | | | | |---|--------|--------|--------|--------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fatalities | • | • | | • | | | Fatalities From Mass Changes | 6 | 33 | 92 | 152 | | | Fatalities from Rebound Effect | 9 | 25 | 63 | 200 | | | Fatalities from Sales/Scrappage | -88 | -184 | -189 | -310 | | | Total Changes in Fatalities | -73 | -126 | -34 | 42 | | | Fatality Costs (\$b) | | | | | | | Fatality Costs From Mass Changes | 0.0 | 0.1 | 0.2 | 0.4 | | | Fatality Costs From Rebound Effect | 0.0 | 0.1 | 0.2 | 0.5 | | | Fatality Costs from Sales/Scrappage | -0.2 | -0.5 | -0.5 | -0.8 | | | Total - Fatality Costs (\$b) | -0.2 | -0.3 | -0.1 | 0.1 | | | Non-Fatal Crash Costs (\$b) | | | • | | | | Non-Fatal Crash Costs From Mass Changes | 0.0 | 0.2 | 0.5 | 0.8 | | | Non-Fatal Crash Costs From Rebound Effect | 0.0 | 0.1 | 0.3 | 1.1 | | | Non-Fatal Crash Costs from Sales/Scrappage | -0.4 | -0.9 | -1.0 | -1.6 | | | Total - Non-Fatal Crash Costs (\$b) | -0.4 | -0.6 | -0.1 | 0.3 | | | Property Damage Costs (\$b) | | | • | | | | Property Damage Costs From Mass Changes | 0.0 | 0.0 | 0.1 | 0.1 | | | Property Damage Costs From Rebound Effect | 0.0 | 0.0 | 0.1 | 0.2 | | | Property Damage Costs From Sales/Scrappage | -0.1 | -0.2 | -0.2 | -0.3 | | | Total - Property Damage Costs (\$b) | -0.1 | -0.1 | 0.0 | 0.1 | | | Societal Crash Costs (\$b) | | | | | | | Crash Costs from Mass Changes | 0.1 | 0.3 | 0.8 | 1.3 | | | Crash Costs from Rebound Effect | 0.1 | 0.2 | 0.6 | 1.8 | | | Crash Costs from Sales/Scrappage | -0.7 | -1.6 | -1.6 | -2.7 | | | Total - Societal Crash Costs (\$b) | -0.6 | -1.1 | -0.2 | 0.4 | | Table 916 - Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Light Truck Fleet, 7% Percent Discount Rate, by Alternative | Change in Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Light Truck Fleet, 7% Percent Discount Rate, by Alternative | | | | | | |--|--------|--------|--------|--------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Fatalities | • | • | • | • | | | Fatalities From Mass Changes | -42 | -63 | -99 | -131 | | | Fatalities from Rebound Effect | 297 | 380 | 469 | 613 | | | Fatalities from Sales/Scrappage | 67 | 157 | 151 | 192 | | | Total Changes in Fatalities | 322 | 475 | 522 | 674 | | | Fatality Costs (\$b) | | | | | | | Fatality Costs From Mass Changes | -0.1 | -0.2 | -0.3 | -0.3 | | | Fatality Costs From Rebound Effect | 0.8 | 1.0 | 1.3 | 1.6 | | | Fatality Costs from Sales/Scrappage | 0.2 | 0.4 | 0.4 | 0.5 | | | Total - Fatality Costs (\$b) | 0.9 | 1.3 | 1.4 | 1.8 | | | Non-Fatal Crash Costs (\$b) | | | | | | | Non-Fatal Crash Costs From Mass Changes | -0.2 | -0.3 | -0.5 | -0.7 | | | Non-Fatal Crash Costs From Rebound Effect | 1.6 | 2.0 | 2.5 | 3.3 | | | Non-Fatal Crash Costs from Sales/Scrappage | 0.3 | 0.8 | 0.7 | 1.0 | | | Total - Non-Fatal Crash Costs (\$b) | 1.7 | 2.5 | 2.7 | 3.6 | | | Property Damage Costs (\$b) | | | | | | | Property Damage Costs From Mass Changes | 0.0 | -0.1 | -0.1 | -0.1 | | | Property Damage Costs From Rebound Effect | 0.3 | 0.3 | 0.4 | 0.5 | | | Property Damage Costs From Sales/Scrappage | 0.1 | 0.1 | 0.1 | 0.2 | | | Total - Property Damage Costs (\$b) | 0.3 | 0.4 | 0.5 | 0.6 | | | Societal Crash Costs (\$b) | | | | | | | Crash Costs from Mass Changes | -0.4 | -0.6 | -0.9 | -1.1 | | | Crash Costs from Rebound Effect | 2.6 | 3.4 | 4.2 | 5.5 | | | Crash Costs from
Sales/Scrappage | 0.6 | 1.3 | 1.3 | 1.7 | | | Total - Societal Crash Costs (\$b) | 2.9 | 4.2 | 4.6 | 6.0 | | Table 917 - Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Total Fleet, by Alternative | Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Total Fleet, by Alternative | | | | | | |--|---------|---------|---------|----------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Non-Fatal Injuries | | | | | | | Non-Fatal Injuries From Mass Changes | -91 | -1,505 | -227 | -409 | | | Non-Fatal Injuries from Rebound Effect | 30,877 | 38,703 | 47,541 | 62,880 | | | Non-Fatal Injuries from Sales/Scrappage | 4,631 | 4,118 | 18,496 | 8,644 | | | Total Changes in Non-Fatal Injuries | 35,417 | 41,317 | 65,810 | 71,115 | | | Property Damaged Vehicles | | | | | | | Property Damaged Vehicles From Mass Changes | -243 | -4,502 | -475 | -907 | | | Property Damaged Vehicles from Rebound Effect | 94,482 | 118,551 | 145,408 | 192,844 | | | Property Damaged Vehicles from Sales/Scrappage | -14,874 | -28,241 | -22,228 | -117,661 | | | Total Changes in Property Damaged Vehicles | 79,366 | 85,808 | 122,705 | 74,275 | | Table 918 - Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Passenger Car Fleet, by Alternative | Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Passenger Car Fleet, by Alternative | | | | | | |--|---------|---------|---------|---------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Non-Fatal Injuries | | | | | | | Non-Fatal Injuries From Mass Changes | 364 | 636 | 3,589 | 5,042 | | | Non-Fatal Injuries from Rebound Effect | 1,905 | 4,067 | 7,124 | 16,763 | | | Non-Fatal Injuries from Sales/Scrappage | -4,694 | -4,463 | 7,124 | 3,293 | | | Total Changes in Non-Fatal Injuries | -2,426 | 240 | 17,837 | 25,098 | | | Property Damaged Vehicles | · | | | | | | Property Damaged Vehicles From Mass Changes | 1,155 | 2,054 | 11,230 | 15,760 | | | Property Damaged Vehicles from Rebound Effect | 5,841 | 12,533 | 21,934 | 52,015 | | | Property Damaged Vehicles from Sales/Scrappage | -27,563 | -32,240 | -12,886 | -54,675 | | | Total Changes in Property Damaged Vehicles | -20,566 | -17,653 | 20,278 | 13,100 | | Table 919 - Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Light Truck Fleet, by Alternative | Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for MY 1983-2032 for Light Truck Fleet, by Alternative | | | | | | |--|--------|---------|---------|---------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Non-Fatal Injuries | | | | | | | Non-Fatal Injuries From Mass Changes | -455 | -2,141 | -3,816 | -5,451 | | | Non-Fatal Injuries from Rebound Effect | 28,973 | 34,636 | 40,417 | 46,117 | | | Non-Fatal Injuries from Sales/Scrappage | 9,325 | 8,581 | 11,372 | 5,352 | | | Total Changes in Non-Fatal Injuries | 37,842 | 41,077 | 47,973 | 46,017 | | | Property Damaged Vehicles | | | | | | | Property Damaged Vehicles From Mass Changes | -1,398 | -6,556 | -11,705 | -16,667 | | | Property Damaged Vehicles from Rebound Effect | 88,641 | 106,018 | 123,474 | 140,828 | | | Property Damaged Vehicles from Sales/Scrappage | 12,689 | 3,999 | -9,343 | -62,986 | | | Total Changes in Property Damaged Vehicles | 99,932 | 103,461 | 102,427 | 61,175 | | Table 920 - Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Total Fleet, by Alternative | Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Total Fleet, by Alternative | | | | | | |--|---------|---------|---------|---------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Non-Fatal Injuries | | | | | | | Non-Fatal Injuries From Mass Changes | -5,774 | -4,748 | -953 | 3,525 | | | Non-Fatal Injuries from Rebound Effect | 48,388 | 64,312 | 84,438 | 129,422 | | | Non-Fatal Injuries from Sales/Scrappage | -3,433 | -4,526 | -7,180 | -19,284 | | | Total Changes in Non-Fatal Injuries | 39,181 | 55,037 | 76,305 | 113,663 | | | Property Damaged Vehicles | | | • | | | | Property Damaged Vehicles From Mass Changes | -19,783 | -15,628 | -2,846 | 13,028 | | | Property Damaged Vehicles from Rebound Effect | 155,370 | 207,030 | 273,355 | 422,766 | | | Property Damaged Vehicles from Sales/Scrappage | -6,543 | -8,550 | -21,884 | -32,638 | | | Total Changes in Property Damaged Vehicles | 129,044 | 182,852 | 248,625 | 403,155 | | Table 921 - Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Passenger Car Fleet, by Alternative | Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Passenger Car Fleet, by Alternative | | | | | | |--|---------|----------|----------|----------|--| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | | Non-Fatal Injuries | | | | | | | Non-Fatal Injuries From Mass Changes | 983 | 5,353 | 14,813 | 24,448 | | | Non-Fatal Injuries from Rebound Effect | 1,350 | 3,913 | 9,882 | 31,837 | | | Non-Fatal Injuries from Sales/Scrappage | -13,975 | -29,474 | -30,528 | -49,209 | | | Total Changes in Non-Fatal Injuries | -11,642 | -20,207 | -5,832 | 7,075 | | | Property Damaged Vehicles | | | | | | | Property Damaged Vehicles From Mass Changes | 3,297 | 18,344 | 50,164 | 83,370 | | | Property Damaged Vehicles from Rebound Effect | 3,507 | 11,392 | 30,555 | 102,395 | | | Property Damaged Vehicles from Sales/Scrappage | -45,645 | -100,279 | -106,701 | -149,270 | | | Total Changes in Property Damaged Vehicles | -38,841 | -70,542 | -25,982 | 36,495 | | Table 922 - Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Light Truck Fleet, by Alternative | Change in Non-Fatal Safety Parameters from Alternative 0 (Baseline) for CY 2039-2048 for Light Truck Fleet, by Alternative | | | | | |--|---------|---------|---------|---------| | Alternative | PC1LT3 | PC2LT4 | PC3LT5 | PC6LT8 | | Non-Fatal Injuries | | | | | | Non-Fatal Injuries From Mass Changes | -6,757 | -10,101 | -15,767 | -20,923 | | Non-Fatal Injuries from Rebound Effect | 47,038 | 60,398 | 74,556 | 97,585 | | Non-Fatal Injuries from Sales/Scrappage | 10,542 | 24,947 | 23,348 | 29,926 | | Total Changes in Non-Fatal Injuries | 50,823 | 75,244 | 82,137 | 106,588 | | Property Damaged Vehicles | | | | | | Property Damaged Vehicles From Mass Changes | -23,080 | -33,973 | -53,009 | -70,342 | | Property Damaged Vehicles from Rebound Effect | 151,862 | 195,638 | 242,800 | 320,370 | | Property Damaged Vehicles from Sales/Scrappage | 39,103 | 91,729 | 84,817 | 116,632 | | Total Changes in Property Damaged Vehicles | 167,885 | 253,395 | 274,607 | 366,660 |